高数上册第三章
- 格式:doc
- 大小:310.50 KB
- 文档页数:3
《高等数学教程》第三章 习题答案习题3-1 (A)1. 34=ξ 2. 14-=πξ习题3-2 (A)1. (1)31 (2) 81- 1)12()11()10(1)9(31)8(21)7()6(21)5(1)4(3)3(31e e --∞习题3-2 (B)1. n a a a e e 21)8(1)7(0)6(2)5(21)4(32)3(1281)2(41)1(--2. 连续4. )(a f ''5. )0()1(g a '=⎪⎪⎩⎪⎪⎨⎧=+''≠--+'='0]1)0([210]c o s )([]s i n)([)()2(2x g x x x x g x x g x x f(3) 处处连续.习题3-31. 432)4()4(11)4(37)4(2156)(-+-+-+-+-=x x x x x f2. 193045309)(23456+-+-+-=x x x x x x x f3. )40(,)(cos 3]2)()[sin sin(31tan 4523<<+++=θθθθx x x x x x x4.)10()]4(4[16!4)4(15)4(5121)4(641)4(412432<<-+---+---+=θθx x x x x x5. )10()(!)1(2132<<+-++++=θn nxx O n x x x x xe6. 645.1≈e7. 430533103.1;3090.018sin )2(1088.1;10724.330)1(--⨯<≈⨯<≈R R8. 121)3(21)2(23)1(-习题3-4 (A)1. 单调减少2. 单调增加3. .),23()23,()1(内单调下降在内单调上升;在+∞-∞.),2[]2,0()2(内单调增加在内单调减少;在+∞ .),()3(内单调增加在+∞-∞.),21()21,()4(内单调增加在内单调减少;在+∞-∞ .),[]0[)5(内单调下降在上单调上升;,在+∞n n7. (1) 凸 (2) 凹 (3)内凸内凹,在在),0[]0,(+∞-∞ (4)凹 8. ),(内凹,拐点内凸,在)在(82),2[]2,(1-+∞-∞ ),(内凹,拐点内凸,在)在(222),2[]2,(2e+∞-∞ 内凹,无拐点)在(),(3+∞-∞),(),(:内凹,拐点,内凸,在),,)在(2ln 1;2ln 1]11[1[]1,(4--∞+--∞ ),(内凸,拐点内凹,在)在(3arctan 21),21[]21,(5e +∞-∞ ),(凹,拐点),、凸,在、)在(001[]0,1[]1,0[]1,(6∞+---∞ 9. 29,32=-=b a10. a = 3, b = -9, c = 811. a = 1, b = -3, c = 24, d = 16习题3-4 (B)1. .)1,21(),1()21,0()0,()1(内单调增加在内单调减少;、、在∞+-∞.]22,32[]32,2[)2(内单调下降在内单调上升;在πππππππ+++k k k k .],32[),[]32,()3(内单调下降在内单调上升;、在a a a a ∞+-∞ 2. .1)3(10)2(1)1(是有一个实根时有两个实根时无实根ea e a e a =<<>3. .)2,0(内只有一个实根在π8. .9320时及当=≤k k 9. 在)(凹,拐点凹,在2,),[],(a b b b +∞-∞ 12. 82±=k 习题3-5 (A)1. .1)2(,5)0()1(==y y 极小值极大值.0)0(,4)2()2(2==-y e y 极小值极大值.25)16(,1)4()3(==y y 极小值极大值.205101)512()4(=y 极大值.45)43()5(=y 极大值.0)0()6(=y 极小值 (7) 没有极值. .)()8(1e e e y =极大值.3)1()9(=y 极大值.0)5()1(,18881)21()10(3==-=y y y 极小值极大值2. .14)2(,11)3()1(-==y y 最小值最大值.22)2ln 21(,2)1()2(1=-+=-y e e y 最小值最大值.2ln )41(,0)1()3(-==y y 最小值最大值3. 提示:可导函数的极值点必为驻点,.在题设条件下无驻点所以可证明y '4. .29)1(-=y 最大值5. .27)3(=-y 最小值6. .3)32(,2为极大值==f a7. .21,2-=-=b a8. 长为100m ,宽为5m.9. .1:1:;22,233===h d v h v r ππ 10. .44ππππ++aa ,正方形周长为圆的周长为11. .3843a a h π时,最小体积为锥体的高为=12. .22.1.776小时时间为公里处应在公路右方13. .6000)2(1000)1(==x x14. .45060075.3元件,每天最大利润为元,进货量为定价为 15. .167080,101利润=p习题3-5 (B)1. 1,0,43,41==-==d c b a 2. x = 1为极小点,y (1) = 1为极小值3. 当c = 1时,a = 0,b = -3,当c = -1时,a = 4,b = 5.4. 296)(23++-=x x x x P5. (1) f (x ) 在x = 0处连续;(2) 当ex 1=时,f (x ) 取极小值;当 x = 0时f (x ) 取极大值. 6. 310=x 当时,三角形面积最小7. 323)2()(11)1(032=--=-l x x x x y 8. .1222-≥<b b b b 时为,当时为当 9. 400 10.bc a 2 11. c a e bd L ae bd q -+-=+-=)(4)(,)(2)1(2最大利润eqedd -=η)2( ed q 21)3(==得当η 12. 2)2()4(25)1(=-=t t x 13. 156250元14. (1) 263.01吨 (2) 19.66批/年 (3)一周期为18.31天 (4)22408.74元15. 2)2()111(1)()1(-+-+=e n n n n M n16. 提示:.)1()1(ln )1()(22是极小值,证明令f x x x x f ---=习题3-6 (A)1. (1) x = 0, y = 1; (2) x = -1, y = 0; (3) x = -1, x = 1, y = 0 ; (4) x = 1, x = 2, x = -3.2. 略习题3-6 (B)1. ex y e x 1,1)1(+=-=(2)x= -1,x=1,y= -2 (3)y=x, x=0 (4)y= -2, x=0 4121,21)5(-=-=x y x2. 略习题3-7 (A)1. k=22. x x k sec ,cos ==ρ3. 02sin 32t a k =4. a a k t 4,41,===ρπ 5. 233)22ln ,22(处曲率半径有最小值- 习题3-7 (B)1. 略2. ⎪⎪⎭⎫ ⎝⎛++=)2(),2(,332323132323131x a y y a x axyR 曲率圆心3. 8)2()3(22=++-ηξ4. 约1246 (N) [提示:作匀速圆周运动的物体所受的向心力为Rmv F 2=]5. 16125)49()410(22=-+--ηπξ 习题3-81.19.018.0<<ξ 2. 19.020.0-<<-ξ 3. 33.032.0<<ξ 4. 51.250.2<<ξ总复习题三一. (1)B (2)B (3)B (4)D (5)C (6)B (7)C (8)B (9)C (10)C] 二. 25)8(/82)7()0,1()6(3)5(63)4()22,22()3(2ln 1)2(2)1(3s cm π+--x x x xeyx y 4)1(,)1(4)10()9(2222+++=三. 9)3(0)2(3)1(,7541,6,50,40,31,221,123---e⎪⎪⎩⎪⎪⎨⎧=-''≠++-'='-0)1)0((210)1()()()()1(,82x g x x e x x g x g x x f x上连续在),()()2(+∞-∞'x f 9, 略四、证明题和应用题 6.)027.0,025.0()2(450449)1(7.)2,2(b a P8.12ln 31,2ln 3121-+ 9.%82.0%13)3(173)2(20)1(总收益增加,时,若价格上涨当=-p pp10.略。
第三章:一元函数积分学及其应用教学目的与要求 1.理解不定积分和定积分的概念及性质。
2.掌握不定积分的基本公式,不定积分、定积分的换元法与分部积分法。
3.会求简单的有理函数的积分。
4.理解变上限的积分作为其上限的函数及其求导定理,掌握牛顿(Newton )-莱布尼兹(Leibniz )公式。
5.了解广义积分的概念。
6.了解定积分的近似计算法(梯形法和抛物线法)。
7.掌握用定积分表达一些几何量与物理量(如面积、体积、弧长、功、引力等)的方法 所需学时:20学时(包括:18学时讲授与2学时习题)第一节:不定积分的概念与性质1、原函数概念引例 在下列括号中填入适当的函数: (1)(cos =x c x +sin )' (2) (2=x c x +331)' 上例中的问题是:已知)()(x f x F =' 求 )(x F定义1 若在区间I 上,对任意x 有)()(x f x F =' 或 dx x f x dF )()(= 则称)(x F 是)(x f 在I 上的原函数。
例如:x x sin )(cos -=',则x cos 是x sin -的一个原函数;又x x e e =')(,则x e 是xe 的一个原函数。
原函数存在定理: 若)(x f 是连续函数,则)(x f 必有原函数。
由x x e e =')(有x x e e ='+)2(,x x e c e ='+)(,因此可知xe 的原函数不止一个,而是无穷多个。
说明:(1)若)(x f 有一个原函数)(x F ,则)(x f 就有无穷多个原函数c x F +)((c 为任意常数),即c x F +)(是)(x f 的全部原函数;(2))(x f 的任意两个原函数之差是一个常数。
设)()(x f x F =',)()(x f x =Φ',则有[]0)()()()()()(=-='-Φ'='-Φx f x f x F x x F x 由前面所学定理知 c x F x =-Φ)()(2、不定积分 定义 2 在区间I上,函数()f x 的全体原函数的集合,称为()f x 在I上的不定积分,记为()f x dx ⎰,其中“⎰”称为积分号,)(x f 称为被积函数 ,dx x f )(称为被积表达式,x 称为积分变量.由不定积分的定义可知:求()f x 的不定积分就是求()f x 的所有原函数.若()F x 为()f x 的一个原函数,则()=()f x dx F x C +⎰.其中C 为任意常数,称之为积分常数.简言之,求已知函数的不定积分,就是求出它的一个原函数,再加上任意常数C 即可. 例1 求下列不定积分.(1)2x dx ⎰ (2)sin xdx ⎰ (3)x e dx ⎰解 (1)因为321()3x x '=,所以313x 是2x 的一个原函数,于是 2313x dx x C =+⎰. (2)因为(cos )sin x x '-=,所以cos x -是sin x 的一个原函数,于是sin cos xdx x C =-+⎰.(3)因为()xx ee '=,所以xe是xe 的一个原函数,于是x x e dx e C =+⎰. 例2 已知某曲线上任意点),(y x 处切线斜率为2x ,并且曲线过点)1,0(,求曲线方程。
河北科技大学《高等数学》(上册)第三章
一. 单项选择题
1. 函数()sin f x x =在,22ππ⎛⎫- ⎪⎝⎭
内 【 D 】 A.有最大值 B.有最小值
C.既有最大值又有最小值
D.既无最大值又无最小值
2. 函数()y f x =在0x 处取得极大值,则必有 【
D 】 A.0()0f x '= B.0()0f x ''<
C.0()0f x '=且0()0f x ''<
D.0()0f x '=或0()f x '不存在
3.对函数38y x =+在区间[0,1]上应用拉格朗日中值定理时,所得中间值ξ为【 B
】 A.3
C.1
3 D.1
3-
4. 曲线233y x x =-的拐点为 【 C
】 A.(2,1) B.(2,1)- C.(1,2) D.(1,2)-
5. 已知函数32()f x x ax bx =++在1x =处取得极值2-,则 【 B
】 A.3a =-,0b =,且1x =为函数()f x 的极小值点
B.0a =,3b =-,且1x =为函数()f x 的极小值点
C.3a =-,0b =,且1x =为函数()f x 的极大值点
D.0a =,3b =-,且1x =为函数()f x 的极大值点
6. 曲线324
x y x +=的图形应为 【 D
】 A.在(,0)-∞和(0,)+∞内凸 B.在(,0)-∞内凹,在(0,)+∞内凸
C.在(,0)-∞内凸,在(0,)+∞内凹
D.在(,0)-∞和(0,)+∞内凹
7. 函数32()23f x x x =-的极小值为 【 A 】
A.1-
B.1
C.0
D.不存在
8.
使函数()=f x 【 A 】
A.[0,1]
B. [1,2]
C. [1,1]-
D. [2,2]-
9. 设函数()f x 的导函数()(1)(21)f x x x '=-+,则在区间1(,1)2
内,()f x 单调【 B 】 A.增加,曲线()y f x =为凹的 B.减少,曲线()y f x =为凹的
C.减少,曲线()y f x =为凸的
D.增加,曲线()y f x =为凸的
二、填空题
1. 设()f x 在[,]a b 内可导,则至少存在一点(,)a b ξ∈,使()()f b f a e e -= _.
2.2x y =的麦克劳林公式中n x 项的系数为 .
3.
曲线y =的拐点坐标为 .
三. 计算下列各题
1. 求43()21f x x x =-+的凹凸区间与拐点.
2. 求.函数23()(5)f x x x =-的极值.
3. 求函数3210496y x x x
=-+的单调区间和极值. 4.求极限10lim (,,3→⎛⎫++ ⎪⎝⎭
x x x x x a b c a b c 均大于零且不为1). 5.确定,,a b c 的值,使得32y x ax bx c =+++有拐点(1,1)-,且在0x =处有极值.
四. 证明题
1. 证明,当0x ≥时,(1)ln(1)arctan x x x ++≥.
2.证明:当0x >时,2
ln(1)2
x x x -<+. 3. 证明:当02x π<<时,31tan 3
x x x >+.
4.证明:当0>x 时,ln(1).1<+<+x x x x
5.设(),()f x g x 二阶可导且0()(),(0)(0),(0)(0).x f x g x f g f g ''''''>>==时 证明:0()().x f x g x >>时恒有
五.证明题
1. 已知函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)0f =,(1)1f =.证明:
(1)存在(0,1)ξ∈,使得()1f ξξ=-;
(2)存在不同的两点,(0,1)ηζ∈,使得()()1f f ηζ''=.
2. 设()f x ,()g x 在[,]a b 上连续,在(,)a b 内具有二阶导数且在不同的点处存在相等的最 大值,且()()f a g a =,()()f b g b =,证明:
(1)存在(,)a b η∈,使得()()f g ηη=; (2)存在(,)a b ξ∈,使得()()f g ξξ''''=.
3. 设()f x 在[0,1]上连续,在(0,1)内二阶可导,过点(0,(0))A f 与点(1,(1))B f 的直线与曲线()y f x =相交于点(,())C c f c ,其中01c <<.证明:(1)在(0,1)内至少存在两点1ξ,2ξ,使得12()()f f ξξ''=;(2)在(0,1)内至少存在一点η,使得()0f η''=.
4.设函数()f x 处处可导,1x 和2x 是函数的两个零点,且12x x <。
证明:至少存在一点12(,)x x ξ∈,使得()()0f f 'ξ+ξ=.。