1.4__定向凝固与单晶材料制备
- 格式:ppt
- 大小:1.42 MB
- 文档页数:56
布里奇曼斯托克定向凝固法介绍布里奇曼斯托克定向凝固法(Bridgman-Stockbarger method)是一种重要的实验方法,用于研究单晶的生长和凝固过程。
它是由二位科学家布里奇曼斯和斯托克巴格发展而成的,并在材料科学领域得到广泛应用。
该方法通过控制熔体的温度梯度和凝固速度来实现单晶的生长,以获得高纯度和大尺寸的晶体材料。
工艺原理温度梯度布里奇曼斯托克定向凝固法的关键在于创建一个合适的温度梯度。
通常,熔体温度从下到上逐渐降低,形成一个从高温到低温的温度梯度。
这样可以控制晶体的生长方向和生长速率。
凝固速度凝固速度是另一个重要的参数。
通过调节凝固速度,可以控制晶体的晶格缺陷和晶体缺陷密度。
快速凝固可以得到高度有序的晶体,而慢速凝固则会导致晶格缺陷的增加。
实验过程1.准备样品:选择合适的晶体材料,并将其制成适当尺寸和形状的熔体。
2.设计熔体容器:选择合适的容器,通常为石英管或陶瓷坩埚。
3.创建温度梯度:将熔体置于熔炉中,通过控制熔炉上下部分的温度来形成温度梯度。
4.开始生长:将熔体加热至适当温度,使其开始凝固。
凝固过程中,缓慢下移熔体容器,保持温度梯度不变。
5.结束生长:当晶体生长到所需尺寸时,停止加热并冷却样品,使其完全凝固。
6.取出晶体:将晶体从熔体容器中取出,并进行后续处理和分析。
应用布里奇曼斯托克定向凝固法在材料科学领域有广泛的应用,特别是在单晶生长和研究方面。
它可以用于生长各种材料的单晶,如金属、半导体和陶瓷。
其应用不仅限于实验室研究,还可以用于工业生产中的单晶材料制备。
优势与局限性优势•能够制备大尺寸和高纯度的单晶材料。
•可以控制晶体的生长方向和生长速率。
•数据可重复性高,实验结果可预测性强。
局限性•该方法需要复杂的实验条件和设备。
•凝固过程中容易引入晶体缺陷,需要进一步的处理和调控。
•在某些材料中,可能会出现晶体断裂或晶格缺陷过多的问题。
发展趋势随着材料科学的发展,人们对高性能材料的需求日益增加。
一、简答题:(共40分,每小题8分)1、简单立方晶体中,若位错线方向为[112],b=a[101],试判断此位错的类型?若为刃型位错,试求出半原子面的晶面指数及插入方向的晶向指数。
2、根据溶质原子在点阵中的位置,举例说明固溶体相可分为几类?固溶体在材料中有何意义?3、固溶体合金非平衡凝固时,有时会形成微观偏析,有时会形成宏观偏析,原因何在?4、应变硬化在生产中有何意义?作为一种强化方法,它有什么局限性?5、一种合金能够产生析出硬化的必要条件是什么?二、计算、作图题:(共60分,每小题12分)1、绘出面心立方点阵中(110)晶面的原子平面图。
在该图中标出[111]晶向和(011)晶面(指晶面在(110)晶面上的垂直投影线)。
2、在图2—2所示浓度三角形中,确定P、R、S三点的成分。
若有2kg P 4kg R7kg S混合,求混合后该合金的成分?3、已知碳在γ-Fe中扩散时,D=2.0×10-5m2/s,Q=1.4×105J/mol。
当温度在927℃时,求其扩散系数为多少?(已知摩尔气体常数R=8.314J/mol·K)4、纯锆在553℃和627℃等温退火至完成再结晶分别需要40h和1h。
试求此材料的再结晶激活能。
(已知摩尔气体常数R=8.314J/mol·K)5、画出40钢经退火后室温下的显微组织示意图,并注明组织、放大倍数、腐蚀剂等。
三、综合分析题:(共50分,每小题25分)1、图3—1是铜-铝合金相图的近铜部分。
(1)、写出ωAl=0.08的Al-Cu合金,平衡凝固后的室温组织,并述其形成过程?(2)、若该合金在铸造条件下,将会是什么组织?(3)、若该合金中Al含量改变时(当ωAl <0.05或ωAl>0.08时),其机械性能将如何变化?2、已知位错环ABCD 的柏氏矢量为b ,外应力为τ和σ,如图3—2所示。
(1)、位错环的各边分别是什么类型的位错?(2)、在足够大切应力τ作用下,位错环将如何运动? (3)、在足够大的拉应力σ作用下,位错环将如何运动?一、简答题:(共40分,每小题8分)1、请简述间隙固溶体、间隙相、间隙化合物的异同点?2、请简述影响扩散的主要因素有哪些。
单晶材料及其制备单晶材料是指具有完整晶体结构的材料,其晶体结构沿特定方向没有任何界面或晶界。
单晶材料的结晶性能和物理性能优于多晶材料,因此在许多领域中有广泛应用,如电子器件、光学器件、航空航天等。
本文将介绍单晶材料的制备方法、一些常见的单晶材料及其应用。
制备单晶材料的最常用方法是晶体生长方法,主要有凝固法、浮区法、溶液法和气相法等。
凝固法是指通过控制材料的冷却速度使其从熔融态逐渐冷却成为固态。
这种方法适用于高熔点的材料,一般利用高温熔融状况下的材料来制备单晶材料。
其中,常用的方法有慢冷法、拉布拉多法、修正巨晶法等。
浮区法是通过在两个石英管之间形成液体浮区,将镁铝尖晶石单晶材料逐渐生长出来。
过程中,石英管内加入反应物,通过加热使其熔化,并在石英管之间产生上下移动的浮区,由于石英管之间温度梯度的存在,浮区中的反应物在降温的过程中逐渐结晶并生长成单晶材料。
溶液法是将所需物质溶解在溶剂中,通过控制温度和溶剂挥发速度,使溶液逐渐达到饱和状态并结晶成单晶材料。
其中,常见的溶液法包括溶液蒸发法、有机金属溶胶-凝胶法和溶剂热法等。
气相法是通过控制气体混合物在合适的条件下在衬底上生长单晶材料。
常见的气相法有气体输运法、金属有机化合物气相沉积法和气相石墨化等。
常见的单晶材料包括硅、镁铝尖晶石、硫化镉、硼化镍、石墨等。
其中,硅是最常见的单晶材料之一,广泛应用于半导体制造、光学器件等领域。
硅具有优异的光电性能和机械性能,具备较高的载流子迁移率和导热性能,被广泛应用于电子器件制造中。
此外,硫化镉是一种重要的半导体材料,具有宽的能带间隙和高的光电转换效率,被广泛应用于太阳能电池和激光器等光电器件。
在航空航天领域,单晶材料也有广泛应用。
例如,单晶高温合金被用于制造航空发动机中的叶片和涡轮叶片,因其具有高强度、耐热性和抗腐蚀性能,能够承受高温和高压工况环境。
此外,单晶超合金也被广泛应用于航空发动机的燃烧室和喷嘴等部件。
总之,单晶材料具有独特的结晶结构和优异的物理性能,在电子器件、光学器件、航空航天等领域有广泛应用。