单晶材料制备方法介绍共36页文档
- 格式:ppt
- 大小:3.80 MB
- 文档页数:36
单晶材料的制备方法综述前言:单晶(single crystal),即结晶体内部的微粒在三维空间呈有规律地、周期性地排列,或者说晶体的整体在三维方向上由同一空间格子构成,整个晶体中质点在空间的排列为长程有序。
单晶整个晶格是连续的,具有重要的工业应用。
因此对于单晶材料的的制备方法的研究已成为材料研究的主要方向之一。
本文主要对单晶材料制备的几种常见的方法进行介绍和总结。
单晶材料的制备也称为晶体的生长,是将物质的非晶态、多晶态或能够形成该物质的反应物通过一定的化学的手段转变为单晶的过程。
单晶的制备方法通常可以分为熔体生长、溶液生长和相生长等[1]。
一、从熔体中生长单晶体从熔体中生长晶体的方法是最早的研究方法,也是广泛应用的合成方法。
从熔体中生长单晶体的最大优点是生长速率大多快于在溶液中的生长速率。
二者速率的差异在10-1000倍。
从熔体中生长晶体的方法主要有焰熔法、提拉法、冷坩埚法和区域熔炼法。
1、焰熔法[2]最早是1885年由弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”。
后来于1902年弗雷米的助手法国的化学家维尔纳叶(Verneuil)改进并发展这一技术使之能进行商业化生产。
因此,这种方法又被称为维尔纳也法。
1.1 基本原理焰熔法是从熔体中生长单晶体的方法。
其原料的粉末在通过高温的氢氧火焰后熔化,熔滴在下落过程中冷却并在籽晶上固结逐渐生长形成晶体。
1.2 合成装置和过程:维尔纳叶法合成装置振动器使粉料以一定的速率自上而下通过氢氧焰产生的高温区,粉体熔化后落在籽晶上形成液层,籽晶向下移动而使液层结晶。
此方法主要用于制备宝石等晶体。
2、提拉法[2]提拉法又称丘克拉斯基法,是丘克拉斯基(J.Czochralski)在1917年发明的从熔体中提拉生长高质量单晶的方法。
2O世纪60年代,提拉法进一步发展为一种更为先进的定型晶体生长方法——熔体导模法。
课程论文题目单晶材料的制备方法综述学院材料科学与工程学院专业材料学姓名刘聪学号S150********日期2015.11.01成绩单晶材料的制备方法综述前言:单晶(single crystal),即结晶体内部的微粒在三维空间呈有规律地、周期性地排列,或者说晶体的整体在三维方向上由同一空间格子构成,整个晶体中质点在空间的排列为长程有序。
单晶整个晶格是连续的,具有重要的工业应用。
因此对于单晶材料的的制备方法的研究已成为材料研究的主要方向之一。
本文主要对单晶材料制备的几种常见的方法进行介绍和总结。
单晶材料的制备也称为晶体的生长,是将物质的非晶态、多晶态或能够形成该物质的反应物通过一定的化学的手段转变为单晶的过程。
单晶的制备方法通常可以分为熔体生长、溶液生长和相生长等[1]。
一、从熔体中生长单晶体从熔体中生长晶体的方法是最早的研究方法,也是广泛应用的合成方法。
从熔体中生长单晶体的最大优点是生长速率大多快于在溶液中的生长速率。
二者速率的差异在10-1000倍。
从熔体中生长晶体的方法主要有焰熔法、提拉法、冷坩埚法和区域熔炼法。
1、焰熔法[2]最早是1885年由弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”。
后来于1902年弗雷米的助手法国的化学家维尔纳叶(Verneuil)改进并发展这一技术使之能进行商业化生产。
因此,这种方法又被称为维尔纳也法。
1.1 基本原理焰熔法是从熔体中生长单晶体的方法。
其原料的粉末在通过高温的氢氧火焰后熔化,熔滴在下落过程中冷却并在籽晶上固结逐渐生长形成晶体。
1.2 合成装置和过程:维尔纳叶法合成装置振动器使粉料以一定的速率自上而下通过氢氧焰产生的高温区,粉体熔化后落在籽晶上形成液层,籽晶向下移动而使液层结晶。
此方法主要用于制备宝石等晶体。
2、提拉法[2]提拉法又称丘克拉斯基法,是丘克拉斯基(J.Czochralski)在1917年发明的从熔体中提拉生长高质量单晶的方法。
直拉法制单晶硅和区熔法晶体生长第一节概述多晶硅是单质硅的一种形态。
熔融的单质硅在过冷条件下凝固时,硅原子以金刚石晶格形态排列成许多晶核,如这些晶核长成晶面取向不同的晶粒,则这些晶粒结合起来,就结晶成多晶硅。
多晶硅可作拉制单晶硅的原料,多晶硅与单晶硅的差异主要表现在物理性质方面。
例如,在力学性质、光学性质和热学性质的各向异性方面,远不如单晶硅明显;在电学性质方面,多晶硅晶体的导电性也远不如单晶硅显著,甚至于几乎没有导电性。
在化学活性方面,两者的差异极小。
多晶硅和单晶硅可从外观上加以区别,但真正的鉴别须通过分析测定晶体的晶面方向、导电类型和电阻率等。
多晶硅由很多单晶组成的,杂乱无章的。
单晶硅原子的排列都是有规律的,周期性的,有方向性。
当前生长单晶主要有两种技术:其中采用直拉法生长硅单晶的约占80%,其他由区溶法生长硅单晶。
采用直拉法生长的硅单晶主要用于生产低功率的集成电路元件。
例如:DRAM,SRAM,ASIC电路。
采用区熔法生长的硅单晶,因具有电阻率均匀、氧含量低、金属污染低的特性,故主要用于生产高反压、大功率电子元件。
例如:电力整流器,晶闸管、可关断门极晶闸管(GTO)、功率场效应管、绝缘门极型晶体管(IGBT)、功率集成电路(PIC)等电子元件。
在超高压大功率送变电设备、交通运输用的大功率电力牵引、UPS电源、高频开关电源、高频感应加热及节能灯用高频逆变式电子镇流器等方面具有广泛的应用。
直拉法比用区溶法更容易生长获得较高氧含量(12`14mg/kg)和大直径的硅单晶棒。
根据现有工艺水平,采用直拉法已可生产6`18in(150`450mm)的大直径硅单晶棒。
而采用区溶法虽说已能生长出最大直径是200mm的硅单晶棒,但其主流产品却仍然还是直径100`200mm的硅单晶。
区熔法生长硅单晶能够得到最佳质量的硅单晶,但成本较高。
若要得到最高效率的太阳能电池就要用此类硅片,制作高效率的聚光太阳能电池业常用此种硅片。
单晶制备方法综述单晶材料的制备方法综述前言:单晶(single crystal),即结晶体内部的微粒在三维空间呈有规律地、周期性地排列,或者说晶体的整体在三维方向上由同一空间格子构成,整个晶体中质点在空间的排列为长程有序。
单晶整个晶格是连续的,具有重要的工业应用。
因此对于单晶材料的的制备方法的研究已成为材料研究的主要方向之一。
本文主要对单晶材料制备的几种常见的方法进行介绍和总结。
单晶材料的制备也称为晶体的生长,是将物质的非晶态、多晶态或能够形成该物质的反应物通过一定的化学的手段转变为单晶的过程。
单晶的制备方法通常可以分为熔体生长、溶液生长和相生长等[1]。
一、从熔体中生长单晶体从熔体中生长晶体的方法是最早的研究方法,也是广泛应用的合成方法。
从熔体中生长单晶体的最大优点是生长速率大多快于在溶液中的生长速率。
二者速率的差异在10-1000倍。
从熔体中生长晶体的方法主要有焰熔法、提拉法、冷坩埚法和区域熔炼法。
1、焰熔法[2]最早是1885年由弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”。
后来于1902年弗雷米的助手法国的化学家维尔纳叶(V erneuil)改进并发展这一技术使之能进行商业化生产。
因此,这种方法又被称为维尔纳也法。
1.1 基本原理焰熔法是从熔体中生长单晶体的方法。
其原料的粉末在通过高温的氢氧火焰后熔化,熔滴在下落过程中冷却并在籽晶上固结逐渐生长形成晶体。
1.2 合成装置和过程:维尔纳叶法合成装置振动器使粉料以一定的速率自上而下通过氢氧焰产生的高温区,粉体熔化后落在籽晶上形成液层,籽晶向下移动而使液层结晶。
此方法主要用于制备宝石等晶体。
2、提拉法[2]提拉法又称丘克拉斯基法,是丘克拉斯基(J.Czochralski)在1917年发明的从熔体中提拉生长高质量单晶的方法。
2O世纪60年代,提拉法进一步发展为一种更为先进的定型晶体生长方法——熔体导模法。
单晶材料制备单晶是由结构基元(原子,原子团,离子),在三维空间内按长程有序排列而成的固态物质。
或者说是由结构基元在三维空间内,呈周期排列而成的固态物质。
如水晶,金刚石,宝石等。
单向有序排列决定了它具有以下特征:均匀性、各向异性、自限性、对称性、最小内能和最大稳定性。
单晶材料的制备又称晶体生长,是物质的非晶态,多晶态,或能够形成该物质的反应物,通过一定的物理或化学手段转变为单晶状态的过程。
首先将结晶的物质通过熔化或溶解方式转变成熔体或溶液。
再控制其热力学条件生成晶相,并让其长大。
随着晶体生长学科理论和实践的快速发展,晶体生长手段也日新月异。
生长块状单晶材料多用熔体法,常温溶液法,高温溶液法及其它。
一、熔体法生长晶体此法为最常用方法,是从结晶物质的熔体中生长晶体。
适用于光学半导体,激光技术上需要的单晶材料。
(一)晶体生长的必要条件。
根据晶体生长时体系中存在的——由熔体(m)向晶体(C)自发转变时——两相间自由焓的关系:Gm(T)>Gc(T),即△G=Gc(T)-Gm(T)≈△He-Te△Se-△T△Se=△T△Se<0。
结晶时, △Se>0,只有△T<0 。
熔体单晶体生长的必要条件是:体系温度低于平衡温度。
体系温度低于平衡温度的状态称为过冷。
△T的绝对值称为过冷度。
过冷度作为熔体晶体生长的驱动力。
一般情况:该值越大,晶体生长越快。
当值为零时,晶体生长停止。
(二)晶体生长的充分条件晶体生长是发生在固-液(或晶-液)界面上。
通常为保证晶体粒生长只需使固-液界面附近很小区域熔体处于过冷态,绝大部分熔体处于过热态(温度高于Te )。
已生长出的晶体温度又需低于Te。
就是说整个体系由熔体到晶体的温度由过热向过冷变化。
过热与过冷区的界面为等温区。
此面与晶体生长界面间的熔体为过冷熔体。
且过冷度沿晶体生长反方向逐渐增大。
晶体的温度最低。
这种由晶体到熔体方向存在的温度梯度是热量输运的必要条件。
热量由熔体经生长面传向晶体,并由其转出。
单晶制备手段“单晶”的概念由20世纪早期的科学家引入,它可以被定义为一种由单个原子排列成等距布局的结构。
单晶材料因其特殊的结构,具有良好的力学性能、热性能、光学性能和电学性能,具有重要的理论和应用价值。
随着科技的发展,单晶材料在众多的科技领域中发挥着重要的作用,如激光器件、光学元件、磁性材料、能源材料和电子材料等。
因此,单晶制备技术开发变得尤为重要。
单晶制备技术可以大致分为化学的和物理的两类。
化学类的单晶制备技术包括熔融法、水合物分解法、电化学沉积法和合成晶体法。
熔融法是最常用的单晶制备技术,它可以制备出大块、细小、致密、光滑和纯净的单晶材料。
然而,由于材料的体积变大导致部分物质发生稳定的物质结构变化,熔融法制备的单晶结构的二维晶体缺乏一致性和抗蠕变能力,受到了限制。
水合物分解法是一种可以分解硫氢化物和氯化物水合物的技术,这种技术的优势在于可以制备出细小的单晶,在熔融法中很难达到的结果。
电化学沉积法可以制备出高纯度、高品质的单晶材料,具有快速、精细、经济等优势,但受到了单晶规模和形状的限制。
合成晶体法是一种可以制备出大规模单晶材料的技术,可以较好地满足在工业生产中的要求,但也存在着很多缺点,如晶体质量差、结构改变等。
随着科学技术的发展,各种新型的单晶制备技术也不断出现,如超声振荡法、表面自组装法、无模型技术、光趋型技术、低压技术、流动相技术和电磁脉冲技术等。
它们的特点一般是能够快速、定向和可控地合成单晶材料,不仅提高了制备效率,而且控制单晶材料中特定原子的排列变得更容易。
在未来,单晶制备技术将继续发展,不断发展出更多的优质材料,对科技的发展起着不可或缺的作用。
同时,由于单晶制备技术的发展,制备出的材料将得以更快的速度应用到各个领域中,以满足人们的需求。