石英阴极发光在火成岩研究中的应用
- 格式:pdf
- 大小:634.50 KB
- 文档页数:8
阴极发光技术在宝石鉴定中的应用摘要:阴极发光(CL)技术属于无损鉴定的方式,被大量的应用于宝石矿物鉴定和研究领域。
从宝石学的角度来说,阴极发光技术的贡献巨大,它是宝石鉴定的重要方式之一,利用阴极发光技术可以准确的判断天然宝石或者合成宝石,同时还可以判断出优化处理宝石,在区分外观相似的宝石材料方面也非常便捷快速。
本文主要分析阴极发光技术在单晶宝石材料中的应用。
关键词:阴极发光;单晶宝石;鉴定;应用从目前国内外的发展形势分析,研究者通过阴极发光技术,在矿物研究方面取得了很大的进步,随着科技的进步,阴极发光技术大量的使用到多个领域内。
阴极发光技术已经成为目前宝石鉴别的重要方法之一,利用这项技术可以准确的掌握研究者所需要的信息,进一步揭示出宝石内部蕴藏的奥秘。
在宝石学中,阴极发光技术应用是非常广泛的,可以有效的区别天然单晶宝石与合成单晶宝石,还可以优化处理单晶宝石,所使用范围比较广,是一种重要的单晶宝石无损鉴定方式。
1阴极发光技术原理利用阴极射线管发出的电子束轰击到矿物的表面,因为电子束的能量较高,可以直接转化成为光辐射能,这就是阴极发光。
在阴极射线管发射的电子束轰击矿物晶体时,矿物晶体的晶格会出现畸变的情况,晶体内部形成电子空穴,局部也会发生变化,同时也会以激发态的形式存在。
这些能量处于亚稳定状态的激发中心,能捕获电子从而形成发光中心。
2钻石的阴极发光特征及其应用天然钻石与合成钻石其生长环境有着很大的不同,内部生长结构也会有明显差异,这就使得天然钻石与合成钻石的阴极发光特点很不相同,这就是我们区分天然钻石和合成钻石的主要方式。
从实际情况分析,两者的区别是如下两点:(1)发光性。
在阴极发光的作用之下,天然钻石以蓝色荧光的状态存在,颜色分布较为均匀,有少数会出现黄色或者蓝白荧光,由于没有生长区的影响,这些荧光形态会有明显的不同,并且以不规则的形式存在。
在阴极发光的影响之下,合成钻石会以不同颜色的光出现,因为生长区的影响,形态会是多种结合图形,并且分布以规律性存在。
石英研究进展简述【摘要】本文简要论述了主要造岩矿物—石英在不同产状产出的应用矿物学的应用,并结合经典文献,加以论述其研究的意义和作用。
在此基础上,本文试图梳理三个前沿的观点,用比较的方法去更新和拓宽我对“石英”应用矿物学、形态、以及变体(主要指柯石英)的认识。
【关键词】石英;柯石英;应用矿物学石英是地球表面分布最广和用途最广的一种矿物。
人类对石英的研究可以追踪到远古的石器时代,然而直到今天,对石英的研究仍然是矿物学和地质学中的一个重要部分。
最近,我拜读了几篇关于“石英”微观研究的前沿文献,使我更加深刻地了解“石英”家族。
于是,我试图梳理几个前沿的观点,用比较的方法去更新和拓宽我对“石英”应用矿物学、形态、以及变体(主要指柯石英)的认识。
一、石英应用矿物学方面的梳理石英是主要的造岩矿物之一,也是鲍温反应系列低温阶段的最稳定产物之一。
从地球化学角度来说,S i—O是地球上最丰富的化学元素;此外,Si具有高价态、小半径的属性,具有较强的亲氧性的性质。
Si-O的结合不仅具有高键能而且兼具共价性和离子性的特点。
于是两者结合形成了地壳中最常见的矿物——石英。
然而,石英在岩浆岩、变质岩、沉积岩中均有分布。
不同来源的石英同时也具用不同的特征,根据其特征可以(1)岩浆岩(含喷出岩)中石英应用矿物学的研究来自中酸性深成岩的石英,常含有细小的液体、气体包裹体,或含锆石、磷灰石、电气石、独居石等岩浆岩副矿物包裹体。
矿物的包裹体颗粒细小,自形程度高,排列无序度高。
因此,根据岩浆岩中石英的成因与产状,对石英包裹体的测定是推断岩体侵入时代、围岩的性质以及成矿岩体特征具有无法比拟的方法。
例如王必任撰写的《内蒙古白乃庙石英脉群流体包裹体特征及其金的勘查意义》一文就是根据研究区石英脉群流体包裹体特征,对比金矿床成矿流体及金矿床包裹体特征,结合化学分析,进而推断研究区石英脉群是否具有金的矿化潜力。
此外,石英类质同像以及同位素的测定(如锆石U-Pb年代的测定)也是近几年来比较成熟的方法。
2010年4月A pr il 2010岩 矿 测 试ROCK AND M I N ERA L ANALY SIS V o.l 29,N o .2153~160收稿日期:2009 07 05;修订日期:2009 08 27基金项目:国家科技支撑项目资助(2006BAB01A 01);中金集团公司项目、青藏专项资助;西藏自治区矿产资源潜力评价项目资助(1212010813025);成都理工大学矿物学岩石学矿床学国家重点(培育)学科建设项目资助作者简介:彭惠娟(1985-),女,甘肃兰州人,在读研究生,从事岩矿测试及矿床学方面的研究工作。
E m ai:l 346665401@qq .co m 。
通讯作者:汪雄武(1964-),男,湖北天门人,教授,从事花岗岩与相关矿产方面的研究工作。
E m ai:l 724731780@qq .co m 。
文章编号:02545357(2010)02015308石英阴极发光在火成岩研究中的应用彭惠娟1,汪雄武1*,唐菊兴2,王登红2,秦志鹏1,侯 林1,周 云1(1.成都理工大学,四川成都 610059;2.中国地质科学院矿产资源研究所,北京 100037)摘要:阴极发光是一种研究火成岩石英显微生长结构的有效技术方法。
文章以甲玛斑岩铜矿床中岩体样品分析为例,简要介绍了光学显微镜阴极发光(OM -CL)和扫描电镜阴极发光(SE M -CL)两种图片的特点,并综述了石英阴极发光在火成岩研究中的应用。
阴极发光所显示出的火成岩石英中的生长形式和蚀变结构反映了岩浆的结晶历史。
相对稳定的以蓝色阴极发光为主的斑晶区域主要与石英中T i 含量的变化有关,它反映了结晶作用的温度。
由于在岩浆演化过程中,与铝、锂、钾、锗、硼、铁、磷相比,钛更加相容,因此随着岩浆分异程度的加深,火成岩中铝/钛逐渐升高。
石英阴极发光不仅能显示岩浆早期及岩浆晚期的各种结构,如生长环带、重熔表面、溶蚀湾等,还反映了许多次生结构,如显微裂隙等。
阴极发光分析技术-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII阴极发光显微镜分析技术阴极发光显微镜技术是在普通显微镜技术基础上发展起来用于研究岩石矿物组分特征的一种快速简便的分析手段。
该方法在快速准确判别石英碎屑的成因和方解石胶结物的生长组构、鉴定自生长石和自生石英以及描述胶结过程等方面得到了广泛的应用。
通过对砂岩的阴极射线致发光的观察和研究,可以深人了解砂岩的原始孔隙度和渗透率,并且获得一系列有关蚀源区地质体的组成、产状、成因的信息。
(1) 原理: 电子束轰击到样品上,激发样品中发光物质产生荧光,又称阴极发光。
实验证明,阴极射线致发光现象多是由于矿物中含杂质元素或微量元素(激活剂),或者是矿物晶格内有结构缺陷引起的,这是矿物阴极射线致发光的两种主要解释。
矿物内的激活剂包括金属元素(Eu2十、Srn +、时十、IV +、Ea3十)以及过渡金属元素(mw十、Fe3+, c a 干、V3十、Tia+),与激活剂相对应能抑制矿物发光的物质叫碎灭剂,如Co干,Nl-2+,F e2+、Tie 十等。
(2) 应用:自然界中已发现具有阴极射线致发光的矿物有200多种,其中常见矿物有锡石、蜡石、萤石、白钨矿、方解石、尖晶石、独居石、磷灰石、长石、石英、辉石、橄榄石、云母等。
目前,阴极发光显微镜技术已成为沉积学及石油地质学研究的一种常规手段,特别是对石英和方解石的发光特征已经进行了很多的研究,形成了一套系统的理论,在沉积成岩型矿床和石英脉型金矿床研究中得到了广泛地应用。
石英中的发光激发是由微量元素、结构中的缺陷,以及两者之间的相互作用造成的。
例如,蓝色发光被归因为A13+替代Si4+以及Tia+的含量有关。
石英的阴极致发光颜色与岩石的形成环境密切相关,如表1所示。
发蓝紫色光的石英,包括红紫、蓝紫和蓝色的石英与火山岩、深成岩以及快速冷却的接触变质岩的环境有关联。
棕色发光,包括红棕、深棕和浅棕色的石英和冷却缓慢的低级和高级变质岩相联系的。
阴极发光地质学基础(资料参考)《阴极发光地质学基础》中国地质大学出版社宋志敏早在1859年,Crookes发明了阴极射线管,为矿物的阴极发光研究提供了基本装置。
一、阴极发光基本原理:这里涉及到两个定义:发光和阴极发光发光:当某些物质受到某种能量激发时,会从物体表面发射出光的辐射,光辐射频率大多在可见光范围,波长400-760nm,也有可能有紫外或近红外光辐射的发射,这种现象叫做发光。
阴极发光:指用带能量的电子束轰击某些物质表面时造成的发光现象。
由于带能量的电子束一般是由阴极发射出来,经过阳极电压加速而得到的,因而电子束轰击造成的发光,习惯上成为阴极发光。
为什么会产生阴极发光现象?当入射电子进入固体表面时,与固体原子的价电子相互作用,使价电子从基态跃迁到激发态,由于价电子在激发态不稳定,经过极短时间(一般小于10-8秒)即跃迁回基态,同时发射出一个光子,产生光的辐射,也称跃迁辐射。
光子能量等于激发态能量E2与基态能量E1之差,即hv=E2—E1式中h—普朗克常数,6.62x10-34J·sv—光子频率。
二、矿物受辐射发光的条件:首先要明确的是,并非所有种类的矿物受电子激发后都会辐射发光,有时甚至同一种矿物在不同条件下的发光也会不同。
矿物是否产生发光取决于下面的的一些因素:激活剂与猝灭剂、电子在激发态停留时间---能级寿命的长短。
激活剂与猝灭剂对于大多数矿物来说,只在其中存在某些微量的杂质原子或结构缺陷时,才有显著地发光现象,这些矿物的发光,实际上是由于杂质原子或结构缺陷造成的,而这些杂质原子和结构缺陷,为方便认识,在这里可理解为第一节中述及的“原子的价电子”。
激活剂原子中价电子从激发态跃迁回基态的过程中伴随着光的辐射,这些杂质原子或结构缺陷则称为激活剂,如方解石中的Mn2+使方解石发橙红或橙黄色光;长石中Fe2+使长石发绿色光,Ti4+使长石发天蓝色光,这些离子就是方解石和长石的激活剂。
阴极发光技术在地质学中的应用
阴极发光技术是一种快速、准确、高效的矿物分析方法,可以在地质学领域中广泛应用。
它可以用于岩石、矿物和土壤的成分分析,特别是对于微量元素的检测非常敏感。
该技术可以在地球化学研究中发挥重要作用,如地质储层的研究、矿床勘探、金属元素的分析和岩石地球化学演化的研究等。
此外,阴极发光技术还可以用于地球化学样品的分析和测量,如花岗岩、辉石、角闪石、绿帘石和磷灰石等。
总的来说,阴极发光技术在地质学中的应用是非常广泛的,可以为地质学家提供更准确的数据,进一步推动地质学的研究和发展。
- 1 -。
阴极发光分析技术本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March阴极发光显微镜分析技术阴极发光显微镜技术是在普通显微镜技术基础上发展起来用于研究岩石矿物组分特征的一种快速简便的分析手段。
该方法在快速准确判别石英碎屑的成因和方解石胶结物的生长组构、鉴定自生长石和自生石英以及描述胶结过程等方面得到了广泛的应用。
通过对砂岩的阴极射线致发光的观察和研究,可以深人了解砂岩的原始孔隙度和渗透率,并且获得一系列有关蚀源区地质体的组成、产状、成因的信息。
(1) 原理: 电子束轰击到样品上,激发样品中发光物质产生荧光,又称阴极发光。
实验证明,阴极射线致发光现象多是由于矿物中含杂质元素或微量元素(激活剂),或者是矿物晶格内有结构缺陷引起的,这是矿物阴极射线致发光的两种主要解释。
矿物内的激活剂包括金属元素(Eu2十、Srn +、时十、IV +、Ea3十)以及过渡金属元素(mw十、Fe3+, c a 干、V3十、Tia+),与激活剂相对应能抑制矿物发光的物质叫碎灭剂,如Co干,Nl-2+,F e2+、Tie十等。
(2) 应用:自然界中已发现具有阴极射线致发光的矿物有200多种,其中常见矿物有锡石、蜡石、萤石、白钨矿、方解石、尖晶石、独居石、磷灰石、长石、石英、辉石、橄榄石、云母等。
目前,阴极发光显微镜技术已成为沉积学及石油地质学研究的一种常规手段,特别是对石英和方解石的发光特征已经进行了很多的研究,形成了一套系统的理论,在沉积成岩型矿床和石英脉型金矿床研究中得到了广泛地应用。
石英中的发光激发是由微量元素、结构中的缺陷,以及两者之间的相互作用造成的。
例如,蓝色发光被归因为A13+替代Si4+以及Tia+的含量有关。
石英的阴极致发光颜色与岩石的形成环境密切相关,如表1所示。
发蓝紫色光的石英,包括红紫、蓝紫和蓝色的石英与火山岩、深成岩以及快速冷却的接触变质岩的环境有关联。
《阴极发光地质学基础》中国地质大学出版社宋志敏早在1859年,Crookes发明了阴极射线管,为矿物的阴极发光研究提供了基本装置。
一、阴极发光基本原理:这里涉及到两个定义:发光和阴极发光发光:当某些物质受到某种能量激发时,会从物体表面发射出光的辐射,光辐射频率大多在可见光范围,波长400-760nm,也有可能有紫外或近红外光辐射的发射,这种现象叫做发光。
阴极发光:指用带能量的电子束轰击某些物质表面时造成的发光现象。
由于带能量的电子束一般是由阴极发射出来,经过阳极电压加速而得到的,因而电子束轰击造成的发光,习惯上成为阴极发光。
为什么会产生阴极发光现象?当入射电子进入固体表面时,与固体原子的价电子相互作用,使价电子从基态跃迁到激发态,由于价电子在激发态不稳定,经过极短时间(一般小于10-8秒)即跃迁回基态,同时发射出一个光子,产生光的辐射,也称跃迁辐射。
光子能量等于激发态能量E2与基态能量E1之差,即hv=E2—E1式中h—普朗克常数,6.62x10-34J·sv—光子频率。
二、矿物受辐射发光的条件:首先要明确的是,并非所有种类的矿物受电子激发后都会辐射发光,有时甚至同一种矿物在不同条件下的发光也会不同。
矿物是否产生发光取决于下面的的一些因素:激活剂与猝灭剂、电子在激发态停留时间---能级寿命的长短。
激活剂与猝灭剂对于大多数矿物来说,只在其中存在某些微量的杂质原子或结构缺陷时,才有显著地发光现象,这些矿物的发光,实际上是由于杂质原子或结构缺陷造成的,而这些杂质原子和结构缺陷,为方便认识,在这里可理解为第一节中述及的“原子的价电子”。
激活剂原子中价电子从激发态跃迁回基态的过程中伴随着光的辐射,这些杂质原子或结构缺陷则称为激活剂,如方解石中的Mn2+使方解石发橙红或橙黄色光;长石中Fe2+使长石发绿色光,Ti4+使长石发天蓝色光,这些离子就是方解石和长石的激活剂。
常见的激活剂元素与阴极发光颜色如下表1-1所示。