同济大学《高等数学》第七版上、(下册)答案(详细讲解).doc
- 格式:doc
- 大小:2.37 MB
- 文档页数:30
练习1-1
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
练习1-2
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
练习1-3
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全。
高等数学同济第七版下课后习题及解答高等数学作为大学理工科专业的重要基础课程,对于学生的逻辑思维和数学素养的培养起着至关重要的作用。
而《高等数学同济第七版》更是众多高校广泛采用的教材,其课后习题是巩固知识、提升能力的重要途径。
接下来,我们就来详细探讨一下这本教材下册的课后习题及解答。
下册的内容主要包括多元函数微积分学、向量代数与空间解析几何、无穷级数等重要章节。
这些章节的知识点相互关联,构成了一个较为完整的高等数学知识体系。
在多元函数微积分学这一部分,课后习题涵盖了多元函数的概念、偏导数、全微分、多元函数的极值与条件极值等重要知识点。
例如,有这样一道习题:求函数\(z = x^2 + 2y^2 4x + 8y\)的极值。
解答这道题,首先需要求出函数的偏导数\(z_x\)和\(z_y\),分别为\(2x 4\)和\(4y + 8\)。
令偏导数等于零,得到方程组\(2x 4 = 0\),\(4y + 8 = 0\),解得\(x = 2\),\(y =-2\)。
然后,计算二阶偏导数\(z_{xx} = 2\),\(z_{yy} =4\),\(z_{xy} = 0\)。
由于\(z_{xx} > 0\),且\(z_{xx}z_{yy} z_{xy}^2 = 8 > 0\),所以函数在点\((2, -2) \)处取得极小值,极小值为\( 12\)。
向量代数与空间解析几何这一章节的习题则注重考查学生对向量运算、空间直线和平面方程的理解和掌握。
比如,给定两个向量\(\vec{a} =(1, 2, -1) \)和\(\vec{b} =(3, 1, 2) \),求它们的叉积\(\vec{a} \times \vec{b} \)。
首先,根据叉积的计算公式,得到\(\vec{a} \times \vec{b} =\begin{vmatrix} \vec{i} &\vec{j} &\vec{k} \\ 1 & 2 &-1 \\ 3 & 1 & 2 \end{vmatrix} = 5\vec{i} 5\vec{j} 5\vec{k} =(5, -5, -5) \)。
高等数学同济第七版上册课后习题答案L 求下列函数的自然定义域: ⑴ y = J3K +2; ⑶ y =—Vi- x 2;X (5) y=sin(7)y = arcsin(x-3); (9)jV = ln(x + l);解:(1)3AI + 2>0=>X >-23(2)1 -厂工 0 = JCH ±1, 即定义域为(-8, -1) U (-1/)D (1, +8) (3)/ = 0且1一/之0=4工0且产仔1 即定义域为[-1R)D(0,1](2)y = 1 - JC (4);y -1 , A /4-JT (6)y = tan(x +1); (8)J=V3-x + arctanJL; x(10)y = e e\,即定义域为「一 2,+0?(4)4-犬>。
二>卜|<2即定义域为(—2,2)(5)x2 0,即定义域为[0, +oc)71(6)x +1 / kjr + 一 (% £Z), \ 2 1即定义域为x xe R^x^(k+ )兀一1k eZ(7)|x-3|< 1= 2 WxW 4,即定义域为[2,4](8)3—冗2 0且4工0,即定义域为(一8,0) u(0,3](9)x + 1 >0=>x> -1 即定义域为(-1,+8) (10)工工0,即定义域为(一双0) u (0, +oo)2,下列各题中,函数/(x)和g(x)是否相同?为什么?(1)/U) = 1g g(x) =21gx(2)/U) = x, g(x)=岳(3)/(%) = #(f-丁), g(x) =(4)/(x) = l,g(x) =sec'x — tarrx解;(1)不同,因为定义域不同((2)不同,因为对应法则不同,g(M= 1—= x.x>0< 0(3)相同,因为定义域,对应法则均相同(4)不同,因为定义域不同匹斗|斗<3 .设a“)=\ 兀3州花一11 3求0(二),夕(巴),旗一土),0(-2),并指出函数y = Q(x)的图形6 4 41 /乃、, 7T yfl二?,以 4)= sin 耳=~^,0(_Z)= sin(--)l = =0,44 | 2(l)y=(2)y = x + In x,(0, +oo)证明:,匹、 .匹%)=sm%解:4 .试证下列函数在指定区间内的单调X \-xx 1⑴尸/W = ---- -- = T+ -- --- ,(一00』)1-x 1-x设X] <工2 < 1,因为/%)—/区)=“七方 ,〉0 (—Xi) >U1 2所以/(X2 )> /(&),即/(X)在(一8,1)内单调增加(2) y - /(x) = x + In x,(0, +8)设0<»<彳2,因为 /U) -/u) = X - x+ In 当二。
高等数学(同济人学数学系-第七版)上册高等数学(同济大学数学系第七版)上册第三章:微分屮值定理与导数的应用课后习题答案微分中值定理&I.脸证罗尔定理对= Insin x任区间[于打]上的止确性.证函数/(x)=lnsinx^[y^]匕连续•在(卡•乎)内可导■又4f)= ,nsin 6 =,n \ /(T)= ,n,in T=,n T*即4才)唧认卜灯⑷在[:・丫]上満足罗尔定理条件•山罗尔定理®至少仔任T・(H(:、罟卜仙'(§)"•乂 JS二瓷令厂(丫)“得""T +于(w = 0. = 1 ・ ± 2 .・•・)・ JR 兀=0 w(? •普)・IM比罗尔定理对函数尸Insin x任区叫亍'寻]上是正确的•& 2.脸证拉格制日中值定理对函敎y・4』-5/u 2在区何[0,1]上的正确性.it 匪数/(尤)=4“・5/在区河卫・1上连缤■金(0.1)內叫导,故/(・丫)在0」上满足拉格朗H中值定理条件,从而至少存在一点f e(0J).使门小斗护二仝严“又•由八° =12^2 - 10f 4 I =0 olUlf =^~^G(0J) JM此拉俗阴H屮值定理对函敗y=4八5P r・2徃区何0」;上是正确的."i"及化X)’ + cos X在IX间|o,y]j;验让柯內中值定理的正确性.证旳数"+0*在区1叫0,;]上连续皿(0.;)內可品.M住卩•寸)内=1 -MOX ZO.故.心)屮(兀)满足柯两中值定理条件•从而至55/ 1.高等数学(同济人学数学系•第七版)上册55/ 2.高等数学(同济人学数学系•第七版)上册55/ 3.高等数学(同济大学数学系-第七版)上册.55/ 4.高等数学(同济人学数学系•第七版)上册.55/ 5.高等数学(同济人学数学系-第七版)上册86 一、《离等数学》(第七版)上冊习趣全解55 / 6.高等数学(同济人学数学系•第七版)上册件;)"(0)"(目1 -0 cos £ T . 1 - HI1 {T"14Z n = 0,得 go = 2arclan -一~ . 1*1 0 < < 丨•故 C = 2arckm j 4 ^ * | € (。