八年级数学上册 11.1.2 三角形的高、中线与角平分线教
- 格式:doc
- 大小:89.02 KB
- 文档页数:2
11.1.2 三角形的高、中线与角平分线编制:一、知识要点:1、三角形的高:(1)定义(2)三角形三条高的位置2、三角形的中线:(1)定义(2)三角形的重心3、三角形角平分线4、三角形具有稳定性二. 典例和变式知识点1:三角形的高例1:如图,AB⊥BD于点B,AC⊥CD于点C,且AC与BD交于点E,那么:(1)△ADE的边DE上的高为,边AE上的高为;(2)若AE=5,DE=2,CD=1.8 ,则AB= .【变式练习1】1.△ABC,∠C=90°AB=5,BC=4,AC=3,求AB边上的高。
2.如图所示,在△ABC中,AC=7,BC=4,高BD=2.5,试作出BC边上的高AE,并求出AE 的长.3.已知△ABC中,AB=2,AC=3,BC=4,AB,AC,BC边上的高分别为h1,h2,h3,则h1:h2:h3= 。
4.已知AD是△ABC的高,∠BAD=72°,∠CAD=21°,则∠BAC的度数是。
知识点2:三角形的中线例2:(1)在△ABC中,AD为BC边的中线,若△ABD与△ACD的周长差为3,AB=8,则AC= 。
(2)如图,在△ABC中,D,E分别为BC,AD的中点,且△ABC的面积为4,则图中阴影部分的面积是 .【变式练习2】1.如图,在△ABC中,已知点D, E, F分别为BC, AD, CE的中点,且S△ABC=8cm2,则S 阴影等于。
2.已知如图S△ODA=3,S△ODC=4,S△OBC=5,则S△OAB= .(例5)(变式练习1)(变式练习2)3.已知一个等腰三角形一腰上的中线将该三角形的周长分成8和10两部分,试求该三角形的三边是多少?3、三角形的角平分线例题3:如下图所示,AE是△ABC的角平分线,AD是△ABE的角平分线,若∠BAC=80°,则∠EAD的度数是。
【变式练习3】如图,在△ABC中,AD是高,AE是∠BAC的平分线,∠B=20°,∠C=60°,求∠DAE的度数。
1.同学们好!我是库尔勒市实验中学的数学老师沈红霞,今天沈老师和同学们一起学习“囗囗囗囗”2.上节课,同学们初步认识了三角形,在三角形中有哪些你熟悉的几何图形?是线段和角,在角中有那么一条射线,它平分了角,就是角平分线。
三角形有三个内角,也就有三条角平分线。
3.那什么是三角形的角平分线呢?在△ABC中,作∠BAC的平分线,交BC边于点D,线段AD就是△ABC的一条角平分线。
三角形的角平分线是这样定义的:“囗囗囗囗”几何语言表述为:“囗囗囗囗”4.角平分线与三角形的角平分线作图方法一样,但它们也有区别:一个角的平分线是射线,只有一条,而三角形的角平分线是线段。
因为三角形有三个内角,所以能画出三条。
5.我们同样作出△ABC的另外两条角平分线,它们分别是线段BE和线段CF,请同学们仔细观看小视频,看看你有什么发现?【三角形的角平分线】老师拖拽三角形顶点A的过程中,锐角三角形变形为钝角三角形,有那么一瞬间是直角三角形,你发现有什么共同点?我们发现“囗囗囗囗”,试着填空。
6.三角形除了有三个内角,它还有三条边,三角形的三条边都是线段,结合线段的中点,下面我们来研究三角形的中线。
(1)找到BC边的中点D,(我们可以用直尺度量,使BD=CD)(2)连接AD。
(那么线段AD就是三角形ABC的中线,注意三角形的中线同样是线段 )三角形的中线是这样定义的:“囗囗囗囗”几何语言表述为:“囗囗囗囗”7.我们同样作出△ABC的另外两条中线,线段CF和线段BE。
通过观察图形,我们发现,三条中线同样也相交于一点。
我们把这个交点,起个名字叫三角形的重心“囗囗囗囗”请填一填8.重心在我们生活中有很大用处,找到了物体的重心,它能使物体保持平衡。
9.在刚才的学习中,我们从三角形的内角入手,结合角平分线,得到了三角形的角平分线。
又从三角形的边入手,结合线段的中点,得到了三角形的中线。
不论是三角形的角平分线还是中线,都是以三角形的一个顶点为端点的线段。
11.1.2 三角形的高、中线与角平分线一、教学目标(一)学习目标1.理解三角形的高的概念,会画不同三角形的高.2.掌握三角形中线、角平分线的概念.3.能正确运用三角的高、中线、角平分线的相关概念及性质解决实际问题.(二)学习重点三角形的高、中线、角平分线的概念.(三)学习难点运用三角形高、中线、角平分线的概念解决三角形有关实际问题.二、教学设计(一)课前设计1.预习任务从三角形的一个顶点向它的对边所在直线画垂线,顶点和垂足之间的线段叫做高;在三角形中,连接一个顶点和它的对边中点的线段叫做中线;三角形的一个角平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做角平分线.2.预习自测(1)如图,在△ABC中,BC边上的高是________ ,在△AEC中,AE边上的高是_______,EC边上的高是_________.【知识点】三角形的高的概念【解题过程】BC边是顶点A得对边,过点A作BC边的垂线,交点B是垂足,所以AB 为BC边上的高.同理AE边上的高为CD,EC边上的高为AB.【思路点拨】运用高的定义,过三角形一点向它的对边作垂线,这一点与垂足之间的连线叫做三角形的高.【答案】AB.CD.AB(2)如图,在△ABC中,D是BC的中点,E是AB 的中点,则△ABC 的中线是________,△ABD的中线是_______.B【知识点】三角形中线的概念【解题过程】△ABC的顶点A和它对边中点D的连线AD为△ABC的中线;而△ABD中,顶点D与它对边中点E的连线DE为△ABD的中线.【思路点拨】三角形的顶点和它对边中点的连线成为中线,故找准顶点和它的对边中点是关键.【答案】AD.DE(3)△ABC的角平分线BE是()A.射线B.直线C.线段D.都有可能【知识点】三角形的角平分线的概念,它与角平分线的区别【解题过程】三角形的一个角平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.【思路点拨】三角形的角平分线是线段,而角平分线是射线.【答案】C(二)课堂设计1.知识回顾(1)三角形:由不在同一条直线上的三条线段首尾顺次相接组成的图形.(2)构成三角形的元素:①三个顶点;②三条边;③三个内角.(3)三角形三边的数量关系:两边之和大于第三边,两边之差小于第三边.2.问题探究探究一三角形的高.●活动①回顾旧知师:回顾构成三角形的元素并回忆小学时如何作出三角形的高.(1)三个顶点;三条边;三个内角.(2)过三角形一个顶点向它的对边画垂线段.B教师总结:从△ABC的顶点A向它所对的边BC画垂线,垂足为D,所得线段AD叫做△ABC的边BC上的高.【设计意图】通过对旧知识的复习,为新知识的学习作铺垫.●活动②画出以下三角形的高AD.BE.CF.师问:一个三角形有几条高?三角形的高是什么线?三个图形的高有什么区别?它们在位置上有什么关系?学生抢答:看谁总结得最快最完整?学生回答:三角形有三条高,都是线段.锐角三角形的高在三角形内部,直角三角形有两条高在边上,钝角三角形有两条高在三角形外部,每个三角形的三条高(或高所在的直线)都相交于一点.教师总结:任意一个三角形都有三条高,三角形的高是线段;锐角三角形的高在三角形内部、直角三角形有两条高在边上、钝角三角形有两条高在外部;三角形的三条高(或高所在的直线)都相交于一点(如上图点O),锐角三角形的三条高相交于三角形内部一点、直角三角形的三条高相交于直角顶点、钝角三角形的三条高所在的直线相交于三角形外部一点.【设计意图】鼓励学生独立自主解决问题,让学生初步感受通过动手操作来掌握几何知识的相关概念,引导学生由观察得到的感性认识转化为理性认识.探究二三角形的中线与角平分线. ▲●活动①大胆猜想,探究新知识师问:妈妈有一块三角形蛋糕,她想平均分给小明和小亮,并且两人所得蛋糕均为三角形,你能帮妈妈出主意吗?学生回答:找到一边的中点,然后和这边所对的顶点相连,沿着这条连线切割,所得的两个三角形面积相等.学生回答:分割后的两个三角形底相同,高相同,所以面积相等.【设计意图】通过探究,促使学生找到三角形边上的中点,为得出中线的概念作铺垫.●活动②反思过程,发现新概念.教师展示新知:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线.B师问:三角形的中线是什么线?一个三角形有几条中线?三角形的中线所分成的两个三角形面积有什么关系?学生回答:三角形的中线是线段,并且每个三角形都有三条中线.三角形的中线所分成的两个三角形的面积相等,因为等底等高的三角形面积相等.【设计意图】让学生更加全面的掌握中线的概念以及它平分三角形面积的性质.●活动③动手操作,大胆发现.如图,画出三角形的三条中线,并认真观察三条中线的位置关系.B师问:你发现了什么?学生回答:三角形的三条中线都在三角形内部,并且相交于一点.教师展示新知:三角形的三条中线都在三角形内部,并且相交于一点,这个点就是三角形的重心.【设计意图】通过动手实践找到三角形的重心,深刻理解三角形的重心在三角形内部.●活动④集思广益,探究新知.师问:请同学们画出三角形中∠A的平分线(量角器)B教师总结:如图,画∠B的平分线BD,交∠B所对的边AC于点D,所得线段BD叫做△ABC的角平分线.师问:你能画出三角形另外的角平分线吗?学生展示:B师问:三角形的角平分线是什么线?与角平分线有什么区别?一个三角形有几条角平分线?在位置上有什么关系?学生回答:三角形的角平分线是线段,而角的平分线是射线,任何三角形都有三条角平分线,并且三条角平分线交于三角形内部的一点.教师总结:任何三角形都有三条角平分线,并且都在三角形内部交于一点,我们把这个点称为三角形的内心(内切圆的圆心)三角形的角平分线是一条线段,而角平分线是一条射线.【设计意图】通过学生动手实践,掌握三角形的角平分线的概念,区别三角形的角平分线与角平分线的不同,并找到三角形的内心.为初三学习三角形的内切圆奠定基础.探究三 利用三角形的高、中线及角平分线的概念解决问题.★▲ ●活动① 三角形的高、中线、角平分线的概念及性质例1如图(1)所示,AD.BE.CF 是△ABC 的三条中线,则AB=2_____,BD=_____,AE= ______.如图(2)所示,AD.BE.CF 是△ABC 的三条角平分线,则∠1=________,∠3= ______,∠ACB=2__________.4321(2)(1)F EFEBC A BC【知识点】 三角形的中线和角平分线的概念【解题过程】(1)因为AD ,BE ,CF 是△ABC 的三条中线,则AB=2AF=2BF ,BD=CD ,AE=CE=AC ;(2)因为AD.BE.CF 是△ABC 的三条角平分线,则∠1=∠2,∠3=∠ABC ,∠ACB=2∠4.【思路点拨】已知三角形的中线,找准中点可得线段的数量关系;三角形的角平分线平分三角形的一个内角,所得的两个小角相等.【答案】(1)AF 或BF ,CD ,AC (2)∠2,∠ABC ,∠4练习:如图,在△ABC 中,AE 是中线,AD 是角平分线,AF 是高.则BE=_____=________;∠BAD=________=_______;∠AFB=______=90°.D E FABC【知识点】三角形的高、中线及角平分线的概念【解题过程】因为AE 是中线,则点E 为BC 的中点,所以BE=CE=BC ;因为AD 是角平分线,所以∠BAD=∠CAD=∠BAC ;又因为AF 是高,即 AF ⊥BC ,所以∠AFB=∠AFC=90°.【思路点拨】运用高、中线、角平分线的概念进行求解.【答案】BE=CE=BC ;∠BAD=∠CAD=∠BAC_;∠AFB=∠AFC=90°【设计意图】让学生熟练掌握三角形高、中线、角平分线的概念.能准确判定三角形的高、中线及角平分线.●活动② 三角形的中线运用例2 在△ABC 中,AD 是△ABC 的中线,E 为AB 的中点,则△AED 的面积与△ACD 的面积的数量关系为____________________.EBC【知识点】三角形的中线平分三角形的面积.【解题过程】在△ABC 中,AD 是△ABC 的中线,所以=;又因为E 为AB的中点,所以==【思路点拨】AD 是△ABC 的中线,所以AD 平分△ABC 的面积,同理DE 也平分△ABD 的面积.【答案】=练习:如图,点D.E.F分别是BC.AD.BE 的中点,且=1,求.EFB C【知识点】三角形的中线.【解题过程】∵D.E.F分别是BC.AD.BE的中点,∴AD是△ABC的中线,BE是△ABD的中线,AF是△ABE的中线,又∵=1,∴=2=2,=2=4,∴==8.【思路点拨】利用三角形的中线平分三角形的面积进行求解.【答案】83. 课堂总结知识梳理(1)三角形的高、中线、角平分线的概念.(2)三角形的高所在直线相交于一点;三角形的中线交于三角形内部一点,这个点叫做三角形的重心;三角形三条角平分线交于三角形内部一点,这个点叫做三角形的内心.(3)三角形的中线把三角形分成两个面积相等的三角形.重难点归纳(1)三角形的高、中线、角平分线都是线段.(2)注意重心和内心分别是三角形的中线和角平分线的交点.(3)灵活运用三角形的高、中线、角平分线的概念解决有关问题.。
A D BC第三课时11.1.2 三角形的高、中线与角平分线【学习目标】1、认识与准确画出三角形的高、中线与角平分线;2、通过画图了解三角形的三条高(及所在直线)交于一点,三角形的三条中线,三条角平分线等都交于点.【学习重点】了解三线的概念, 会准确画出三线.了解三线合一【学习难点】了解高的画法、位置、与垂线的区别一、学前准备1、三角形的定义是:2、三角形的三边有怎样的关系?二、探索思考1、 三角形的高、中线、角平分线的概念及表示探究一:(1)三角形的高与垂线有何区别和联系?(2)连结两点的线段与过两点的直线有何区别和联系? (3)三角形的角平分线与角平分线有何区别和联系?练习12、画一画:(1).画出下面三个三角形三条高.观察这三条高所在的直线的位置有何关系?(2)画三角形,并在这个三角形中画出它的三条中线.(锐角三角形,直角三角形和钝角三角形的中线在哪里)?观察这三条中线的位置有何关系? (3).画三角形,并在这三角形中画出它的三条角平分线,观察这三条角平分线的位置有何关系?三、当堂反馈1、下列各组图形中,哪一组图形中A D 是△A B C 的高( )2.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( ) 第4题图A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形3.三角形的三条高相交于一点,此一点定在( )A. 三角形的内部B.三角形的外部C.三角形的一条边上D. 不能确定 4.如图:在ΔABC 中,CD 是中线,已知BC-AC=5cm, ΔDBC 的周长为25cm,求ΔADC 的周长.四、学习反思B AB AB AA D CB A BC DA B C DAB C D (A ) (B ) (C ) (D )。
人教版八年级数学上册11.1.2《三角形的高、中线与角平分线》教学设计一. 教材分析《三角形的高、中线与角平分线》是人教版八年级数学上册第11.1.2节的内容。
本节主要介绍了三角形的高、中线与角平分线的概念及其性质。
通过学习,学生能够理解三角形的高、中线与角平分线的定义,掌握它们之间的关系,并能运用它们解决实际问题。
本节内容是学生进一步学习三角形和其他几何图形的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析学生在学习本节内容前,已经学习了三角形的性质、角的度量等基础知识,对几何图形的认识有一定的基础。
但是,对于三角形的高、中线与角平分线的概念和性质,学生可能还不够熟悉。
因此,在教学过程中,需要通过实例和练习,帮助学生理解和掌握这些概念和性质。
三. 教学目标1.了解三角形的高、中线与角平分线的概念及其性质。
2.能够运用三角形的高、中线与角平分线解决实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.三角形的高、中线与角平分线的概念及其性质。
2.运用三角形的高、中线与角平分线解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,通过引导学生思考和探究,激发学生的学习兴趣和积极性。
2.利用几何画板和实物模型,直观展示三角形的高、中线与角平分线的性质,帮助学生理解和掌握。
3.通过练习和问题解决,巩固所学知识,提高学生的应用能力。
六. 教学准备1.准备几何画板和实物模型,用于展示三角形的高、中线与角平分线的性质。
2.准备相关的练习题和实际问题,用于巩固和应用所学知识。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾三角形的基本概念和性质,为新课的学习做好铺垫。
2.呈现(10分钟)利用几何画板和实物模型,展示三角形的高、中线与角平分线的定义和性质。
引导学生观察和思考,引导学生总结出三角形的高、中线与角平分线的性质。
3.操练(10分钟)让学生分组合作,利用几何画板和实物模型,进行三角形的高、中线与角平分线的操作练习。
三角形的高、中线与角平分线
教学目标
认识三角形的高、中线与角平分线.会用工具准确画出三角形的高、中线与角平分线, 通过画图了解三角形的三条高(及所在直线)交于一点,三角形的三条中线,三条角平分线等都交于点.
重点、难点
1.重点:(1)了解三角形的高、中线与角平分线的概念, 会用工具准确画出三角形的高、中线与角平分线.
(2)了解三角形的三条高、三条中线与三条角平分线分别交于一点.
2.难点:(1)三角形平分线与角平分线的区别,三角形的高与垂线的区别.
(2)不同的三角形三条高的位置关系.
教学过程
看一看
三角形按边分可以,分成几类?按角分呢?
(1)三角形按边分类如下:
三角形不等三角形
等腰三角形底和腰不等的等腰三角形
等边三角形
(2)三角形按角分类如下:
三角形直角三角形
斜三角形锐角三角形
钝角三角形
三角形的
重要线段
意义图形表示法
三角形的高线从三角形的一
个顶点向它的
对边所在的直
线作垂线,顶
点和垂足之间
的线段
D C
B
A 1.AD是△ABC的BC上
的高线.
2.AD⊥BC于D.
3.∠ADB=∠ADC=90°.
三角形的中线三角形中,连
结一个顶点和
它对边中的
线段D C
B
A
1.AE是△ABC的BC上
的中线.
2.BE=EC=
1
2
BC.
三角形的角平分线
三角形一个内
角的平分线与
它的对边相
交,这个角顶
点与交点之间
的线段
21
D C
B
A
1.AM是△ABC的∠BAC
的平分线.
2.∠1=∠2=
1
2
∠BAC. ⎧
⎨
⎩⎧⎨
⎩
⎧
⎨
⎩⎧⎨
⎩
仔细观察投影表中的内容,并回答下面问题.
(1)什么叫三角形的高?三角形的高与垂线有何区别和联系?
(2)什么叫三角形的中线?连结两点的线段与过两点的直线有何区别和联系?
(3)什么叫三角形的角平分线?三角形的角平分线与角平分线有何区别和联系?
三角形的高、中线和角平分线是代表线段而不是射线或直线注意区别!!
三角形的高、中线和角平分线都代表线段, 这些线段的一个端点是三角形的一个顶点,另一个端点在这个顶点的对边上.
二、做一做
1.在练习本上画出三角形,并在这个三角形中画出它的三条高.
三角形的三条高交于一点,锐角三角形三条高交点在直角三角形内,直角三角形三条高线交点在直角三角形顶点,而钝角三角形的三条高的交点在三角形的外部.
2.在练习本上画三角形,并在这个三角形中画出它的三条中线.观察这三条中线的位置有何关系?
三角形的三条中线都在三角形内部,它们交于一点,这个交点在三角形内.
3.在练习本上画一个三角形,并在这三角形中画出它的三条角平分线,观察这三条角平分线的位置有何关系?
无论是锐角三角形还是直角三角形或钝角三角形, 它们的三条角平分线都在三角形内,并且交于一点.
三、议一议
通过以上观察和操作你发现了哪些规律?
四、作业。