2012年全国中考数学试题分类解析汇编(159套63专题)专题34_命题与证明(附答案)
- 格式:doc
- 大小:524.50 KB
- 文档页数:15
2012年全国中考数学试题分类解析汇编(159套63专题)专题52:平面几何的综合一、选择题1. (2012湖北鄂州3分)如图,四边形OABC 为菱形,点A 、B 在以O 为圆心的弧上,若OA=2,∠1=∠2,则扇形ODE 的面积为【 】A.π34B.π35C.π2D.π3【答案】A 。
【考点】菱形的性质,等边三角形的判定和性质,扇形面积的计算。
【分析】如图,连接OB .∵OA=OB=OC=AB=BC,∴∠AOB+∠BOC=120°。
又∵∠1=∠2,∴∠DOE=120°。
又∵OA=2,∴扇形ODE 的面积为21202 4 3603ππ⋅⋅=。
故选A 。
2. (2012湖南岳阳3分)如图,AB 为半圆O 的直径,AD 、BC 分别切⊙O 于A 、B 两点,CD 切⊙O 于点E ,AD 与CD 相交于D ,BC 与CD 相交于C ,连接OD 、OC ,对于下列结论:①OD 2=DE•CD; ②AD+BC=CD;③OD=OC;④S 梯形ABCD =CD•OA;⑤∠DOC=90°,其中正确的是【 】A .①②⑤ B.②③④ C.③④⑤ D.①④⑤【答案】A 。
【考点】切线的性质,切线长定理,相似三角形的判定与性质。
1052629【分析】如图,连接OE ,∵AD 与圆O 相切,DC 与圆O 相切,BC 与圆O 相切,∴∠DAO=∠DEO=∠OBC=90°,∴DA=DE,CE=CB ,AD∥BC。
∴CD=DE+EC=AD+BC。
结论②正确。
在Rt△ADO 和Rt△EDO 中,OD=OD ,DA=DE ,∴Rt△ADO≌Rt△EDO(HL )∴∠AOD=∠EOD。
同理Rt△CEO≌Rt△CBO,∴∠EOC=∠BOC。
又∠AOD+∠DOE+∠EOC+∠COB=180°,∴2(∠DOE+∠EOC)=180°,即∠DOC=90°。
结论⑤正确。
∴∠DOC=∠DEO=90°。
2012年全国中考数学试题分类解析汇编159套63专题专题43:平行四边形一、选择题1. 2012广东佛山3分依次连接任意四边形各边的中点,得到一个特殊图形可认为是一般四边形的性质,则这个图形一定是A.平行四边形B.矩形C.菱形D.梯形答案 A;考点三角形中位线定理,平行四边形的判定;分析根据题意画出图形,如右图所示:连接AC,∵四边形ABCD各边中点是E、F、G、H,∴HG∥AC,HG=12AC,EF∥AC,EF=12AC;∴EF=GH,EF∥GH;∴四边形EFGH是平行四边形;由于四边形EFGH是平行四边形,它就不可能是梯形;同时由于是任意四边形,所以AC=BD或AC⊥BD不一定成立,从而得不到矩形或菱形的判断;故选A;2. 2012浙江杭州3分已知平行四边形ABCD中,∠B=4∠A,则∠C=A.18°B.36°C.72°D.144°答案B;考点平行四边形的性质,平行线的性质;分析由平行四边形性质求出∠C=∠A,BC∥AD,推出∠A+∠B=180°,求出∠A的度数,即可求出∠C:∵四边形ABCD是平行四边形,∴∠C=∠A,BC∥AD;∴∠A+∠B=180°;∵∠B=4∠A,∴∠A=36°;∴∠C=∠A=36°;故选B;3. 2012湖北武汉3分在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为A.11+1132B.11-1132C .11+1132或11-1132D .11-1132或1+32答案C; 考点平行四边形的性质和面积,勾股定理;分析依题意,有如图的两种情况;设BE=x,DF=y;如图1,由AB =5,BE=x,得222AE AB BE 25x =-=-;由平行四边形ABCD 的面积为15,BC =6,得2625x =15-,解得53x=2±负数舍去; 由BC =6,DF=y,得222AF AD DF 36y =-=-;由平行四边形ABCD 的面积为15,AB =5,得2536y =15-,解得y=33±负数舍去;∴CE+CF=6-532+5-33=11-1132; 如图2,同理可得BE= 532,DF=33; ∴CE+CF=6+532+5+33=11+1132; 故选C;4. 2012湖南益阳4分如图,点A 是直线l 外一点,在l 上取两点B 、C,分别以A 、C 为圆心,BC 、AB 长为半径画弧,两弧交于点D,分别连接AB 、AD 、CD,则四边形ABCD 一定是A .平行四边形B .矩形C .菱形D .梯形答案A;考点作图复杂作图,平行四边形的判定;分析∵别以A 、C 为圆心,BC 、AB 长为半径画弧,两弧交于点D,∴AD=BC,AB=CD;∴四边形ABCD 是平行四边形两组对边分别相等的四边形是平行四边形;故选A;5. 2012四川广元3分 若以A,0,B2,0,C0,1三点为顶点要画平行四边形,则第四个顶点不可能在A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案C;考点平行四边形的判定,坐标与图形性质;分析根据题意画出图形,如图所示:分三种情况考虑:①以CB 为对角线作平行四边形ABD 1C,此时第四个顶点D 1落在第一象限;②以AC 为对角线作平行四边形ABCD 2,此时第四个顶点D 2落在第二象限;③以AB 为对角线作平行四边形ACBD 3,此时第四个顶点D 3落在第四象限;则第四个顶点不可能落在第三象限;故选C;6. 2012四川德阳3分 如图,点D 是△ABC 的边AB 的延长线上一点,点F 是边BC 上的一个动点不与点B 重合.以BD 、BF 为邻边作平行四边形BDEF,又AP BE 点P 、E 在直线AB 的同侧,如果BD B 14A =,那么△PBC 的面积与△ABC 面积之比为A.41B.53C.51D.43 答案D;考点平行四边形的判定和性质;分析过点P 作PH∥BC 交AB 于H,连接CH,PF,PE;∵APBE,∴四边形APEB 是平行四边形;∴PE AB;, ∵四边形BDEF 是平行四边形,∴EFBD; ∴EF∥AB;∴P,E,F 共线;设BD=a,∵1BD AB 4=,∴PE=AB=4a;∴PF=PE﹣EF=3a; ∵PH∥BC,∴S △HBC =S △PBC ;∵PF∥AB,∴四边形BFPH 是平行四边形;∴BH=PF=3a;∵S △HBC :S △ABC =BH :AB=3a :4a=3:4,∴S △PBC :S △ABC =3:4;故选D;7. 2012四川巴中3分不能判定一个四边形是平行四边形的条件是A. 两组对边分别平行B. 一组对边平行,另一组对边相等C. 一组对边平行且相等D. 两组对边分别相等答案B;考点平行四边形的判定分析根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形; A、D、C均符合是平行四边形的条件,B则不能判定是平行四边形;故选B;8. 2012四川自贡3分如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为A.2和3 B.3和2 C.4和1 D.1和4 答案B;考点平行四边形的性质,平行的性质,等腰三角形的判定和性质;分析∵AE平分∠BAD,∴∠BAE=∠DAE;∵四边形ABCD是平行四边形,∴AD∥BC;∴∠DAE=∠AEB;∴∠BAE=∠BEA;∴AB=BE=3;∴EC=AD﹣BE=2;故选B;答案D;考点平行四边形的性质,平行的性质,等腰三角形的判定;分析∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC;∴∠AEB=∠E BC;又BE平分∠ABC,∴∠ABE=∠EBC;∴∠ABE=∠AEB;∴AB=AE;同理可得:DC=DF;∴AE=DF;∴AE-EF=DE-EF,即AF=DE;当1EF AD4=时,设EF=x,则AD=BC=4x;∴AF=DE=14AD-EF=;∴AE=AB=AF+EF=;∴AB:BC=:4=5:8;∵以上各步可逆,∴当AB:BC=:4=5:8时,1EF AD4=;故选D;10. 2012山东聊城3分如图,四边形ABCD是平行四边形,点E在边BC上,如果点F是边AD上的点,那么△CDF与△ABE不一定全等的条件是A.DF=BE B.AF=CE C.CF=AE D.CF∥AE答案C;考点平行四边形的性质,全等三角形的判定;分析根据平行四边形的性质和全等三角形的判定方法逐项分析即可:A、当DF=BE时,由平行四边形的性质可得:AB=CD,∠B=∠D,利用SAS可判定△CDF≌△ABE;B、当AF=CE时,由平行四边形的性质可得:BE=DF,AB=CD,∠B=∠D,利用SAS可判定△CDF≌△ABE;C、当CF=AE时,由平行四边形的性质可得:AB=CD,∠B=∠D,利用SSA不能可判定△CDF≌△ABE;D、当CF∥AE时,由平行四边形的性质可得:AB=CD,∠B=∠D,∠AEB=∠CFD,利用AAS可判定△CDF≌△ABE;故选C;11. 2012山东泰安3分如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为A.53°B.37°C.47°D.123°答案B;考点平行四边形的性质,对项角的性质,平行的性质;分析设CE与AD相交于点F;∵在平行四边形ABCD中,过点C的直线CE⊥AB,∴∠E=90°,∵∠EAD=53°,∴∠EFA=90°﹣53°=37°;∴∠DFC=37∵四边形ABCD是平行四边形, ∴AD∥BC;∴∠BCE=∠DFC=37°;故选B;12. 2012广西南宁3分如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是A.2cm<OA<5cm B.2cm<OA<8cm C.1cm<OA<4cm D.3cm<OA<8cm答案C;考点平行四边形的性质,三角形三边关系;分析∵平行四边形ABCD 中,AB=3cm,BC=5cm, ∴OA=OC=12AC 平行四边形对角线互相平分, BC -AB <AC <BC +AB 三角形三边关系,即2cm <AC <8cm;∴1cm<OA <4cm;故选C;13. 2012内蒙古包头3分如图,过口ABCD 的对角线BD 上一点M 分别作平行四边形两边的平行线EF 与GH ,那么图中的口AEMG 的面积S 1 与口HCFG 的面积S 2的大小关系是A .S 1 > S 2 < S 2 C .S 1 = S 2 = S 2答案C;考点平行四边形的判定和性质;分析易知,四边形BHME 和MFDG 都是平行四边形;∵平行四边形的对角线把平行四边形分成了两个面积相等的三角形,∴ABD BCD EBM BHM GMD DMF S S S S S S ∆∆∆∆∆∆===,,;∴ABD EBM GMD BCD BHM DMF S S S S S S ∆∆∆∆∆∆--=--,即S 1 = S 2;故选C;14. 2012黑龙江绥化3分如图,在平行四边形ABCD 中,E 是CD 上的一点,DE :EC=2:3,连接AE 、BE 、BD,且AE 、BD 交于点F,则S △DEF :S △EBF :S △ABF =A .2:5:25B .4:9:25C .2: 3:5D .4:10:25答案D;考点平行四边形的性质,相似三角形的判定和性质;分析由DE :EC=2:3得DE :DC=2:5,根据平行四边形对边相等的性质,得DE :AB=2:5 由平行四边形对边平行的性质易得△DFE∽△BFA∴DF:FB= DE :AB=2:5,S △DEF :S △ABF =4:25;又∵S △DEF 和S △EBF 是等高三角形,且DF :FB =2:5,∴S △DEF :S △EBF =2:5=4:10;∴S △DEF :S △EBF :S △ABF =4:10:25;故选D;二、填空题1. 2012广东汕头4分如图,在 ABCD 中,AD=2,AB=4,∠A=30°,以点A 为圆心,AD 的长为半径画弧交AB 于点E,连接CE,则阴影部分的面积是 ▲ 结果保留π.答案133π-;考点平行四边形的性质,扇形面积的计算分析过D点作DF⊥AB于点F;∵AD=2,AB=4,∠A=30°,∴DF=AD sin30°=1,EB=AB﹣AE=2;∴阴影部分的面积=平行四边形ABCD的面积-扇形ADE面积-三角形CBE的面积=230211 4121336023ππ⨯⨯⨯--⨯⨯=-;2. 2012浙江衢州4分如图,平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,CD=2DE.若△DEF的面积为a,则平行四边形ABCD的面积为▲ 用a的代数式表示.答案12a;考点平行四边形的性质,相似三角形的判定和性质;分析∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AB=CD,∴△DEF∽△CEB,△DEF∽△ABF;∴S△DEF:S△CE B=DE:CE2,S△DEF:S△ABF=DE:AB2,∵CD=2DE,∴DE:CE=1:3,DE:AB=1:2,∵S△DEF=a,∴S△CBE=9a,S△ABF=4a,∴S四边形BCDF=S△CEB﹣S△DEF=8a;∴S ABCD=S四边形BCDF+S△ABF=8a+4a=12a;3. 2012江苏南京2分如图,在平行四边形ABCD中,AD=10cm,CD=6cm,E为AD上一点,且BE=BC,CE=CD,则DE= ▲ cm答案;考点平行四边形的性质,平行的性质,等腰三角形的性质,相似三角形的判定和性质;分析∵四边形ABCD是平行四边形,AD=10cm,CD=5cm,∴BC=AD=10cm,AD∥BC,∴∠2=∠3;∵BE=BC,CE=CD,∴BE=BC=10cm,CE=CD=5cm,∠1=∠2,∠3=∠D;∴∠1=∠2=∠3=∠D;∴△BCE∽△CDE;∴BC CECD DE=,即1055DE=,解得DE=;4. 2012江苏镇江2分如图,E是平行四边形ABCD的边CD上一点,连接AE并延长交BC的延长线于点F,且AD=4,CE1AB3=,则CF的长为▲ ;答案2;考点平行四边形的性质,相似三角形的判定和性质的;分析∵四边形ABCD 是平行四边形,∴AB∥DC,BC=AD=4;∴△CEF∽△ABF;∴CE CF AB BF =; 又∵CE 1AB 3=,BF=BC+CF=4+ CF,∴CF 14CF 3=+,解得CF=2; 5. 2012湖北鄂州3分如图,ABCD 中,AE⊥BC 于E,AF⊥CD 于F,若AE=4,AF=6,sin∠BAE=31,则CF= ▲ .考点平行四边形的性质,锐角三角函数定义,勾股定理,相似三角形的判定和性质;分析由AE⊥BC 和sin∠BAE=13,得BE 1AB 3=;∴可设BE=k,则AB=3k;∵AE=4,∴根据勾股定理得222AB AE BE =+,即()2223k 4k =+,解得;;∵四边形ABCD ,∠D=∠B;又∵AE⊥BC,AF⊥CD,∴∠AFD=∠AEB=900;∴△AFD∽△AEB;∴DF AF BE AE=;64=,解得DF DF= =6. 2012湖南永州3分如图,平行四边形ABCD 的对角线相交于点O,且AB≠AD,过O 作OE⊥BD 交BC 于点E .若△CDE 的周长为10,则平行四边形ABCD 的周长为 ▲ .答案20;考点平行四边形的性质,线段垂直平分线的性质;144482分析∵四边形ABCD 是平行四边形,∴OB=OD,AB=CD,AD=BC 平行四边形对边相等,对角线互相平分;∵OE⊥BD,∴BE=DE 线段垂直平分线上的点到线段两端的距离相等;∵△CDE 的周长为10,即CD+DE+EC=10,∴平行四边形ABCD 的周长为:AB+BC+CD+AD=2BC+CD=2BE+EC+CD=2DE+EC+CD=2×10=20;7. 2012湖南怀化3分如图,在ABCD 中,AD=8,点E 、F 分别是BD 、CD 的中点,则EF=▲ .答案4;考点平行四边形的性质,三角形中位线定理;分析∵四边形ABCD 是平行四边形,∴BC=AD=8;∵点E 、F 分别是BD 、CD 的中点,∴EF=12BC=12×8=4; 8. 2012湖南湘潭3分如图,在ABCD 中,点E 在DC 上,若EC :AB=2:3,EF=4,则BF=▲ . 答案6;考点平行四边形的性质,相似三角形的判定和性质;分析∵四边形ABCD 是平行四边形,∴AB∥CD;∴∠CAB=∠ACD,∠ABE=∠BEC; ∴△ABF∽△CEF;∴AB BF CE EF=, 又∵EC:AB=2:3, EF=4,∴3BF 24=,解得BF=6; 9. 2012四川成都4分如图,将ABCD 的一边BC 延长至E,若∠A=110°,则∠1= ▲ .答案70°;考点平行四边形的性质,平角的性质; 分析∵平行四边形ABCD 的∠A=110°,∴∠BCD=∠A=110°;∴∠1=180°﹣∠BCD=180°﹣110°=70°;10. 2012辽宁本溪3分如图,在□ABCD 中,∠ABC 的平分线BE 交AD 边于点E,交对角线AC 于点F,若AB 3BC 5=,则AF AC = ▲ ; 答案38; 考点平行四边形的性质,平行的性质,相似三角形的判定和性质;分析∵四边形ABCD 是平行四边形,∴AD∥BC,∠EBC=∠AEB;∵BE 是∠ABC 的角平分线,∴∠EBC=∠AEB=∠ABE,AB=AE; ∵AB 3BC 5=,∴AE 3BC 5=; ∵AD∥BC,∴△AFE∽△CFB;∴AE AF 3BC FC 5==;∴AF 3AF FC 8=+;∴AF 3AC 8=; 11. 2012贵州黔西南3分如图,在△ABC 中,∠ACB=90°,D 是BC 的中点,DE⊥BC,CE2012山东烟台3分ABCD中,已知点A﹣1,0,B2,0,D0,1.则点C的坐标为▲ .答案3,1;考点平行四边形的性质,坐标与图形性质;分析画出图形,根据平行四边形性质求出DC∥AB,DC=AB=3,根据D的纵坐标和CD=3即可求出答案:∵平行四边形ABCD中,已知点A﹣1,0,B2,0,D0,1,∴AB=CD=2﹣﹣1=3,DC∥AB;∴C的横坐标是3,纵坐标和D的纵坐标相等,是1;∴C的坐标是3,1;13. 2012吉林长春3分如图,ABCD的顶点B在矩形AEFC的边EF上,点B与点E、F不重合.若△ACD的面积为3,则图中的阴影部分两个三角形的面积和为▲ .答案3;考点平行四边形和矩形的性质;分析∵四边形ABCD是平行四边形,∴△ACD的面积=△ACB的面积;又∵△ACD的面积为3,∴△ACB的面积为3;∵△ACB的面积矩形AEFC的面积的一半, ∴阴影部分两个三角形的面积和=△ACB的面积=3; 14. 2012黑龙江龙东地区3分如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件使四边形AECF是平行四边形只填一个即可;答案AF=CE答案不唯一;考点平行四边形的判定和性质;分析根据平行四边形性质得出AD∥BC,AF=CE,得出AF∥CE;根据有一组对边相等且平行的四边形是平行四边形的判定,可添加AF=CE 或FD=EB;根据两组对边分别平行的四边形是平行四边形的定义,可添加AE∥FC;添加∠AEC=∠FCA 或∠DAE=∠DFC 等得到AE∥FC,也可使四边形AECF 是平行四边形;三、解答题1. 2012北京市5分已知:如图,点E,A,C 在同一条直线上,AB∥CD,AB=CE,AC=CD.求证:BC=ED.答案证明:∵AB∥CD,∴∠BAC=∠ECD,∵在△BAC 和△E CD 中,AB=EC,∠BAC=∠ECD ,AC=CD,∴△BAC≌△ECDSAS;∴CB=ED;考点平行线的性质,全等三角形的判定和性质;分析首先由AB∥CD,根据平行线的性质可得∠BAC=∠ECD,再由条件AB=CE,AC=CD 可证出△BAC 和△ECD 全等,再根据全等三角形对应边相等证出CB=ED;2. 2012陕西省6分如图,在ABCD 中,∠ABC 的平分线BF 分别与AC 、AD 交于点E 、F .1求证:AB=AF ;2当AB=3,BC=5时,求AE AC 的值. 答案解:1证明:如图,在ABCD 中,AD∥BC, ∴∠2=∠3;∵BF 是∠ABC 的平分线,∴∠1=∠2;∴∠1=∠3;∴AB=AF;2∵AEF CEB 23∠=∠∠=∠,,∴△AEF∽△CEB;∴AE AF 3EC BC 5==, ∴AE 3AC 8=; 考点平行四边形的性质,平行线的性质,等腰三角形的判定,相似三角形的判定和性质;分析1由在ABCD 中,AD∥BC,利用平行线的性质,可求得∠2=∠3,又由BF 是∠ABC 的平分线,易证得∠1=∠3,利用等角对等边的知识,即可证得AB=AF;2易证得△AEF∽△CEB,利用相似三角形的对应边成比例,即可求得AE AC的值; 3. 2012广东省6分已知:如图,在四边形ABCD 中,AB∥CD,对角线AC 、BD 相交于点O,BO=DO . 求证:四边形ABCD 是平行四边形.答案证明:∵AB∥CD,∴∠ABO=∠CDO,在△ABO 与△CDO 中,∵∠ABO=∠CDO,BO=DO,∠AOB=∠COD,∴△ABO≌△CDOASA;∴AB=CD;∴四边形ABCD是平行四边形;考点平行的性质,全等三角形的判定和性质,平行四边形的判定;分析根据AB∥CD可知∠ABO=∠CDO,再由BO=DO,∠AOB=∠COD,即可根据ASA得出△ABO≌△CDO,故可得出AB=CD,从而根据一组对边平行且相等的四边是平行四边形的判定得出结论;4. 2012广东湛江8分如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:1△ABE≌△CDF;2四边形BFDE是平行四边形.答案证明:1∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CD FSAS;2∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC;∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF;∴四边形BFDE是平行四边形;考点平行四边形的性质和判定,全等三角形的判定;分析1由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF;2由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF;根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形;5. 2012浙江湖州8分已知:如图,在ABCD中,点F在AB的延长线上,且BF=AB,连接FD,交BC于点E.1说明△DCE≌△FBE的理由;2若EC=3,求AD的长.答案1证明:∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC;∴∠CDE=∠F;又∵BF=AB,∴DC=FB;在△DCE和△FBE中,∵ ∠CDE=∠F,∠CED=∠BEF, DC=FB,∴△DCE≌△FBEAAS;2解:∵△DCE≌△FBE,∴EB=EC;∵EC=3,∴BC=2EB=6;∵四边形ABCD是平行四边形,∴AD=BC;∴AD=6;考点平行四边形的性质,平行的性质,全等三角形的判定和性质;分析1由四边形ABCD是平行四边形,根据平行四边形的对边平行且相等,即可得AB=DC,AB∥DC,继而可求得∠CDE=∠F,又由BF=AB,即可利用AAS,判定△DCE≌△FBE;2由1,可得BE=EC,即可求得BC的长,又由平行四边形的对边相等,即可求得AD的长;6. 2012浙江衢州6分如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BE=DF,连接AE、CF.请你猜想:AE与CF有怎样的数量关系并对你的猜想加以证明.答案解:猜想:AE=CF;证明如下:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD;∴∠ABE=∠CDF;在△ABE和△CDF中,AB=CD,∠ABE=∠CDF,BE=DF,∴△ABE≌△CDFSAS,∴AE=CF;考点平行四边形的性质,平行线的性质,全等三角形的判定和性质; 分析由四边形ABCD是平行四边形,即可得AB∥CD,AB=CD,然后利用平行线的性质,求得∠ABE=∠CDF,又由BE=DF,即可由SAS证得△ABE≌△CDF,从而可得AE=CF;7. 2012江苏淮安8分已知:如图在平行四边形ABCD中,延长AB到点E,使BE=AB,连接DE交BC于点F;求证:△BEF≌△CDF答案证明:∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB; ∴∠CDF=∠B,∠C=∠FBE;又∵BE=AB,∴BE=CD;∵在△BEF和△CDF中,∠CDF=∠B,BE=CD,∠C=∠FBE,∴△BEF≌△CDFASA;考点平行四边形的性质,平行的性质,全等三角形的判定;分析根据平行四边形的对边平行且相等可得AB=CD,AB∥CD,再根据两直线平行,内错角相等可得∠C=∠FBE,然后利用ASA证明即可;8. 2012江苏泰州10分如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF.求证:四边形ABCD是平行四边形.答案证明:∵AE⊥AD,CF⊥BC,∴∠EAD=∠CFB=90°;∵AE∥CF,∴∠AED=∠CFB;在Rt△AED和Rt△CFB中,∵∠EAD=∠CFB=90°,∠AED=∠CFB, AE=CF,∴Rt△AED≌Rt△CFBASA;∴AD=BC;又∵AD∥BC,∴四边形ABCD是平行四边形;考点平行的性质,全等三角形的判定和性质,平行四边形的判定;分析由垂直得到∠EAD=∠BCF=90°,根据AAS可证明Rt△AED≌Rt△CFB,得到AD=BC,根据平行四边形的判定判断即可;9. 2012江苏无锡8分如图,在ABCD中,点E在边BC上,点F在BC的延长线上,且BE=CF.求证:∠BAE=∠CDF.答案证明:∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC;∴∠B=∠DCF;∵在△ABE和△DCF中,AB=DC,∠B=∠DCF,BE=CF,∴△ABE≌△DCFSAS;∴∠BAE=∠CDF;考点平行四边形的性质,平行的性质,全等三角形的判定和性质;分析根据平行四边形的性质可得AB=DC,AB∥DC,再根据平行线的性质可得∠B=∠DCF,即可由SAS证明△ABE≌△DCF,再根据全等三角形对应边相等的性质得到结论;10. 2012江苏徐州6分如图,C为AB的中点;四边形ACDE为平行四边形,BE与CD相交于点F;求证:EF=BF;答案证明:∵四边形ACDE为平行四边形,∴ED=AC,ED∥AC;∴∠D=∠FCB,∠DEF=∠B;又∵C为AB的中点,∴AC=BC;∴ED=BC;在△DEF和△C BF中,∵∠D=∠FCB,ED=BC,∠DEF=∠B,∴△DEF≌△CBFSAS;∴EF=BF;考点平行四边形的性质,平行的性质,全等三角形的判定和性质;分析根据平行四边形对边平行且相等的性质,易用SAS证明△DEF≌△CBF,从而根据全等三角形对应边相等的性质即可证得EF=BF;11. 2012福建厦门10分已知ABCD,对角线AC与BD相交于点O,点P在边AD上,过点P分别作PE⊥AC、PF⊥BD,垂足分别为E、F,PE=PF.1如图,若PE=错误!,EO=1,求∠EPF的度数;2若点P是AD的中点,点F是DO的中点,BF =BC+3错误!-4,求BC的长.答案解:1连接PO ,∵ PE=PF,PO=PO,PE⊥AC、PF⊥BD,∴ Rt△PEO≌Rt△PFOHL;∴∠EPO=∠FPO;在Rt△PEO中, tan∠EPO=错误!=错误!,∴ ∠EPO=30°;∴ ∠EPF=60°;2∵点P是AD的中点,∴ AP=DP;又∵ PE=PF,∴ Rt△PEA≌Rt△PFDHL;∴∠OAD=∠ODA;∴ OA=OD;∴ AC=2OA=2OD=BD;∴ABCD是矩形;∵ 点P是AD的中点,点F是DO的中点,∴ AO∥PF;∵ PF⊥BD,∴ AC⊥BD;∴ABCD是菱形;∴ABCD是正方形;∴ BD=错误!BC;∵ BF=错误!BD,∴BC+3错误!-4=错误!BC,解得,BC=4;考点平行四边形的性质,角平分线的性质,三角形中位线定理,全等三角形的判定和性质,正方形的判定和性质,锐角三角函数定义;分析1连接PO,利用解直角三角形求出∠EPO=30°,再利用“HL”证明△PEO和△PFO全等,根据全等三角形对应角相等可得∠FPO=∠EPO,从而得解;2根据条件证出 ABCD是正方形;根据正方形的对角线与边长的关系列式计算即可得解; 12. 2012福建莆田8分如图,四边形ABCD是平行四边形,连接AC.14分请根据以下语句画图,并标上相应的字母用黑色字迹的钢笔或签字笔画.①过点A画AE⊥BC于点E;②过点C画CF∥AE,交AD于点F;24分在完成1后的图形中不再添加其它线段和字母,请你找出一对全等三角形,并予以证明.答案解:1画图如下:2△ABC≌△CDA ;证明如下:∵ 四边形ABCD是平行四边形,∴ AB=CD,BC=DA;又∵ AC=CA,∴△ABC≌△CDASSS;考点作图复杂作图,平行四边形的性质,全等三角形的判定;分析1根据语句要求画图即可;2首先根据平行四边形的性质和AE∥CF,可得①△ABC≌△CDA,②△AEC≌△CFA,③△ABE≌△CDF;下面给出其它两个的证明:②△AEC≌△CFA;证明如下:∵四边形ABCD是平行四边形,∴ AD∥BC;∴ ∠DAC=∠ACE;∵AE∥CF,∴ ∠EAC=∠ACF;∵AC=CA,∴ △AEC≌△CFAASA;③△ABE≌△CDF;证明如下:∵四边形ABCD是平行四边形,∴ AD∥BC,∠B=∠D,AB =CD ;又∵AE∥CF,∴四边形AECF是平行四边形;∴∠AEC=∠AFC;∴∠AEB=∠CFD;∴△ABE≌△CDFAAS;13. 2012福建南平8分如图,已知四边形ABCD是平行四边形,若点E、F分别在边BC、AD上,连接AE、CF,请再从下列三个备选条件中,选择添加一个恰当的条件.使四边形AECF是平行四边形,并予以证明, 备选条件:AE=CF,BE=DF,∠AEB=∠CFD,我选择添加的条件是:注意:请根据所选择的条件在答题卡相应试题的图中,画出符合要求的示意图,并加以证明答案解:添加的条件可以是BE=DF答案不唯一;证明如下:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC;∵BE=DF,∴AF=CE,即AF=CE,AF∥CE;∴四边形AECF是平行四边形;考点平行四边形的判定和性质,全等三角形的判定和性质,平行的判定和性质;分析根据平行四边形性质得出AD∥BC,AD=BC,求出AF∥CE,AF=CE,根据平行四边形的判定推出即可;当AE=CF时,四边形AECF可能是平行四边形,也可能是等腰梯形;当∠AEB=∠CFD时,四边形AECF也是平行四边形,证明如下:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D;∵∠AEB=∠CFD,∴△AEB≌△CFDAAS;∴AE=CF;∵四边形ABCD是平行四边形,∴AD∥BC;∴∠AEB=∠EAF;∴∠CFD=∠EAF;∴AE∥FC;∴四边形AECF是平行四边形;14. 2012福建泉州9分如图,BD是平行四边形ABCD的一条对角线,AE⊥BD于点E,CF⊥BD于点F,求证∠DAE=∠BCF.答案证明:证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC平行四边形对边平行且相等∴∠ADB=∠CBD两直线平行,内错角相等;∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°垂直的定义;在△ADE和△CBF中,∵∠ADB=∠CBD,∠AED=∠CFB,AD=CB,∴△ADE≌S△CBFAAS;∴∠DAE=∠BCF全等三角形的对应角相等;考点平行四边形的性质,平行的性质,全等三角形的判定和性质;分析由四边形ABCD为平行四边形,根据平行四边形的对边平行且相等得到AD=BC,AD与BC平行,利用两直线平行内错角相等得到一对角相等,再由AE⊥BD,CF⊥BD得到一对直角相等,利用AAS可得出三角形ADE与三角形CBF全等,利用全等三角形的对应角相等可得出∠DAE=∠BCF,得证;15. 2012湖北黄石7分如图,已知在平行四边形ABCD中,BE=DF.求证:∠DAE=∠BCF.答案证明:∵四边形ABCD为平行四边形, ∴AD∥BC,且AD=BC;∴∠ADE=∠BCF;又∵BE=DF, ∴BF=DE;∴△ADE≌△CBFSAS;∴∠DAE=∠BCF ;考点平行四边形的性质,平行线的性质,全等三角形的判定和性质;分析根据平行四边形性质求出AD∥BC,且AD=BC,推出∠ADE=∠CBF,求出DE=BF,由SAS证△ADE≌△CBF,推出∠DAE=∠BCF即可;16. 2012湖南郴州8分已知:点P是ABCD的对角线AC的中点,经过点P的直线EF交AB于点E,交DC 于点F.求证:AE=CF.答案证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠PAE=∠PCF;∵点P是ABCD的对角线AC的中点,∴PA=PC;在△PAE和△PCE中,∵∠PAE=∠PCF,PA=PC,∠APE=∠CPF,∴△PAE≌△PCEASA;∴AE=CF;考点平行四边形的性质,全等三角形的判定和性质;分析由四边形ABCD是平行四边形,易得∠PAE=∠PCF,由点P是 ABCD 的对角线AC的中点,可得PA=PC,又由对顶角相等,可得∠APE=∠CPF,即可利用ASA证得△PAE≌△PCF,即可证得AE=CF;17. 2012四川广安6分如图,四边形ABCD是平行四边形,点E在BA的延长线上,且BE=AD,点F在AD上,AF=AB,求证:△AEF≌△DFC.答案证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD; ∴∠D=∠EAF;∵AF=AB,BE=AD,∴AF=CD,AD﹣AF=BE﹣AB,即DF=AE;在△AEF和△DFC中,∵AE=DF,∠EAF=∠D,AF=DC,∴△AEF≌△DFCSAS,考点平行四边形的性质,平行线的性质,全等三角形的判定;分析由四边形ABCD是平行四边形,利用平行四边形的性质,即可得AB=CD,AB∥CD,又由平行线的性质,即可得∠D=∠EAF,然后由BE=AD,AF=AB,求得AF=CD,DF=AE,从而由SAS证得;18. 2012辽宁鞍山8分如图,点G、E、F分别在平行四边形ABCD的边AD、DC和BC上,DG=DC,CE=CF,点P是射线GC上一点,连接FP,EP.求证:FP=EP.答案证明:∵四边形ABCD是平行四边形,∴AD∥BC;∴∠DGC=∠GCB,∵DG=DC,∴∠DGC=∠DCG;∴∠DCG=∠GCB;∵∠DCG+∠DCP=180°,∠GCB+∠FCP=180°,∴∠DCP=∠FCP;∵在△PCF和△PCE中,CE=CF,∠FCP=∠ECP,CP=CP,∴△PCF≌△PCESAS;∴PF=PE;考点平行四边形的性质,平行的性质,等腰三角形的性质,全等三角形的判定和性质;分析根据平行四边形的性质推出∠DGC=∠GCB,根据等腰三角形性质求出∠DGC=∠DCG,推出∠DCG=∠GCB,根据等角的补角相等求出∠DCP=∠FCP,根据SAS证出△PCF≌△PCE即可;19. 2012辽宁大连9分如图,□ABCD中,点E、F分别在AD、BC上,且ED=BF,EF与AC相交于点O.求证:OA=OC.答案证明:∵四边形ABCD是平行四边形,∴AD=BC;∵ED=BF,∴AE=CF;∵四边形ABCD是平行四边形,∴AD∥BC;∴∠OAE=∠OCF,∠OEA=∠OFC;在△AOE 和△COF中,∵∠OAE=∠OCF,AE=CF,∠OEA=∠OFC,∴△AOE ≌△COFASA;∴OA=OC;考点平行四边形的性质,平行的性质,全等三角形的判定和性质;分析根据平行四边形的性质可得AD BC;由等量减等量差相等得AE=CF;由两直线平行内错角相等得∠OAE=∠OCF,∠OEA=∠OFC;由ASA证得△AOE ≌△COF,从而根据全等三角形对应边相等的性质得OA=OC;20. 2012辽宁沈阳10分已知,如图,在荀ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.1求证:△AEM≌△CFN;21世纪教育网2求证:四边形BMDN是平行四边形.答案证明:1 ∵四边形ABCD是平行四边形,∴AB∥DC ,AD∥BC;∴∠E=∠F,∠DAB=∠BCD; ∴∠EAM=∠FCN;又∵AE=CF ∴△AEM≌△CFNASA;2 ∵由1△AEM≌△CFN, ∴AM=CN;又∵四边形ABCD是平行四边形,∴AB CD ;∴BM DN;∴四边形BMDN是平行四边形;考点平行四边形的判定和性质,平行的性质,全等三角形的判定和性质;分析1根据平行四边形的性质可得出AD∥BC,∠DAB=∠BCD,再根据平行线的性质及补角的性质得出∠E=∠F,∠EAM=∠FCN,从而利用ASA可作出证明;2根据平行四边形的性质及1的结论可得BM DN,则由有一组对边平行且相等的四边形是平行四边形即可证明;21. 2012贵州六盘水12分如图,已知E是 ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F.1求证:△ABE≌△FCE.2连接AC.BF,若∠AEC=2∠ABC,求证:四边形ABFC为矩形.答案证明:1∵四边形ABCD为平行四边形,∴AB∥DC;∴∠ABE=∠ECF;又∵E为BC的中点,∴BE=CE;在△ABE和△FCE中,∵∠ABE=∠FCE,BE=CE,∠AEB=∠FEC,∴△ABE≌△FCEASA;2∵△ABE≌△FCE,∴AB=CF;又AB∥CF,∴四边形ABFC为平行四边形;∴BE=EC,AE=EF;又∵∠AEC=2∠ABC,且∠AEC为△ABE的外角,∴∠AEC=∠ABC+∠EAB;∴∠ABC=∠EAB,∴AE=BE;∴AE+EF=BE+EC,即AF=BC;∴四边形ABFC为矩形;考点平行四边形的性质,平行的性质,全等三角形的判定和性质,等腰三角形和判定,矩形的判定;分析1由ABCD为平行四边形,根据平行四边形的对边平行得到AB与DC平行,根据两直线平行内错角相等得到一对角相等,由E为BC的中点,得到两条线段相等,再由对应角相等,利用ASA可得出三角形ABE与三角形FCE全等;2由△ABE≌△FCE,根据全等三角形的对应边相等得到AB=CF;再由AB与CF平行,根据一组对边平行且相等的四边形为平行四边形得到ABFC为平行四边形,根据平行四边形的对角线互相平分得到AE=EF,BE=EC;再由∠AEC为三角形ABE的外角,利用外角的性质得到∠AEB等于∠ABE+∠EAB,再由∠AEC=2∠ABC,得到∠ABE=∠EAB,利用等角对等边可得出AE=BE,可得出AF=BC,利用对角线相等的平行四边形为矩形可得出ABFC为矩形;22. 2012山东济南7分1如图1,在ABCD中,点E,F分别在AB,CD上,AE=CF.求证:DE=BF.2如图2,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC的度数.答案1证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,AD=CB ,∠A=∠C ,AE=CF,∴△ADE≌△CBFSAS;∴DE=BF;2解:∵AB=AC,∠A=40°,∴∠ABC=∠C=12180°-40°=70°,又∵BD是∠ABC的平分线,∴∠DBC=12∠ABC=35°;∴∠BDC=180°-∠DBC-∠C=75°;考点平行四边形的性质,全等三角形的判定和性质;等腰三角形的性质,角平分线的定义,角形的内角和定理;分析1根据四边形ABCD是平行四边形,利用平行四边形的性质得到一对边和一对角的对应相等,在加上已知的一对边的相等,由“SAS”,证得△ADE≌△CBF,最后根据全等三角形的对应边相等即可得证;2根据AB=AC,利用等角对等边和已知的∠A的度数求出∠ABC和∠C的度数,再根据已知的BD是∠ABC的平分线,利用角平分线的定义求出∠DBC的度数,最后根据三角形的内角和定理即可求出∠BDC的度数;23. 2012山东潍坊10分如图,已知平行四边形ABCD,过A作AM⊥BC于M,交BD于E,过C作CN⊥AD于N,交BD于F,连结AF、CE.。
2012年全国中考数学试题分类解析汇编(159套63专题)专题44:矩形、菱形、正方形一、选择题1. (2012天津市3分)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD 至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为【】(A1(B)3(C(D1【答案】D。
【考点】正方形的性质,勾股定理。
【分析】利用勾股定理求出CM的长,即ME的长,有DM=DE,所以可以求出DE,从而得到DG的长:∵四边形ABCD是正方形,M为边AD的中点,∴DM=12DC=1。
∴CM=1。
∵四边形EDGF1。
故选D。
2. (2012安徽省4分)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为【】A.22a B. 32a C. 42a D.52a【答案】A。
【考点】正多边形和圆,等腰直角三角形的性质,正方形的性质。
【分析】图案中间的阴影部分是正方形,面积是2a ,由于原来地砖更换成正八边形,四周一个阴影部分是对角线为a 的正方形的一半,它的面积用对角线积的一半来计算:222114222a a a +⨯⨯=。
故选A 。
3. (2012山西省2分)如图,已知菱形ABCD 的对角线AC .BD 的长分别为6cm 、8cm ,AE⊥BC 于点E ,则AE 的长是【 】A .B .C .48cm 5D .24cm 5 【答案】D 。
【考点】菱形的性质,勾股定理。
【分析】∵四边形ABCD 是菱形,∴CO=12AC=3,BO=12BD=,AO⊥BO,∴5=。
∴ABCD 11S BD AC 682422=⋅=⨯⨯=菱形。
又∵ABCD S BC AE =⋅菱形,∴BC·AE=24,即()24AE cm 5=。
故选D 。
4. (2012陕西省3分)如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,OE⊥AB,垂足为E ,若∠ADC=1300,则∠AOE 的大小为【 】A .75°B .65°C .55°D .50°【答案】B 。
2012年全国中考数学试题分类解析汇编(159套63专题)专题3_整式2(教师篇)2012年全国中考数学试题分类解析汇编(159套63专题)专题3:整式⼀、选择题1. (2012上海市4分)在下列代数式中,次数为3的单项式是【】A . xy 2B .x 3+y 3C ..x 3yD .3xy 【答案】A 。
2. (2012重庆市4分)计算)2ab 的结果是【】 A .2ab B .2a b C .22a b D .2ab 【答案】C 。
3. (2012安徽省4分)计算32)2(x -的结果是【】A.52x -B. 68x -C.62x -D.58x -【答案】B 。
4. (2012安徽省4分)某企业今年3⽉份产值为a 万元,4⽉份⽐3⽉份减少了10%,5⽉份⽐4⽉份增加了15%,则5⽉份的产值是【】A.(a -10%)(a +15%)万元B. a (1-10%)(1+15%)万元C.(a -10%+15%)万元D. a (1-10%+15%)万元【答案】B 。
5. (2012⼭西省2分)下列运算正确的是【】A .B .C .a 2a 4=a 8D .(﹣a 3)2=a 6【答案】D 。
6. (2012海南省3分)计算23x x ?,正确结果是【】A .6xB .5xC .9xD .8x 【答案】B 。
7. (2012海南省3分)当x 2=-时,代数式x +3的值是【】A .1B .-1C .5D .-5【答案】A 。
8. (2012陕西省3分)计算32(5a )-的结果是【】A .510a -B .610aC .525a -D .625a 【答案】D 。
9. (2012宁夏区3分)下列运算正确的是【】A .223a a =3-B .235(a )=aC .369a a =a ?D .222(2a )=4a 【答案】C 。
10. (2012⼴东佛⼭3分)23a a ?等于【】A .5aB .6aC .8aD .9a 【答案】A 。
2012年全国各地中考数学试题分类解析汇编第一章有理数(1)1、(2012•遵义)-(-2)的值是()A.-2 B.2 C.±2 D.4考点:相反数.专题:存在型.分析:根据相反数的定义可知,-(-2)是-2的相反数,由于-2<0,所以-(-2)=2.解答:∵-(-2)是-2的相反数,-2<0,∴-(-2)=2.故选B.点评:本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.2、(2012•遵义)据有关资料显示,2011年遵义市全年财政总收入202亿元,将202亿用科学记数法可表示()A.2.02×102 B.202×108 C.2.02×109 D.2.02×1010考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:将202亿用科学记数法表示为:202亿元=20200000000元=2.02×1010元,故选D.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、(2012•自贡)|-3|的倒数是()A.-3 B.-1/3 C.3 D.1 /3考点:倒数;绝对值.分析:先计算|-3|=3,再求3的倒数,即可得出答案.解答:∵|-3|=3,∴|-3|的倒数是1 /3 .故选:D.点评:本题考查了倒数、绝对值的概念,熟练掌握绝对值与倒数的意义是解题关键.4、(2012•自贡)自贡市约330万人口,用科学记数法表示这个数为()A.330×104 B.33×105 C.3.3×105 D.3.3×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:将330万=3300000用科学记数法表示为:3.3×106.故选:D.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5、(2012•重庆)在-3,-1,0,2这四个数中,最小的数是()A.-3 B.-1 C.0 D.2考点:有理数大小比较.分析:画出数轴,在数轴上标出各点,再根据数轴的特点进行解答即可.解答:这四个数在数轴上的位置如图所示:由数轴的特点可知,这四个数中最小的数是-3.故选A.点评:本题考查的是有理数的大小比较,利用数形结合比较出有理数的大小是解答此题的关键•.6、(2012•肇庆)计算-3+2的结果是()A.1 B.-1 C.5 D.-5考点:有理数的加法.专题:计算题.分析:根据有理数的加法运算法则计算即可得解.解答: -3+2,=-(3-2),=-1.故选B.点评:本题考查了有理数的加法运算,是基础题,熟记运算法则是解题的关键.7、(2012•肇庆)用科学记数法表示5700000,正确的是()A.5.7×106 B.57×105 C.570×104 D.0.57×107考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于5700000有7位,所以可以确定n=7-1=6.解答: 5 700 000=5.7×106.故选A.点评:此题考查科学记数法表示较大的数的方法,准确确定n值是关键.8、(2012•张家界)-2012的相反数是()A.-2012 B.2012 C.-1/2012 D.1 /2012考点:相反数.分析:据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.解答:根据概念,(-2012的相反数)+(-2012)=0,则-2012的相反数是2012.故选B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.9、(2012•湛江)2的倒数是()A.2 B.-2 C.1/2 D.-1 /2考点:倒数.分析:直接根据倒数的定义进行解答即可.解答:∵2×1 /2 =1,∴2的倒数是1 /2 .故选C.点评:本题考查的是倒数的定义,即乘积是1的两数互为倒数.10、(2012•湛江)国家发改委已于2012年5月24日核准广东湛江钢铁基地项目,项目由宝钢湛江钢铁有限公司投资建设,预计投产后年产10200000吨钢铁,数据10200000用科学记数法表示为()A.102×105 B.10.2×106 C.1.02×106 D.1.02×107考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:将10200000用科学记数法表示为:1.02×107.故选:D.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11、(2012•玉林)计算:22 =()A.1 B.2 C.4 D.8考点:有理数的乘方.分析:利用有理数乘方的意义求得结果即可.解答:原式=2×2=4,故选C.点评:本题考查了有理数的乘方,属于基本运算,比较简单.12、(2012•益阳)-2的绝对值等于()A.2 B.-2 C.1/2 D.±2考点:绝对值.专题:计算题.分析:根据绝对值的性质,当a是正有理数时,a的绝对值是它本身a;即可解答.解答:根据绝对值的性质,|2|=2.故选A.点评:本题考查了绝对值的性质,①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.13、(2012•义乌市)-2的相反数是()A.2 B.-2 C.±2 D.-1/2考点:相反数.分析:根据相反数的定义进行解答即可.解答:由相反数的定义可知,-2的相反数是-(-2)=2.故选A.点评:本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.14、(2012•宜昌)如图,数轴上表示数-2的相反数的点是()A.点P B.点Q C.点M D.点N考点:数轴;相反数.分析:根据数轴得出N、M、Q、P表示的数,求出-2的相反数,根据以上结论即可得出答案.解答:从数轴可以看出N表示的数是-2,M表示的数是-0.5,Q表示的数是0.5,P表示的数是2,∵-2的相反数是2,∴数轴上表示数-2的相反数是点P,故选A.点评:本题考查了数轴和相反数的应用,主要培养学生的观察图形的能力和理解能力,题型较好,难度不大.15、(2012•宜昌)2012年4月30日,我国在西昌卫星发射中心用“长征三号乙”运载火箭成功发射两颗北斗导航卫星,其中静止轨道卫星的高度约为36000km.这个数据用科学记数法表示为()A.36×103km B.3.6×103km C.3.6×104km D.0.36×105km考点:科学记数法—表示较大的数.分析:科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.解答:36000=3.6×104km.故选C.点评:用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).16、(2012•宜宾)-3的倒数是()A.1/3 B.3 C.-3 D.-1 /3考点:倒数.分析:据倒数的定义,互为倒数的两数乘积为1,-3×(-1 /3)=1.解答:根据倒数的定义得:-3×(-1 /3 )=1,因此倒数是-1/ 3 .故选:D.点评:此题考查的是倒数,关键明确倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.需要注意的是负数的倒数还是负数.17、(2012•扬州)-3的绝对值是()A.3 B.-3 C.-3 D.1/3考点:绝对值.分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:-3的绝对值是3.故选:A.点评:此题主要考查了绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.18、(2012•扬州)今年我市参加中考的人数大约有41300人,将41300用科学记数法表示为()A.413×102 B.41.3×103 C.4.13×104 D.0.413×103考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答: 41300=4.13×104,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19、(2012•孝感)我国平均每平方千米的土地上,一年从太阳得到的能量相当于燃烧130000吨煤所产生的能量.130000用科学记数法表示为()A.13×104 B.1.3×105 C.0.13×106 D.1.3×108考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:130000=1.3×105,故选:B.点评:此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.20、(2012•襄阳)一个数的绝对值等于3,这个数是()A.3 B.-3 C.±3 D.1/3考点:绝对值.分析:根据绝对值的定义即可求解.解答:因为|3|=3,|-3|=3,所以绝对值等于3的数是±3.故选C.点评:规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.本题是绝对值性质的逆向运用,此类题要注意答案一般有2个,除非绝对值为0的数才只有一个为0.21、(2012•襄阳)李阳同学在“百度”搜索引擎中输入“魅力襄阳”,能搜索到与之相关的结果个数约为236 000,这个数用科学记数法表示为()A.2.36×103 B.236×103 C.2.36×105 D.2.36×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:236 000=2.36×105,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.22、(2012•咸宁)-8的相反数是()A.-8 B.8 C.-1/8 D.1/8考点:相反数.分析:直接根据相反数的定义进行解答即可.解答:由相反数的定义可知,-8的相反数是-(-8)=8.故选B.点评:本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.23、(2012•咸宁)南海是我国固有领海,它的面积超过东海、黄海、渤海面积的总和,约为360万平方千米,360万用科学记数法表示为()A.3.6×102 B.360×104 C.3.6×104 D.3.6×106考点:科学记数法—表示较大的数.分析:单位为“万”,换成计数单位为1的数,相当于把原数扩大10000倍,进而把得到的数表示成a×10n的形式,a为3.6,n为整数数位减去1.解答:360万=3600000=3.6×106,故选D.点评:考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.24、(2012•武汉)在2.5,-2.5,0,3这四个数种,最小的数是()A.2.5 B.-2.5 C.0 D.3考点:有理数大小比较.分析:根据有理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数进行比较即可.解答:∵-2.5<0<2.5<3,∴最小的数是-2.5,故选B.点评:本题考查了有理数的大小比较法则的应用,有理数的大小比较法则是:负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.25、(2012•武汉)某市2012年在校初中生的人数约为23万.数230000用科学记数法表示为()A.23×104 B.2.3×105 C.0.23×103 D.0.023×106考点:科学记数法—表示较大的数.专题:常规题型.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于23万有6位,所以可以确定n=6-1=5.解答:23万=230 000=2.3×105.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定n值是关键.26、(2012•潍坊)许多人由于粗心,经常造成水龙头“滴水”或“流水”不断.根据测定,一般情况下一个水龙头“滴水”1个小时可以流掉3.5千克水,若1年按365天计算,这个水龙头1年可以流掉()千克水.(用科学记数法表示,保留3个有效数字)A.3.1×104 B.0.31×105 C.3.06×104 D.3.07×104考点:科学记数法与有效数字.分析:先列式表示1年水龙头滴水的重量,再把结果用科学记数法表示.有效数字是从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:3.5×24×365=30660=3.066×104≈3.07×104故选D.点评:此题主要考查了有理数的乘法在实际生活中的应用,科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.27、(2012•铜仁地区)从权威部门获悉,中国海洋面积是299.7万平方公里,约为陆地面积的三分之一,299.7万平方公里用科学记数法表示为()平方公里(保留两位有效数字)A.3×106 B.0.3×107 C.3.0×106 D.2.99×106考点:科学记数法与有效数字.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于299.7万有7位,所以可以确定n=7-1=6.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:299.7万=2.997×106≈3.0×106.故选:C.点评:此题主要考查了科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.28、(2012•天门)2012的绝对值是()A.2012 B.-2012 C.1/2012 D.-1/2012考点:绝对值.专题:计算题.分析:根据绝对值的性质直接解答即可.解答:∵2012是正数,∴|2012|=2012,故选A.点评:本题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.29、(2012•天门)吸烟有害健康.据中央电视台2012年5月30日报道,全世界每因吸烟引起的疾病致死的人数大约为600万,数据600万用科学记数法表示为()A.0.6×107 B.6×106 C.60×105 D.6×105考点:科学记数法—表示较大的数.分析:首先把600万化为6000000,再用科学记数法表示,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:600万=6000000=6×106,故选:B.点评:此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.30、(2012•天津)据某域名统计机构公布的数据显示,截至2012年5月21日,我国“.NET”域名注册量约为560000个,居全球第三位,将560000用科学记数法表示应为()A.560×103 B.56×104 C.5.6×105 D.0.56×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于560000有6位,所以可以确定n=6-1=5.解答:560 000=5.6×105.故选C.点评:此题考查科学记数法表示较大的数的方法,准确确定n值是关键.31、(2012•泰州)过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把数3120000用科学记数法表示为()A.3.12×105 B.3.12×106 C.31.2×105 D.0.312×107考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:将3120000用科学记数法表示为:3.12×106.故选:B.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.32、(2012•泰安)下列各数比-3小的数是()A.0 B.1 C.-4 D.-1考点:有理数大小比较.分析:首先判断出1>-3,0>-3,求出每个数的绝对值,根据两负数比较大小,其绝对值大的反而小,求出即可.解答:根据两负数比较大小,其绝对值大的反而小,正数都大于负数,零大于一切负数,∴1>-3,0>-3,∵|-3|=3,|-1|=1,|-4|=4,∴比-3小的数是负数,是-4.故选C .点评:本题考查了有理数的大小比较法则和绝对值等知识点的应用,注意:正数都大于负数,两负数比较大小,其绝对值大的反而小,题型较好,但是一道比较容易出错的题目.33、(2012•泰安)已知一粒米的质量是0.000021千克,这个数字用科学记数法表示为( )A .21×104-千克B .2.1×106-千克C .2.1×105-千克D .21×104-千克考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10n -,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答: 0.000021=2.1×105-; 故选:C .点评:本题考查了用科学记数法表示较小的数,一般形式为a ×10n -,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.34、(2012•台州)计算-1+1的结果是( )A .1B .0C .-1D .-2考点:有理数的加法.专题:常规题型.分析:根据互为相反数的和等于0解答.解答: -1+1=0.故选B .点评:本题考查了有理数的加法运算,是基础题,熟记运算法则是解题的关键.35、(2012•台湾)计算(-100051)×(5-10)之值为何?( )A .1000B .1001C .4999D .5001考点:有理数的乘法.专题:计算题.分析:将-100051化为-(1000+51),然后计算出5-10,再根据分配律进行计算. 解答:原式=-(1000+51)×(-5)=(1000+51)×5 =1000×5+51×5=5000+1=5001.故选D.点评:本题考查了有理数的乘法,灵活运用分配律是解题的关键.36、(2012•台湾)如图是利用短除法求出三数8、12、18的最大公因子的过程.利用短除法,求出这三数的最小公倍数为何?()A.12 B.72 C.216 D.432考点:有理数的除法.专题:常规题型.分析:继续完善短除法,然后根据最小公倍数的求法,把所有的数相乘即可.解答:如图,完成短除法如下最小公倍数为2×2×3×2×1×3=72.故选B.点评:本题考查了短除法求最小公倍数的方法,属于小学内容,比较简单,完善短除过程是解题的关键.37、(2012•台湾)已知某公司去年的营业额为四千零七十亿元,则此营业额可用下列何者表示?()A.4.07×109元 B.4.07×1010元 C.4.07×1011元 D.4.07×1012元考点:科学记数法—表示较大的数.分析:首先将四千零七十亿元可写成407000000000,再利用科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:将四千零七十亿元可写成407000000000,407000000000=4.07×1011,故选:C.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.38、(2012•随州)湿地旅游爱好者小明了解到鄂东南某市水资源总量为42.43亿立方米,其中42.43亿用科学记数法可表示为()A.42.43×109 B.4.423×108 C.4.243×109 D.0.423×108考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:根据42.43亿=4243000000,用科学记数法表示为:4.243×109.故选:C.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.39、(2012•宿迁)-8的绝对值是()A.8 B.1/8 C.-1/8 D.-8考点:绝对值.分析:根据负数的绝对值等于它的相反数解答.解答: -8的绝对值为|-8|=8.故选A.点评:本题考查了绝对值的性质,熟记一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解题的关键.40、(2012•沈阳)沈阳地铁2号线的开通,方便了市民的出行.从2012年1月9日到2月7日的30天里,累计客运量约达3040000人次,将3040000用科学记数法表示为()A.3.04×105 B.3.04×106 C.30.4×105 D.0.304×107考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:将3040000用科学记数法表示为3.04×106.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.41、(2012•深圳)第八届中国(深圳)文博会以总成交额143 300 000 000元再创新高,将数143 300 000 000用科学记数法表示为()A.1.433×1010 B.1.433×1011 C.1.433×1012 D.0.1433×1012考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于143 300 000 000有12位,所以可以确定n=12-1=11.解答:143 300 000 000=1.433×1011.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定n值是关键.42、(2012•绍兴)3的相反数是()A.3 B.-3 C.1/3 D.-1/3考点:相反数.分析:根据相反数的意义,3的相反数即是在3的前面加负号.解答:根据相反数的概念及意义可知:3的相反数是-3.故选B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.43、(2012•绍兴)据科学家估计,地球年龄大约是4 600 000 000年,这个数用科学记数法表示为()A.4.6×108 B.46×108 C.4.6×109 D.0.46×1010考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答: 4 600 000 000用科学记数法表示为:4.6×109.故选:C.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.44、(2012•陕西)如果零上5℃记作+5℃,那么零下7℃可记作()A.-7℃ B.+7℃ C.+12℃ D.-12℃考点:正数和负数.分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:∵“正”和“负”相对,∴零上5℃记作+5℃,则零下7℃可记作-7℃.故选A.点评:此题考查了正数与负数的定义.解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.45、(2012•山西)为了实现街巷硬化工程高质量“全覆盖”,我省今年1-4月公路建设累计投资92.7亿元,该数据用科学记数法可表示为()A.0.927×1010 B.92.7×109 C.9.27×1011 D.9.27×109考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:将92.7亿=9270000000用科学记数法表示为:9.27×109.故选:D.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.46、(2012•日照)-5的相反数是()A.-5 B.-1/5 C.5 D.1/5考点:相反数.分析:根据相反数的定义解答.解答:只有符号不同的两个数称为互为相反数,则-5的相反数为5,故选C.点评:本题考查了相反数的定义,只有符号不同的两个数互为相反数,a的相反数是-a.47、(2012•日照)据新华社报道:在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×1010 B.0.194×1010 C.19.4×109 D.1.94×109考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:194亿=19400000000,用科学记数法表示为:1.94×1010.故选:A.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.48、(2012•泉州)-7的相反数是()A.-7 B.7 C.-1/7 D.1/7考点:相反数.分析:据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.解答:根据概念,(-7的相反数)+(-7)=0,则-7的相反数是7.故选B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.49、(2012•衢州)下列四个数中,最小的数是( ) A .2 B .-2 C .0 D .-1/2 考点:有理数大小比较. 专题:探究型.分析:根据有理数比较大小的法则进行比较即可. 解答:∵2>0,-2<0,-1/2 <0, ∴可排除A 、C ,∵|-2|=2,|-1 /2 |=1 2 ,2>1/ 2 , ∴-2<-1/ 2 . 故选B .点评:本题考查的是有理数的大小比较,熟知正数都大于0; 负数都小于0; 正数大于一切负数; 两个负数,绝对值大的其值反而小是解答此题的关键.50、(2012•衢州)衢州市是国家优秀旅游城市,吸引了众多的海内外游客.据衢州市2011年国民经济和社会发展统计报显示,全年旅游总收入达121.04亿元.将121.04亿元用科学记数法可表示为( )A .12.104×109元B .12.104×1010元C .1.2104×1010元D .1.2104××1011元 考点:科学记数法—表示较大的数. 分析:科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.解答:将121.04亿用科学记数法表示为:121.04亿元=12104000000元=1.2104×1010元, 故选;C .点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 51、(2012•青岛)-2的绝对值是( )A .-1/2B .-2C .1 /2D .2 考点:绝对值.分析:根据绝对值的定义:数轴上某个数与原点的距离叫做这个数的绝对值.则-2的绝对值就是表示-2的点与原点的距离.解答: |-2|=2, 故选:D .点评:此题主要考查了绝对值,关键是掌握:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.52、(2012•黔西南州)-141的倒数是( ) A .-45 B .45 C .-54 D .54考点:倒数.。
2012年全国中考数学试题分类解析汇编(159套63专题)专题24:方程、不等式和函数的综合一、选择题1. (2012福建龙岩4分)下列函数中,当x <0时,函数值y 随x 的增大而增大的有【 】 ①y=x ②y=-2x +1 ③1y=x -④2y=3x A .1个B .2个C .3个D . 4个 【答案】B 。
【考点】一次函数、反比例函数和二次函数的性质。
【分析】根据一次函数、反比例函数和二次函数的性质作出判断:①∵y=x 的k >0,∴当x <0时,函数值y 随x 的增大而增大;②∵y=-2x +1的k <0,∴当x <0时,函数值y 随x 的增大而减小;③∵1y=x-的k <0,∴当x <0时,函数值y 随x 的增大而增大; ④∵2y=3x 的a >0,对称轴为x=0,∴当x <0时,函数值y 随x 的增大而减小。
∴正确的有2个。
故选B 。
2. (2012四川广元3分) 已知关于x 的方程22(x 1)(x b)2++-=有唯一实数解,且反比例函数1b y x+=的图象在每个象限内y 随x 的增大而增大,那么反比例函数的关系式为【 】 A. 3y x =- B. 1y x = C. 2y x = D. 2y x=- 【答案】D 。
【考点】一元二次方程根的判别式,反比例函数的性质。
【分析】关于x 的方程22(x 1)(x b)2++-=化成一般形式是:2x 2+(2-2b )x +(b 2-1)=0,∵它有唯一实数解,∴△=(2-2b )2-8(b 2-1)=-4(b +3)(b -1)=0,解得:b=-3或1。
∵反比例函数1b y x+= 的图象在每个象限内y 随x 的增大而增大, ∴1+b<0。
∴b<-1。
∴b=-3。
∴反比例函数的解析式是13y x -=,即2y x=-。
故选D 。
3. (2012山东菏泽3分)已知二次函数2y ax bx c =++的图象如图所示,那么一次函数y bx c =+和反比例函数a y x=在同一平面直角坐标系中的图象大致是【 】 A .B .C . D【答案】C 。
2012年全国中考数学试题分类解析汇编(159套63专题)专题29:投影与视图一、选择题1. (2012北京市4分)下图是某个几何体的三视图,该几何体是【】A.长方体 B.正方体 C.圆柱 D.三棱柱【答案】D。
【考点】由三视图判断几何体。
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,由于主视图和左视图为矩形,可得为柱体,俯视图为三角形可得为三棱柱。
故选D。
2. (2012天津市3分)右图是一个由4个相同的正方体组成的立体图形,它的三视图是【】【答案】A。
【考点】简单组合体的三视图。
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形。
从正面看可得从左往右2列正方形的个数依次为1,2;从左面看可得到从左往右2列正方形的个数依次为2,1;从上面看可得从上到下2行正方形的个数依次为1,2。
故选A。
3. (2012安徽省4分)下面的几何体中,主(正)视图为三角形的是【】A. B.C. D.【答案】C。
【考点】判断立体图形的三视图。
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形。
因此,根据这几个常见几何题的视图可知:圆柱的主视图是矩形,正方体的主视图是正方形,圆锥的主视图是三角形,三棱柱的主视图是宽相等两个相连的矩形。
故选C。
4. (2012山西省2分)如图所示的工件的主视图是【】A.B.C.D.【答案】B。
【考点】简单组合体的三视图。
【分析】从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形。
故选B。
5. (2012海南省3分)如图竖直放置的圆柱体的俯视图是【】A.长方体 B.正方体 C.圆 D.等腰梯形【答案】C。
【考点】简单组合体的三视图。
【分析】找到从上面看所得到的图形即可:从上面看易得是圆。
故选C。
6. (2012陕西省3分)如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是【】A.B.C.D.【答案】C。
2012年全国中考数学试题分类解析汇编(159套63专题)专题31:折叠问题一、选择题1. (2012广东梅州3分)如图,在折纸活动中,小明制作了一张△ABC 纸片,点D 、E 分别是边AB 、AC 上,将△ABC 沿着DE 折叠压平,A 与A′重合,若∠A=75°,则∠1+∠2=【 】A .150°B .210°C .105°D .75°【答案】A 。
【考点】翻折变换(折叠问题),三角形内角和定理。
【分析】∵△A′DE 是△ABC 翻折变换而成,∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=75°。
∴∠AED+∠ADE=∠A′ED+∠A′DE=180°﹣75°=105°,∴∠1+∠2=360°﹣2×105°=150°。
故选A 。
2. (2012江苏南京2分)如图,菱形纸片ABCD 中,∠A=600,将纸片折叠,点A 、D 分别落在A’、D’处,且A’D’经过B ,EF 为折痕,当D’F ⊥CD 时,CF FD的值为【 】A. 12-B. 6C. 16D. 18【答案】A 。
【考点】翻折变换(折叠问题),菱形的性质,平行的性质,折叠的性质,锐角三角函数定义,特殊角的三角函数值。
【分析】延长DC 与A′D′,交于点M ,∵在菱形纸片ABCD 中,∠A=60°,∴∠DCB=∠A=60°,AB∥CD。
∴∠D=180°-∠A=120°。
根据折叠的性质,可得∠A′D′F=∠D=120°,∴∠FD′M=180°-∠A′D′F=60°。
∵D′F⊥CD,∴∠D′FM=90°,∠M=90°-∠FD′M=30°。
∵∠BCM=180°-∠BCD=120°,∴∠CBM=180°-∠BCM -∠M=30°。
2012年全国中考数学试题分类解析汇编(159套63专题)专题33:网格问题一、选择题1. (2012宁夏区3分)一个几何体的三视图如图所示,网格中小正方形的边长均为1,那么下列选项中最接近这个几何体的侧面积的是【】A.24.0 B.62.8 C.74.2 D.113.02. (2012湖北孝感3分)如图,△ABC在平面直角坐标系中的第二象限内,顶点A的坐标是(-2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作△A1B1C1关于x轴的对称图形△A2B2C2,则顶点A2的坐标是【】A.(-3,2) B.(2,-3) C.(1,-2) D.(3,-1)3. (2012湖北荆门3分)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是【】A. B. C. D.4. (2012山东聊城3分)如图,在方格纸中,△ABC经过变换得到△D EF,正确的变换是【】A.把△ABC绕点C逆时针方向旋转90°,再向下平移2格B.把△ABC绕点C顺时针方向旋转90°,再向下平移5格C.把△ABC向下平移4格,再绕点C逆时针方向旋转180°D.把△ABC向下平移5格,再绕点C顺时针方向旋转180°二、填空题1. (2012天津市3分)“三等分任意角”是数学史上一个著名问题.已知一个角∠MAN设1M AN3α∠=∠(Ⅰ)当∠MAN=690时,α∠的大小为▲ (度);(Ⅱ)如图,将∠MAN放置在每个小正方形的边长为1cm的网格中,角的一边AM与水平方向的网格线平行,另一边AN经过格点B,且AB=2.5cm.现要求只能使用带刻度的直尺,请你在图中作出α∠,并简要说明作法(不要求证明)▲ .2. (2012浙江杭州4分)如图,平面直角坐标系中有四个点,它们的横纵坐标均为整数.若在此平面直角坐标系内移动点A,使得这四个点构成的四边形是轴对称图形,并且点A的横坐标仍是整数,则移动后点A的坐标为▲ .3. (2012江苏泰州3分)如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P,则tan∠APD的值是▲ .三、解答题1. (2012安徽省8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.(1)画出一个格点△A1B1C1,并使它与△ABC全等且A与A1是对应点;(2)画出点B关于直线AC的对称点D,并指出AD可以看作由AB绕A点经过怎样的旋转而得到的.2. (2012海南省8分)如图,在正方形网络中,△ABC的三个顶点都在格点上,点A、B、C的坐标分别为(-2,4)、(-2,0)、(-4,1),结合所给的平面直角坐标系解答下列问题:(1)画出△ABC关于原点O对称的△A1B1C1.(2)平移△ABC,使点A移动到点A2(0,2),画出平移后的△A2B2C2并写出点B2、C2的坐标.(3)在△ABC、△A1B1C1、△A2B2C2中,△A2B2C2与成中心对称,其对称中心的坐标为 .3. (2012广东梅州7分)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(直接填写答案)(1)点A关于点O中心对称的点的坐标为;(2)点A1的坐标为;(3)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为.4. (2012广东广州12分)如图,⊙P的圆心为P(﹣3,2),半径为3,直线MN过点M(5,0)且平行于y轴,点N在点M的上方.(1)在图中作出⊙P关于y轴对称的⊙P′.根据作图直接写出⊙P′与直线MN的位置关系.(2)若点N在(1)中的⊙P′上,求PN的长.5. (2012浙江温州8分)如图,在方格纸中,△PQR的三个顶点及A,B,C,D,E五个点都在小方格的顶点上,现以A,B,C,D,E中的三个顶点为顶点画三角形,(1)在图甲中画出一个三角形与△PQR全等;(2)在图乙中画出一个三角形与△PQR面积相等但不全等....6. (2012江苏泰州10分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上,将△ABC向下平移4个单位、再向右平移3个单位得到△A1B1C1,然后将△A1B1C1绕点A1顺时针旋转90°得到△A1B2C2.(1)在网格中画出△A1B1C1和△A1B2C2;(2)计算线段AC在变换到A1C2的过程中扫过区域的面积(重叠部分不重复计算)7. (2012江苏常州6分)在平面直角坐标系xOy中,已知△ABC和△DEF的顶点坐标分别为A(1,0)、B (3,0)、C(2,1)、D(4,3)、E(6,5)、F(4,7)。
2012年全国中考数学试题分类解析汇编(159套63专题)专题42:解直角三角形和应用一、选择题1. (2012广东深圳3分)小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为300,同一时 刻,一根长为l 米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为【 】A.(6+米B.12米C.(4+米 D .10米 【答案】A 。
【考点】解直角三角形的应用(坡度坡角问题),锐角三角函数定义,特殊角的三角函数值,相似三角形的判定和性质。
【分析】延长AC 交BF 延长线于E 点,则∠CFE=30°。
作CE⊥BD 于E ,在Rt△CFE 中,∠CFE=30°,CF=4,, 在Rt△CED 中,CE=2,∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,∴DE=4。
∵△DCE∽△DAB,且CE :DE=1:2,∴在Rt△ABD 中,AB=12BD=(12=A 。
2. (2012浙江嘉兴、舟山4分)如图,A 、B 两点在河的两岸,要测量这两点之间的距离,测量者在与A 同侧的河岸边选定一点C ,测出AC=a 米,∠A=90°,∠C=40°,则AB 等于【 】米.A . asin40°B . acos40°C . atan40°D .a tan40【答案】C 。
【考点】解直角三角形的应用,锐角三角函数定义。
【分析】∵△ABC 中,AC=a 米,∠A=90°,∠C=40°,∴AB=atan40°。
故选C 。
3. (2012福建福州4分)如图,从热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点煌距离是【 】A .200米B .2003米C .2203米D .100(3+1)米 【答案】D 。
2012年全国中考数学试题分类解析汇编(159套63专题)专题34:命题与证明一、选择题1. (2012广东深圳3分)下列命题①方程x 2=x 的解是x=1②4的平方根是2③有两边和一角相等的两个三角形全等④连接任意四边形各边中点的四边形是平行四边形其中真命题有:【 】A .4个 B.3个 C.2个 D.1个2. (2012广东广州3分)在平面中,下列命题为真命题的是【 】A .四边相等的四边形是正方形B .对角线相等的四边形是菱形C .四个角相等的四边形是矩形D .对角线互相垂直的四边形是平行四边形3. (2012浙江温州4分)下列选项中,可以用来证明命题“若a²>1,则a >1”是假命题的反例是【 】A. a=-2.B. a==-1C. a=1D. a=24. (2012江苏泰州3分)下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对 角线互相垂直且相等的四边形是正方形;③顺次连结矩形四边中点得到的四边形是菱形;④正五边形既是 轴对称图形又是中心对称图形.其中真命题...共有【 】 A .1个 B .2个 C .3个 D .4个5. (2012福建龙岩4分)下列命题中,为真命题的是【 】A .对顶角相等B .同位角相等C .若22=a b ,则=a bD .若a >b ,则22a >b -- 6. (2012湖北黄冈3分)下列说法中 x 1-x >1.②已知∠α=27°,则∠α的补角是153°. ③已知x=2 是方程x 2-6x+c=0 的一个实数根,则c 的值为8. ④在反比例函数k 2y=x-中,若x >0 时,y 随x 的增大而增大,则k 的取值范围是k >2. 其中正确命题有【 】A. 1 个B. 2 个C. 3 个D. 4 个7. (2012湖南益阳4分)下列命题是假命题的是【 】A .中心投影下,物高与影长成正比B .平移不改变图形的形状和大小C.三角形的中位线平行于第三边D.圆的切线垂直于过切点的半径8. (2012湖南岳阳3分)下列命题是真命题的是【】A.如果|a|=1,那么a=1 B.一组对边平行的四边形是平行四边形C.如果a是有理数,那么a是实数D.对角线相等的四边形是矩形9. (2012湖南娄底3分)下列命题中,假命题是【】A.平行四边形是中心对称图形B.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C.对于简单的随机样本,可以用样本的方差去估计总体的方差D.若x2=y2,则x=y10. (2012四川宜宾3分)给出定义:设一条直线与一条抛物线只有一个公共点,且这条直线与这条抛物线的对称轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线.有下列命题:①直线y=0是抛物线y=14x2的切线②直线x=﹣2与抛物线y=14x2相切于点(﹣2,1)③直线y=x+b与抛物线y=14x2相切,则相切于点(2,1)④若直线y=kx﹣2与抛物线y=14x2相切,则实数其中正确的命题是【】A.①②④B.①③C.②③D.①③④11. (2012四川攀枝花3分)下列四个命题:①等边三角形是中心对称图形;②在同圆或等圆中,相等的弦所对的圆周角相等;③三角形有且只有一个外接圆;④垂直于弦的直径平分弦所对的两条弧.其中真命题的个数有【】A. 1个B. 2个C. 3个D. 4个12. (2012四川凉山4分)下列命题:①圆周角等于圆心角的一半;②x=2是方程x-1=1的解;③平行4。
其中真命题的个数有【】A.1B.2 C.3D.413. (2012四川乐山3分)下列命题是假命题的是【】A.平行四边形的对边相等B.四条边都相等的四边形是菱形C.矩形的两条对角线互相垂直D.等腰梯形的两条对角线相等14. (2012四川资阳3分)如图,△ABC 是等腰三角形,点D 是底边BC 上异于BC 中点的一个点,∠ADE =∠DAC ,DE =AC .运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?【 】A .一组对边平行,另一组对边相等的四边形是平行四边形B .有一组对边平行的四边形是梯形C .一组对边相等,一组对角相等的四边形是平行四边形D .对角线相等的四边形是矩形15. (2012贵州毕节3分)下列命题是假命题的是【 】A.同弧或等弧所对的圆周角相等B.平分弦的直径垂直于弦C.两条平行线间的距离处处相等D.正方形的两条对角线互相垂直平分16. (2012贵州六盘水3分)下列命题为真命题的是【 】A . 平面内任意三点确定一个圆B . 五边形的内角和为540°C . 如果a >b ,则ac 2>bc 2D . 如果两条直线被第三条直线所截,那么所截得的同位角相等17. (2012山东莱芜3分)以下说法正确的有【 】①正八边形的每个内角都是135º ②27与31是同类二次根式 ③长度等于半径的弦所对的圆周角为30º[来源:学_科_网Z_X_X_K]④反比例函数y =- 2 x,当x <0时,y 随x 的增大而增大 A .1个 B .2个 C .3个 D .4个18. (2012山东日照3分)下列命题错误..的是 【 】(A)若 a<1,则(a - (B) a 3=- ,则a≥3 (C)依次连接菱形各边中点得到的四边形是矩形 (D)81的算术平方根是919. (2012山东淄博3分)下列命题为假命题的是【 】(A)三角形三个内角的和等于180°(B)三角形两边之和大于第三边(C)三角形两边的平方和等于第三边的平方 (D)三角形的面积等于一条边的长与该边上的高的乘积的一半20. (2012山东济南3分)下列命题是真命题的是【 】A .对角线相等的四边形是矩形B .一组邻边相等的四边形是菱形C .四个角是直角的四边形是正方形D .对角线相等的梯形是等腰梯形21. (2012山东莱芜3分)如图,在梯形ABCD 中,AD ∥BC ,∠BCD =90º,BC =2AD ,F 、E 分别是BA 、BC 的中点,则下列结论不正确...的是【 】A .△ABC 是等腰三角形B .四边形EFAM 是菱形C .S △BEF =12S △ACD D .DE 平分∠CDF 22. (2012广西钦州3分)下列说法错误的是【 】A .两点之间线段最短B .对顶角相等C .为了了解生产的一批炮弹的杀伤半径,适宜采用全面调查的方式D .“通常加热到100℃时,水沸腾”这个事情属于必然事件23. (2012内蒙古呼和浩特3分)下列命题中,真命题的个数有【 】①一个图形无论经过平移还是旋转,变换后的图形与原来图形的对应线段一定平行 ②函数2y=x x -P (x ,y )一定在第二象限③正投影的投影线彼此平行且垂直于投影面④使得|x|﹣y=3和y+x 2=0同时成立的x 的取值为1132-±. A .3个 B .1个 C .4个D .2个 24. (2012内蒙古包头3分)已知下列命题:① 若a ≤0 ,则lal =一a ;② 若ma 2 > na 2 ,则m > n ;③ 两组对角分别相等的四边形是平行四边形;④ 垂直于弦的直径平分弦.其中原命题与逆命题均为真命题的个数是【 】A.1 个 B .2 个 C.3 个 D .4 个25. (2012黑龙江黑河、齐齐哈尔、大兴安岭、鸡西3分)下列各式:①x 2+x 3=x 5;②a 2·a 3=a 6;③2(2)2-=-;④(11()33-=⑤0(1)1π-=,其中正确的是【 】A .④⑤B .③④C .②③D .①④二、填空题1. (2012湖北黄石3分)将下列正确的命题的序号填在横线上 ▲ .①若n 大于2的正整数,则n 边形的所有外角之和为0(2)n 180-.②三角形三条中线的交点就是三角形的重心.③证明两三角形全等的方法有:SSS ,SAS ,ASA ,SSA 及HL 等.三、解答题1. (2012福建漳州8分)在数学课上,林老师在黑板上画出如图所示的图形(其中点B 、F 、C 、E 在同 一直线上),并写出四个条件:①AB=DE ,②BF=EC ,③∠B=∠E ,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题...,并给予证明. 题设:______________;结论:________.(均填写序号)证明:2. (2012四川广元7分)如图,在△AEC 和△DFB 中,∠E=∠F ,点A ,B ,C ,D 在同一直线上,有 如下三个关系式:①AE ∥DF ,②AB=CD ,③CE=BF 。
(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题 书写形式:“如果,,那么”);(2)选择(1)中你写出的一个命题,说明它正确的理由。
2012年全国中考数学试题分类解析汇编(159套63专题)专题34:命题与证明参考答案一、选择题1. 【答案】D。
【考点】命题与定理,解一元二次方程(因式分解法),平方根,全等三角形的判定,三角形中位线定理,平行四边形的判定。
【分析】①方程x2=x的解是x1=0,x2=1,故命题错误;②4的平方根是±2,故命题错误;③只有两边和夹角相等(SAS)的两个三角形全等,SSA不一定全等,故命题错误;④连接任意四边形各边中点的四边形是平行四边形,命题正确。
故正确的个数有1个。
故选D。
2. 【答案】C。
【考点】命题与定理,正方形的判定,菱形的判定,矩形的判定,平行四边形的判定。
【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案,不是真命题的可以举出反例排除:A、四边相等的四边形不一定是正方形,例如菱形,故此选项错误;B、对角线相等的四边形不是菱形,例如矩形,等腰梯形,故此选项错误;C、四个角相等的四边形是矩形,故此选项正确;D、对角线互相垂直的四边形不一定是平行四边形,如铮形(如图),故此选项错误。
故选C。
3. 【答案】A。
【考点】假命题,反证法。
【分析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题:用来证明命题“若a2>1,则a>1”是假命题的反例可以是:a=-2。
因为a=-2时,a2>1,但a<1。
故选A。
4. 【答案】B。
【考点】真假命题,平行四边形的判定,正方形的判定,菱形的判定,轴对称图形和中心对称图形。
【分析】根据平行四边形的判定,正方形的判定,菱形的判定和轴对称图形、中心对称图形的概念逐一作出判断:①如图,四边形ABCD中,AD∥BC,∠ADC=∠ABC,连接BD,则∵AD∥BC,∴∠ADB=∠DBC(两直线平行,内错角相等)。