2003年南宁市中等学校招生考试数学试题(含答案)
- 格式:doc
- 大小:325.50 KB
- 文档页数:4
≥02003年中等学校招生广西统一考试数学(考试时间:120分钟)一、填空题:本大题共12小题;每小题2分,共24分.请将答案填写在题中的横线上.1.-2003的相反数是 .2.因式分解:=-2428a a .3.在△ABC 中,∠A =︒120,∠B =2∠C ,则∠B = . 4.把二次根式xv x (0>y )化成最简二次根式为 .5.一个三角形的三边的长分别是3,x ,5,那么x 的取值范围是 .6.不等式组⎩⎨⎧->-31x x 的整数解是 .7.国家规定存款利息的纳税标准是:利息税=利息×20%;如果银行一年定期储蓄的年利率为2.25%,某储户在取出一年到期的本金及利息时,交纳了利息税9元,则该储户一年前存银行的钱为 元. 8.用一张面积为400cm 2的正方形硬纸片围成一个圆柱的侧面,这个圆柱的底面直径是 cm (精确到0.1cm ).9.如图,CD 是⊙O 的直径,弦AB ⊥CD ,P 为垂足,AB =8cm ,PD =2cm 则CP = cm .10.如果方程02=++q px x 的两根分别为12-,12+,那么p = ,q = . 11.半径为1的圆中有一条弦,如果它的长为3,那么这条弦所对的圆周角的度数等于 . 12.如图,四边形OABC 中,OC OB OA ==,是∠2是∠1的4倍,那么∠4是∠3的 倍 .二、填空题:本大题共8小题;每小题3分,共24分. 在每小题给出的四个选项中,只有一项是正确的,请将正确答案前的字母填入题后的括号内 . 每小题选对得3分,选错、不选或多选均得零分.13.用科学记数法表示0.00618,应记作…………………………………………………………………………( )(A )210618.0-⨯ (B )31018.6-⨯ (C )4108.61-⨯ (D )510618-⨯14.化简m m -+-21442的结果是………………………………………………………………………………( ) (A )21+-m (B )21+m (C )462-+m m (D )21+-m 15.已知n m ≠,按下列(A )、(B )、(C )、(D )的推理步骤,最后推出的结论是n m =.其中出错的推理步骤是………………………………………………………………………………………………………… ( ) (A )22)()2(m n m -=- (B )22)()(m n n m -=-∴ (C )m n n m -=-∴ (D )n m =∴16.如图,□ABCD 的对角线AC 、BD 相交于点O ,那么图中的全等三角形共有…………………………( )(A )1对 (B )2对 (C )3对 (D )4对17.关于x 的方程02)13(22=-+-+m m x m x 的根的情况是……………………………………………( ) (A )有两个相等的实数根 (B )有两个不相等的实数根(C )没有实数根 (D )有两个实数根18.如图,在△ABC 中,5==AC AB ,D 是BC 上的点,DE ∥AB 交AC 于点E ,DF ∥AC交AB 于点F ,那么四边形AEDE 的周长是……………………………………… ( )(A )5 (B )10 (C )15 (D )2019.已知反比例函数xy 1-=的图象上有两点),(11y x A ,),(22y x B ,且21x x <,那么下列结论正确的是………………………………………………………………………………………………………………( )(A )21y y < (B )21y y > (C )21y y = (D )1y 与2y 之间的大小关系不能确定20.某音位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10立方米的,按每立方米m 元水费收费;用水超过10立方米的,超过部分加倍收费.某职工某月缴水费16m 元,则该职工这个月实际用水为……………………………………………………………………………………………………( )(A )13立方米 (B )14立方米 (C )18立方米 (D )26立方米三、解答题:本大题共8小题,满分72分.21.(本题满分5分)学校阅览室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2张方桌拼成一行能坐6人(如图所示).按照这种规定填写下表的空格:22.(本题满分7分)如图,四边形ABCD 内接于半圆O ,AB 是直径.(1)请你添加一个条件,使图中的四边形ABCD 成等腰梯形,这个条件是 (只需填一个条件). (2)如果AB CD 21=,请你设计一种方案,使等腰梯形ABCD 分成面积相等的三部分,并给予证明.23.(本题满分8分)初三(一)班10名同学某次电脑测试成绩如下表所示(满分30分):那么,这10名同学这次电脑测试成绩的 众数是 ; 中位数是 ; 平均数是 ; 方差是 .24.(本题满分8分)如图,BD 、CE 是△ABC 的中线,G 、H 分别是BE 、CD 的中点,BC =8 . 求GH 的长 .25.(本题满分10分)阅读下列一段话,并解决后面的问题 .观察下面一例数: 1,2,4,8,……我们发现,这一列数从第2项起,每一项与它前一项的比都等于2 .一般地,如果一列数从第2项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数叫做等比数列的公比 .(1)等比数列5,-15,45,……的第4项是 ;(2)如果一列数1a ,2a ,3a ,4a ,……是等比数列,且公比为q ,那么根据上述的规定,有q a a 12,q a a 23,q a a34,…… 所以q a a 12=,21123)(q a q q a q a a ===,312134)(q a q q a q a a ===,……=n a .(用1a 与q 的代数式表示)(3)一个等比数列的第2项是10,第3项是20,求它的第1项与第4项 .26.(本题满分10分)在抗击 “非典”中,某医药研究所开发了一种预防“非典”的药品.经试验这种药品的效果得知:当成人按规定剂量服用该药后1小时时,血液中含药量最高,达到每毫升5微克 . 接着逐步衰减,至8小时时血液中含药量为每毫升1.5微克 . 每毫升血液中含药量 y (微克)随时间x (小时)的变化如图所示 . 在成人按规定剂量服药后:(1)分别求出x ≤1,x ≥1时,y 与x 之间的函数关系式;(2)如果每毫升血液中含药量为2微克或2微克以上,对预防“非典”是有效的,那么这个有效时间为多少小时?27.(本题满分12分)在△ABC 中,9=BC ,12=CA ,15=AB ,∠ABC 的平分线BD 交AC 于点D ,DE ⊥DB 交AB 于点E .(1)求证:△ABC 是直角三角形;(2)设⊙O 是△BDE 的外接圆,求证:AC 是⊙O 的切线; (3)设⊙O 交BC 于点F ,连结EF ,求AE 的长和EF ∶AC 的值 .28.(本题满分12分)如图,以A (0,3)为圆心的圆与x 轴相切于坐标原点O ,与y 轴相交于点B ,弦BD 的延长线交x 轴的负半轴于点E ,且︒=∠60BED ,AD 的延长线交x 轴于点C . (1)分别求点E 、C 的坐标;(2)求经过A 、C 两点,且以过E 而平行于y 轴的直线为对称轴的抛物线的函数解析式;(3)设抛物线的对称轴与AC 的交点为M ,试判断以M 点为圆心,ME 为半径的圆与⊙A 的位置关系,并说明理由 .。
南宁市一、填空题(本大题共10题,每题2分,满分20分)1. 一3与2的大小关系是 .2. 分解因式:x x -2= .3. 在函数1-=x y 中,自变量x 的取值范围是 .4. 如图1,已知AB ∥CD ,∠1=∠2,若∠1=50°,则∠3= 度.5. 2003年一到四月份,中国财政收入比去年同期增长百分之二十九点九,达到7270亿元,用科学记数法表示为: 亿元(保留两个有效数字).6. 如图2,已知AB =AC ,EB =EC 的延长线交BC 于D ,则图中全等的三角形共有 对.7. 图3是反比例函数xk y =上的图象,那么k 与0的大小关系是k 0.8. 已知△ABC ∽△A ’B ’C ’,它们的相似比是2:3,△ABC 的周长为6,则△A ’B ’C ’的周长为 .9. 如图4,已知PA 是⊙O 的切线,A 是切点PC 是过圆心的一条割线,点B 、C 是它与⊙O 的交点,且PA =8,PB =4。
则⊙O 的半径为 .10. 将一张长方形的纸对折,如图5所示可得到一条折痕(图中虚线).续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到 条折痕.如果对折n 次,可以得到 条折痕.二、选择题(本大题共6题,每题3分,满分18分).每题中的选项只有一个是正确的.11. 二元一次方程组⎩⎨⎧=+-=+522y x y x 的解是( ). (A )⎩⎨⎧==61y x (B )⎩⎨⎧=-=41y x (C )⎩⎨⎧=-=23y x (D )⎩⎨⎧==23y x 12. 下列命题正确的是( ).(A )一组对边平行,另一组对边相等的四边形是平行四边形(B )对角线互相垂直的四边形是菱形(C )对角线相等的四边形是矩形(D )一组邻边相等的矩形是正方形13. 已知⊙O 1和⊙O 2的半径分别为3cm 和5cm ,两圆的圆心距是7cm ,则两圆的位置关系是( ).(A )内含 (B )外离 (C )外切 (D )相交14. 已知一元二次方程0232=+-a x x 有实数根,则a 的取值范围是( ).(A )a ≤31(B )a <31(C )a ≤-31(D )a ≥31 15. 如图6,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( ).(A )AC AE AB AD = (B )FB EA CF CE =(C )BD AD BC DE =(D )CBCF AB EF = 16. 一条信息可通过如图7的网络线由上(A 点)往下向各站点传送.例如信息到b 2点可由经a 1的站点送达,也可由经a 2的站点送达,共有两条途径传送.则信息由A 点到达山的不同途径共有( ).(A )3条(B )4条(C )6条(D )12条三、(本大题共4题,每题6分,满分24分)17. 计算;()()01220035211π-÷-⎪⎭⎫ ⎝⎛+-- 18. 化简:()()()()xy x y x y x y x --++-+222222 19. 尺规作图:把图8(实线部分)补成以虚线l 为对称轴的轴对称图形,你会得到一只美丽蝴蝶的图案.(不用写作法,保留作图痕迹).20. 图9是2001年南宁市年鉴记载的本市社会消费品零售总额(亿元)统计图.请你仔细观察图中的数据,并回答下面问题.(1)图中所列的六年消费品零售总额的最大值与最小值的差是多少亿元?(2)求1990年、1995年和2000年这三年社会消费品零售总额的平均数.(精确到0.01)(3)从图中你还能发现哪些信息,请说出其中两个.四、(本大题共2题,每题8分,满分16分)21. 下表是小明同学填写实习报告的部分内容:请你根据以上的条件,计算出河宽CD (结果保留根号).22. 2003年我国政府工作报告指出:为解决农民负担过重问题,在近两年的税费改革中,我国政府采取了一系列政策措施.2001年中央财政用于支持这项改革试点的资金约为180亿元,预计2003年将达到304.2亿元.求2001年到2003年中央财政每年投人支持这项改革资金的平均增长率.(参考数据:44.1=1.2,69.1=1.3)五、(本题满分8分)23. 如图10,P 是线段AB 上一点,△APC 与△BPD 是等边三角形,请你判断AD 与BC 相等吗?并证明你的判断.六、(本题满分12分)24. 南宁市某中学环保兴趣小组对南湖清除淤泥工程进行调查,并从《南宁晚报》中收集到下列数据:根据上表解答下列问题:(1)请你按体积=面积×高来估算,南湖的淤泥量大约有多少万立方米?(2)设清除淤泥x 天后,剩余的淤泥量为y 万米3),求y 与x 的函数关系.(不要求写出x 的取值范围)(3)为了使南湖的生物链不遭破坏,仍需保留一定量的淤泥.若需保留的淤泥量约为22万米3,求清除淤泥所需天数.七、〔本题满分10分〕25. 如图11,已知E 是△ABC 的内心上,∠A 的平分线交BC 于点F ,且与△ABC 的外接回相交于点D .(1)求证:∠DBE =∠DEB ;(2)若AD =8cm ,DF :FA =1:3.求DE 的长.八、(本题满分12分)26. 如图12所示,已知A、B两点的坐标分别为(28,0)和(0,28),动点P从A点开始在线段AO上以每秒3个长度单位的速度向原点O运动.动直线EF从x轴开始以每秒1个长度单位的速度向上平行移动(即EF∥x轴),并且分别与y轴、线段AB交于E、F点.连结EP,设动点P与动直线EF同时出发,运动时间为t秒.(1)当t=1秒时,求梯形OPFE的面积.t为何值时,梯形OPFE的面积最大,最大面积是多少?(2)当梯形OPFE的面积等于三角形APF的面积时.求线段PF的长;(3)设t的值分别取t1、t2时(t1≠t2),所对应的三角形分别为△AF1P1和△AF2P2.试判断这两个三角形是否相似,请证明你的判断.。
南宁市中考数学试卷本试卷分第I 卷和第II 卷,满分120分,考试时间120分钟第I 卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为(A )、(B )、(C )、(D )四个结论,其中只有一个是正确的.请考生用2B 铅笔在答题卷上将选定的答案标号涂黑. 1.3的绝对值是( ).(A )3 (B )-3 (C )31(D )31 考点:绝对值.专题:计算题.分析:直接根据绝对值的意义求解. 解答:解:|3|=3. 故选A .点评:本题考查了绝对值:若a >0,则|a|=a ;若a=0,则|a|=0;若a <0,则|a|=﹣a . 2.如图1是由四个大小相同的正方体组成的几何体,那么它的主视图是( ).考点:简单组合体的三视图. 专题:计算题.分析:从正面看几何体得到主视图即可.解答:解:根据题意的主视图为:,故选B点评:此题考查了简单组合体的三视图,主视图是从物体的正面看得到的视图.3.南宁快速公交(简称:BRT )将在今年底开始动工,预计下半年建成并投入试运营,首条BRT 西起南宁火车站,东至南宁东站,全长约为11300米,其中数据11300用科学记数法表示为( ). A .0.113×105 B .1.13×104 C .11.3×103 D .113×102 考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.解答:解:将11300用科学记数法表示为:1.13×104. 故选B .点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.正面 图1 (A ) (B ) (C ) (D )图 24.某校男子足球队的年龄分布如图2条形图所示,则这些队员年龄的众 数是( ).(A )12 (B )13 (C )14 (D )15考点:众数;条形统计图.分析:根据条形统计图找到最高的条形图所表示的年龄数即为众数. 解答:解:观察条形统计图知:为14岁的最多,有8人, 故众数为14岁, 故选C .点评:考查了众数的定义及条形统计图的知识,解题的关键是能够读懂条形统计图及了解众数的定义,难度较小.5.如图3,一块含30°角的直角三角板ABC 的直角顶点A 在直线DE 上,且BC//DE ,则∠CAE 等于( ). (A )30° (B )45° (C )60° (D )90°考点:平行线的性质. 分析:由直角三角板的特点可得:∠C=30°,然后根据两直线平行内错角相等,即可求∠CAE 的度数. 解答:解:∵∠C=30°,BC ∥DE , ∴∠CAE=∠C=30°. 故选A .点评:此题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.6.不等式132<-x 的解集在数轴上表示为( ).(A ) (B ) (C ) (D )考点:在数轴上表示不等式的解集;解一元一次不等式. 专题:数形结合.分析:先解不等式得到x <2,用数轴表示时,不等式的解集在2的左边且不含2,于是可判断D 选项正确.解答:解:2x <4, 解得x <2, 用数轴表示为:.故选D .图3点评:本题考查了在数轴上表示不等式的解集:用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心;二是定方向,定方向的原则是:“小于向左,大于向右”.7.如图4,在△ABC 中,AB=AD=DC ,∠B=70°,则∠C 的度数为( ).(A )35° (B )40° (C )45° (D )50°考点:等腰三角形的性质.分析:先根据等腰三角形的性质求出∠ADB 的度数,再由平角的定义得出∠ADC 的度数,根据等腰三角形的性质即可得出结论.解答:解:∵△ABD 中,AB=AD ,∠B=70°, ∴∠B=∠ADB=70°,∴∠ADC=180°﹣∠ADB=110°, ∵AD=CD ,∴∠C=(180°﹣∠ADC )÷2=(180°﹣110°)÷2=35°, 故选:A .点评:本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.8.下列运算正确的是( ).(A )ab a ab 224=÷ (B )6329)3(x x = (C )743a a a =• (D )236=÷考点:整式的除法;同底数幂的乘法;幂的乘方与积的乘方;二次根式的乘除法. 专题:计算题.分析:A 、原式利用单项式除以单项式法则计算得到结果,即可做出判断; B 、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断; C 、原式利用单项式乘以单项式法则计算得到结果,即可做出判断; D 、原式利用二次根式的除法法则计算得到结果,即可做出判断. 解答:解:A 、原式=2b ,错误;B 、原式=27x 6,错误;C 、原式=a 7,正确;D 、原式=,错误, 故选C点评:此题考查了整式的除法,同底数幂的乘法,幂的乘方与积的乘方,以及二次根式的乘除法,熟练掌握运算法则是解本题的关键.9.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( ). (A )60° (B )72° (C )90° (D )108°考点:多边形内角与外角.分析:首先设此多边形为n 边形,根据题意得:180(n ﹣2)=540,即可求得n=5,再再由多边形的外角和等于360°,即可求得答案.解答:解:设此多边形为n 边形, 根据题意得:180(n ﹣2)=540, 解得:n=5,图4图 6图∴这个正多边形的每一个外角等于:=72°.故选B .点评:此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n ﹣2)•180°,外角和等于360°.10.如图5,已知经过原点的抛物线)0(2≠++=a c bx ax y 的对称轴是直线1-=x 下列结论中:①0>ab ,②0>++c b a ,③当002<<<-y x 时,,正确的个数是( ). (A )0个 (B )1个 (C )2个 (D )3个考点:二次函数图象与系数的关系.分析:①由抛物线的开口向上,对称轴在y 轴左侧,判断a ,b 与0的关系,得到•ab >0;故①错误; ②由x=1时,得到y=a+b+c >0;故②正确;③根据对称轴和抛物线与x 轴的一个交点,得到另一个交点,然后根据图象确定答案即可. 解答:解:①∵抛物线的开口向上, ∴a >0,∵对称轴在y 轴的左侧, ∴b >0∴•ab >0;故①正确;②∵观察图象知;当x=1时y=a+b+c >0, ∴②正确;③∵抛物线的对称轴为x=﹣1,与x 轴交于(0,0), ∴另一个交点为(﹣2,0),∴当﹣2<x <0时,y <0;故③正确; 故选D .点评:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.11.如图6,AB 是⊙O 的直径,AB=8,点M 在⊙O 上,∠MAB=20°,N 是弧MB 的中点,P 是直径AB 上的一动点,若MN=1,则△PMN 周长的最小值为( ). (A )4 (B )5 (C )6 (D )7考点:轴对称-最短路线问题;圆周角定理.分析:作N 关于AB 的对称点N′,连接MN′,NN′,ON′,ON ,由两点之间线段最短可知MN′与AB 的交点P′即为△PMN 周长的最小时的点,根据N 是弧MB 的中点可知∠A=∠NOB=∠MON=20°,故可得出∠MON′=60°,故△MON′为等边三角形,由此可得出结论.解答:解:作N 关于AB 的对称点N′,连接MN′,NN′,ON′,ON . ∵N 关于AB 的对称点N′,∴MN′与AB 的交点P′即为△PMN 周长的最小时的点, ∵N 是弧MB 的中点,∴∠A=∠NOB=∠MON=20°, ∴∠MON′=60°,∴△MON′为等边三角形,∴MN′=OM=4,∴△PMN 周长的最小值为4+1=5. 故选B .点评:本题考查的是轴对称﹣最短路径问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.12.对于两个不相等的实数a 、b ,我们规定符号Max{a ,b}表示a 、b 中的较大值,如:Max{2,4}=4,按照这个规定,方程{}xx x x Max 12,+=-的解为( ).(A )21- (B )22- (C )2121-+或 (D )121-+或 考点:解分式方程. 专题:新定义.分析:根据x 与﹣x 的大小关系,取x 与﹣x 中的最大值化简所求方程,求出解即可.解答:解:当x <﹣x ,即x <0时,所求方程变形得:﹣x=,去分母得:x 2+2x+1=0,即x=﹣1;当x >﹣x ,即x >0时,所求方程变形得:x=,即x 2﹣2x=1,解得:x=1+或x=1﹣(舍去),经检验x=﹣1与x=1+都为分式方程的解. 故选D .点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.第II 卷(非选择题,共84分)二、填空题(本大题共6小题,每小题3分,共18分)13.因式分解:=+ay ax .考点:因式分解-提公因式法. 专题:因式分解.分析:观察等式的右边,提取公因式a 即可求得答案. 解答:解:ax+ay=a (x+y ). 故答案为:a (x+y ).点评:此题考查了提取公因式法分解因式.解题的关键是注意找准公因式.14.要使分式11-x 有意义,则字母x 的取值范围是 . 考点:分式有意义的条件.分析:分式有意义,分母不等于零.yA B图7 解答:解:依题意得 x ﹣1≠0,即x≠1时,分式有意义.故答案是:x≠1.点评:本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念: (1)分式无意义⇔分母为零; (2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.15.一个不透明的口袋中有5个完全相同的小球,把它们分别标号为1,2,3,4,5,随机提取一个小球,则取出的小球标号是奇数的概率是 .考点:概率公式.分析:首先判断出1,2,3,4,5中的奇数有哪些;然后根据概率公式,用奇数的数量除以5,求出取出的小球标号是奇数的概率是多少即可.解答:解:∵1,2,3,4,5中的奇数有3个:1、3、5,∴取出的小球标号是奇数的概率是:3÷5=. 故答案为:.点评:此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.16.如图7,在正方形ABCD 的外侧,作等边△ADE ,则∠BED 的度数是 .考点:正方形的性质;等边三角形的性质.分析:根据正方形的性质,可得AB 与AD 的关系,∠BAD 的度数,根据等边三角形的性质,可得AE 与AD 的关系,∠AED 的度数,根据等腰三角形的性质,可得∠AEB 与∠ABE 的关系,根据三角形的内角和,可得∠AEB 的度数,根据角的和差,可得答案. 解答:解:∵四边形ABCD 是正方形, ∴AB=AD ,∠BAD=90°. ∵等边三角形ADE ,∴AD=AE ,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°, AB=AE ,∠AEB=∠ABE=(180°﹣∠BAE )÷2=15°, ∠BED=∠DAE ﹣∠AEB=60°﹣15°=45°, 故答案为:45°.点评:本题考查了正方形的性质,先求出∠BAE 的度数,再求出∠AEB ,最后求出答案.17.如图8,点A 在双曲线)0(32>=x xy 上,点B 在双曲线)0(>=x xk y 上(点B 在点A的右侧),且AB//x 轴,若四边形OABC 是菱形,且∠AOC=60°,则k .考点:菱形的性质;反比例函数图象上点的坐标特征.分析:首先根据点A 在双曲线y=(x >0)上,设A 点坐标为(a ,),再利用含30°直角三角形的性质算出OA=2a ,再利用菱形的性质进而得到B 点坐标,即可求出k 的值. 解答:解:因为点A 在双曲线y=(x >0)上,设A 点坐标为(a ,),因为四边形OABC 是菱形,且∠AOC=60°, 所以OA=2a , 可得B 点坐标为(3a ,), 可得:k=,故答案为:点评:此题主要考查了待定系数法求反比例函数,关键是根据菱形的性质求出B 点坐标,即可算出反比例函数解析式.18.如图9,在数轴上,点A 表示1,现将点A 沿x 轴做如下移动,第一次点A 向左移动3 个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,按照这种移动规律移动下去,第n 次移动到点A N ,如果点A N 与原点的距离不小于20,那么n 的最小值是 .考点:规律型:图形的变化类;数轴.分析:序号为奇数的点在点A 的左边,各点所表示的数依次减少3,序号为偶数的点在点A 的右侧,各点所表示的数依次增加3,于是可得到A 13表示的数为﹣17﹣3=﹣20,A 12表示的数为16+3=19,则可判断点A n 与原点的距离不小于20时,n 的最小值是13.解答:解:第一次点A 向左移动3个单位长度至点A 1,则A 1表示的数,1﹣3=﹣2﹣2; 第2次从点A 1向右移动6个单位长度至点A 2,则A 2表示的数为﹣2+6=4; 第3次从点A 2向左移动9个单位长度至点A 3,则A 3表示的数为4﹣9=﹣5; 第4次从点A 3向右移动12个单位长度至点A 4,则A 4表示的数为﹣5+12=7; 第5次从点A 4向左移动15个单位长度至点A 5,则A 5表示的数为7﹣15=﹣8; …;则A 7表示的数为﹣8﹣3=﹣11,A 9表示的数为﹣11﹣3=﹣14,A 11表示的数为﹣14﹣3=﹣17,A 13表示的数为﹣17﹣3=﹣20,图9 图8A 6表示的数为7+3=10,A 8表示的数为10+3=13,A 10表示的数为13+3=16,A 12表示的数为16+3=19, 所以点A n 与原点的距离不小于20,那么n 的最小值是13. 故答案为:13.点评:本题考查了规律型,认真观察、仔细思考,找出点表示的数的变化规律是解决本题的关键.考生注意:第三至第八大题为解答题,要求在答题卡上写出解答过程,如果运算结果含有根号,请保留根号.三、(本大题共2小题,每小题满分6分,共12分)19.计算:445tan 2)1(201520+--+o .考点:实数的运算;零指数幂;特殊角的三角函数值. 专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用乘方的意义化简,第三项利用特殊角的三角函数值计算,最后一项利用算术平方根定义计算即可得到结果. 解答:解:原式=1+1﹣2×1+2 =2.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.先化简,再求值:(1+x )(1-x )+x (x +2)-1,其中x =21.考点:整式的混合运算—化简求值. 专题:计算题.分析:先利用乘法公式展开,再合并得到原式=2x ,然后把x=代入计算即可. 解答:解:原式=1﹣x 2+x 2+2x ﹣1 =2x ,当x=时,原式=2×=1.点评:本题考查了整式的混合运算﹣化简求值:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.四、(本大题共2小题,每小题满分8分,共16分)21.如图10,在平面直角坐标系中,已知∆ABC 的三个顶点的坐标分别为A (-1,1),B (-3,1),C (-1,4).(1)画出△ABC 关于y 轴对称的;(2)将△ABC 绕着点B 顺时针旋转90°后得到△A 2BC 2,请在图中画出△A 2BC 2,并求出线段BC 旋转过程中所扫过的面积(结果保留π).考点:作图-旋转变换;作图-轴对称变换. 专题:作图题.分析:(1)根据题意画出△ABC 关于y 轴对称的△A 1B 1C 1即可;(2)根据题意画出△ABC 绕着点B 顺时针旋转90°后得到△A 2BC 2,线段BC 旋转过程中扫过的面积为扇形BCC 2的面积,求出即可.解答:解:(1)如图所示,画出△ABC 关于y 轴对称的△A 1B 1C 1; (2)如图所示,画出△ABC 绕着点B 顺时针旋转90°后得到△A 2BC 2, 线段BC 旋转过程中所扫过得面积S==.点评:此题考查了作图﹣旋转变换,对称轴变换,以及扇形面积,作出正确的图形是解本题的关键. 22.今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(图11-1)和扇形统计图(图11-2),根据图表中的信息解答下列问题: (1)求全班学生人数和m 的值;(2)直接写出该班学生的中考体育成绩的中位数落在哪个分数段;(3)该班中考体育成绩满分(60分)共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.考点:列表法与树状图法;频数(率)分布表;扇形统计图;中位数.分组 分数段(分) 频数 A 36≤x <41 2 B 41≤x <46 5 C 46≤x <51 15 D 51≤x <56 m E56≤x <6110图 11-2图10图11-1分析:(1)利用C分数段所占比例以及其频数求出总数即可,进而得出m的值;(2)利用中位数的定义得出中位数的位置;(3)利用列表或画树状图列举出所有的可能,再根据概率公式计算即可得解.解答:解:(1)由题意可得:全班学生人数:15÷30%=50(人);m=50﹣2﹣5﹣15﹣10=18(人);(2)∵全班学生人数:50人,∴第25和第26个数据的平均数是中位数,∴中位数落在51﹣56分数段;(3)如图所示:将男生分别标记为A1,A2,女生标记为B1A1A2B1A1(A1,A2)(A1,B1)A2(A2,A1)(A2,B1)B1(B1,A1)(B1,A2)P(一男一女)==.点评:此题主要考查了列表法求概率以及扇形统计图的应用,根据题意利用列表法得出所有情况是解题关键五、(本大题满分8分)23.如图12,在□ABCD中,E、F分别是AB、DC边上的点,且AE=CF,(1)求证:△ADE≌△CBF;(2)若 DEB=90°,求证四边形DEBF是矩形.图12考点:平行四边形的性质;全等三角形的判定与性质;矩形的判定.专题:证明题.分析:(1)由在▱ABCD中,AE=CF,可利用SAS判定△ADE≌△CBF.(2)由在▱ABCD中,且AE=CF,利用一组对边平行且相等的四边形是平行四边形,可证得四边形DEBF是平行四边形,又由∠DEB=90°,可证得四边形DEBF是矩形.解答:证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS).(2)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AE=CF,∴BE=DF,∴四边形ABCD是平行四边形,∵∠DEB=90°,∴四边形DEBF 是矩形.点评:此题考查了平行四边形的判定与性质、矩形的判定以及全等三角形的判定与性质.注意有一个角是直角的平行四边形是矩形,首先证得四边形ABCD 是平行四边形是关键.六、(本大题满分10分)24.如图13-1,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a 米.(1)用含a 的式子表示花圃的面积;(2)如果通道所占面积是整个长方形空地面积的83,求出此时通道的宽;(3)已知某园林公司修建通道、花圃的造价1y (元)、2y (元)与修建面积)(2m x 之间的函数关系如图13-2所示,如果学校决定由该公司承建此项目,并要求修建的通道的宽度不少于2米且不超过10米,那么通道宽为多少时,修建的通道和花圃的总造价最低,最低总造价为多少元?考点:一次函数的应用;一元二次方程的应用.分析:(1)用含a 的式子先表示出花圃的长和宽后利用其矩形面积公式列出式子即可;(2)根据通道所占面积是整个长方形空地面积的,列出方程进行计算即可;(3)根据图象,设出通道和花圃的解析式,用待定系数法求解,再根据实际问题写出自变量的取值范围即可.解答:解:(1)由图可知,花圃的面积为(40﹣2a )(60﹣2a );(2)由已知可列式:60×40﹣(40﹣2a )(60﹣2a )=×60×40,解以上式子可得:a 1=5,a 2=45(舍去),答:所以通道的宽为5米;(3)设修建的道路和花圃的总造价为y ,由已知得y 1=40x ,y 2=,则y=y 1+y 2=;图13-2图13-1x 花圃=(40﹣2a )(60﹣2a )=4a 2﹣200a+2400;x 通道=60×40﹣(40﹣2a )(60﹣2a )=﹣4a 2+200a ,当2≤a≤10,800≤x 花圃≤,384≤x 通道≤1600,∴384≤x≤,所以当x 取384时,y 有最小值,最小值为2040,即总造价最低为23040元,当x=383时,即通道的面积为384时,有﹣4a 2+200a=384,解得a 1=2,a 2=48(舍去),所以当通道宽为2米时,修建的通道和花圃的总造价最低为23040元.点评:本题考查了一次函数的应用以及一元二次方程的应用,解题的关键是表示出花圃的长和宽. 七、(本大题满分10分)25.如图14,AB 是⊙O 的直径,C 、G 是⊙O 上两点,且AC = CG ,过点C 的直线CD ⊥BG 于点D ,交BA 的延长线于点E ,连接BC ,交OD 于点F.(1)求证:CD 是⊙O 的切线.(2)若32=FD OF ,求∠E 的度数.(3)连接AD ,在(2)的条件下,若CD=3,求AD 的长. 考点:圆的综合题.分析:(1)如图1,连接OC ,AC ,CG ,由圆周角定理得到∠ABC=∠CBG ,根据同圆的半径相等得到OC=OB ,于是得到∠OCB=∠OBC ,等量代换得到∠OCB=∠CBG ,根据平行线的判定得到OC ∥BG ,即可得到结论;(2)由OC ∥BD ,得到△OCF ∽△BDF ,△EOC ∽△EBD ,得到,,根据直角三角形的性质即可得到结论;(3)如图2,过A 作AH ⊥DE 于H ,解直角三角形得到BD=3,DE=3,BE=6,在R t △DAH 中,AD===. 解答:(1)证明:如图1,连接OC ,AC ,CG ,∵AC=CG ,∴,∴∠ABC=∠CBG ,∵OC=OB ,∴∠OCB=∠OBC ,∴∠OCB=∠CBG ,∴OC ∥BG ,∵CD ⊥BG ,∴OC ⊥CD ,∴CD 是⊙O 的切线;(2)解:∵OC ∥BD ,∴△OCF ∽△BDF ,△EOC ∽△EBD ,∴,图14∴,∵OA=OB ,∴AE=OA=OB ,∴OC=OE ,∵∠ECO=90°,∴∠E=30°;(3)解:如图2,过A 作AH ⊥DE 于H ,∵∠E=30°∴∠EBD=60°,∴∠CBD=EBD=30°,∵CD=,∴BD=3,DE=3,BE=6,∴AE=BE=2,∴AH=1,∴EH=,∴DH=2, 在R t △DAH 中,AD===.点评:本题考查了切线的判定和性质,锐角三角函数,勾股定理相似三角形的判定和性质,圆周角定理,正确的作出辅助线是解题的关键.八、(本小题满分10分)26.在平面直角坐标系中,已知A 、B 是抛物线)0(2>=a ax y 上两个不同的点,其中A 在第二象限,B 在第一象限.(1)如图15-1所示,当直线AB 与x 轴平行,∠AOB=90°,且AB=2时,求此抛物线的解析式和A 、B 两点的横坐标的乘积.(2)如图15-2所示,在(1)所求得的抛物线上,当直线AB 与x 轴不平行,∠AOB 仍为90°时,A 、B 两点的横坐标的乘积是否为常数?如果是,请给予证明;如果不是,请说明理由.(3)在(2)的条件下,若直线22--=x y 分别交直线AB ,轴于点P 、C ,直线AB 交y 轴于点D ,且∠BPC=∠OCP ,求点P 的坐标.考点:二次函数综合题.分析:(1)如图1,由AB 与x 轴平行,根据抛物线的对称性有AE=BE=1,由于∠AOB=90°,得到OE=AB=1,求出A (﹣1,1)、B (1,1),把x=1时,y=1代入y=ax 2得:a=1得到抛物线的解析式y=x 2,A 、B 两点的横坐标的乘积为x A •x B =﹣1(2)如图2,过A 作AM ⊥x 轴于M ,BN ⊥x 轴于N 得到∠AMO=∠BNO=90°,证出△AMO ∽△BON ,得到OM•ON=AM•BN ,设A (x A ,y A ),B (x B ,y B ),由于A (x A ,y A ),B (x B ,y B )在y=x 2图象上,得到y A =,y B =,即可得到结论;(3)设A (m ,m 2),B (n ,n 2).作辅助线,证明△AEO ∽△OFB ,得到mn=﹣1.再联立直线m :y=kx+b 与抛物线y=x 2的解析式,由根与系数关系得到:mn=﹣b ,所以b=1;由此得到OD 、CD 的长度,从而得到PD 的长度;作辅助线,构造Rt △PDG ,由勾股定理求出点P 的坐标.解答:解:(1)如图1,∵AB 与x 轴平行,根据抛物线的对称性有AE=BE=1,∵∠AOB=90°,∴OE=AB=1,∴A (﹣1,1)、B (1,1),把x=1时,y=1代入y=ax 2得:a=1,∴抛物线的解析式y=x 2,A 、B 两点的横坐标的乘积为x A •x B =﹣1(2)x A •x B =﹣1为常数,图15-1 图15-2如图2,过A作AM⊥x轴于M,BN⊥x轴于N,∴∠AMO=∠BNO=90°,∴∠MAO+∠AOM=∠AOM+∠BON=90°,∴∠MAO=∠BON,∴△AMO∽△BON,∴,∴OM•ON=AM•BN,设A(x A,y A),B(x B,y B),∵A(x A,y A),B(x B,y B)在y=x2图象上,∴,y A=,y B=,∴﹣x A•x B=y A•y B=•,∴x A•x B=﹣1为常数;(3)设A(m,m2),B(n,n2),如图3所示,过点A、B分别作x轴的垂线,垂足为E、F,则易证△AEO∽△OFB.∴,即,整理得:mn(mn+1)=0,∵mn≠0,∴mn+1=0,即mn=﹣1.设直线AB的解析式为y=kx+b,联立,得:x2﹣kx﹣b=0.∵m,n是方程的两个根,∴mn=﹣b.∴b=1.∵直线AB与y轴交于点D,则OD=1.易知C(0,﹣2),OC=2,∴CD=OC+OD=3.∵∠BPC=∠OCP,∴PD=CD=3.设P(a,﹣2a﹣2),过点P作PG⊥y轴于点G,则PG=﹣a,GD=OG﹣OD=﹣2a﹣3.在Rt△PDG中,由勾股定理得:PG2+GD2=PD2,即:(﹣a)2+(﹣2a﹣3)2=32,整理得:5a2+12a=0,解得a=0(舍去)或a=﹣,当a=﹣时,﹣2a﹣2=,∴P(﹣,).点评:本题考查了二次函数与一次函数的图象与性质、等腰直角三角形的性质,勾股定理、相似三角形的判定和性质、一元二次方程等知识点,有一定的难度.第(3)问中,注意根与系数关系的应用.。
2003年全国中考数学压轴题精选11、(2003年安徽省) (本题满分14分)如图,这些等腰三角形与正三角形的形状有差异,我们把这与正三角形的接近程度称为“正度”。
在研究“正度”时,应保证相似三角形的“正度”相等。
设等腰三角形的底和腰分别为a 、b ,底角和顶角分别为α、β。
要求“正度”的值是非负数。
同学甲认为:可用式子|a -b |来表示“正度”,|a -b |的值越小,表示等腰三角形越接近正三角形;同学乙认为:可用式子|α-β|来表示“正度”,|α-β|的值越小,表示等腰三角形越接近正三角形。
探究:(1)他们的方案哪个较合理,为什么?(2)对你认为不够合理的方案,请加以改进(给出式子即可); (3)请再给出一种衡量“正度”的表达式β ααb b第24题图(2003年安徽省)附加题:(共两小题,每小题10分,共20分)报考理科实验班的学生必做,不考理科实验班的学生不做)1、要将29个数学竞赛的名额分配给10所学校,每所学校至少要分到一个名额。
(1)试提出一种分配方案,使得分到相同名额的学校少于4所; (2)证明:不管怎样分配,至少有3所学校得到的名额相同;(3)证明:如果分到相同名额的学校少于4所,则29名选手至少有5名来自同一学校。
如图12所示,已知A、B两点的坐标分别为(28,0)和(0,28),动点P从A点开始在线段AO上以每秒3个长度单位的速度向原点O运动。
动直线EF从x轴开始以每秒1个长度单位的速度向上平行移动(即EF∥x轴),并且分别与y轴、线段AB交于E、F点。
连结EP,设动点P与动直线EF同时出发,运动时间为t秒。
(1)当t=1秒时,求梯形OPFE的面积。
t为何值时,梯形OPFE的面积最大,最大面积是多少?(2)当梯形OPFE的面积等于三角形APF的面积时.求线段PF的长;(3)设t的值分别取1t、2t时(1t≠2t),所对应的三角形分别为△AF1P1和△AF2P2。
试判断这两个三角形是否相似,请证明你的判断。
南宁往年中考数学试卷真题一、选择题1. 设集合 A={1, 2, 3, 4},则集合 B = {x | x = 2^n, n∈A} 中元素个数为()。
A. 4B. 3C. 2D. 12. 菱形 ABCD 中,点 E 为 AB 边上的动点,且 AE = EB = 7cm。
动点 E 向 CD 边上动,且每动 1cm,使 DE 上升 2cm,若当 E 到达 CD 中点 M 时,ME 的最大值为 a cm,则 a 的值为()。
A. 2B. 3C. 4D. 53. 15 位不同的整数中,最大数减去最小数,最多是多少?A. 14B. 15C. 16D. 174. 已知函数 f(x) 的定义域为 R,对于任意 x∈R,定义 f(x-2)=x^2-4x+4,则 f(x) 的值域为()。
A. {y | y≥0}B. {y | y>0}C. {y | y≥-1}D. {y | y≥-2}5. 下列计算式的结果为 2/59 的是()。
A. (1-1)(1+1)(1+1)B. (1-1)(1-1)(1+1)C. (1+1)(1+1)(1-1)D.(1+1)(1-1)(1-1)二、填空题1. 若 a:b=2:3,b:c=4:5,则 a:b:c=()。
2. 若 1+2+3+...+100=n(n+1)/2,则 n 的值为()。
3. 设已知平方根√3 约等于1.732,且 (1-√3)^2=a+b√3,则 a+b=()。
三、解答题1. 某公司2020年1月1日的资产总额为800万元,2020年12月31日的资产总额是1000万元,请计算该公司2020年的年均资产增长率。
(结果保留两位小数)2. 下图中,如∠BAC < 90°,则 x 的最小值为多少?A————B| || |D————C题解:选择题:1. 选 B,集合 B 中的元素为 [2^1, 2^2, 2^3, 2^4],即 B = {2, 4, 8, 16},共有 4 个元素。
广西南宁市历年中考数学试卷(1)一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)﹣2的相反数是()A.﹣2B.0C.2D.42.(3分)把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A.B.C.D.3.(3分)据《南国早报》报道:2016年广西高考报名人数约为332000人,创历史新高,其中数据332000用科学记数法表示为()A.0.332×106B.3.32×105C.3.32×104D.33.2×104 4.(3分)已知正比例函数y=3x的图象经过点(1,m),则m的值为()A.B.3C.﹣D.﹣35.(3分)某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分6.(3分)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米7.(3分)下列运算正确的是()A.a2﹣a=a B.ax+ay=axy C.m2•m4=m6D.(y3)2=y58.(3分)下列各曲线中表示y是x的函数的是()A.B.C.D.9.(3分)如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE =40°,则∠P的度数为()A.140°B.70°C.60°D.40°10.(3分)超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90B.0.08x﹣10=90C.90﹣0.8x=10D.x﹣0.8x﹣10=9011.(3分)有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2C.2:3D.4:912.(3分)二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0B.等于0C.小于0D.不能确定二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)若二次根式有意义,则x的取值范围是.14.(3分)如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=.15.(3分)分解因式:a2﹣9=.16.(3分)如图,在4×4正方形网格中,有3个小正方形已经涂黑,若再涂黑任意一个白色的小正方形(每一个白色的小正方形被涂黑的可能性相同),使新构成的黑色部分的图形是轴对称图形的概率是.17.(3分)如图所示,反比例函数y=(k≠0,x>0)的图象经过矩形OABC的对角线AC的中点D.若矩形OABC的面积为8,则k的值为.18.(3分)观察下列等式:在上述数字宝塔中,从上往下数,2016在第层.三、解答题(本大题共8小题,共66分)19.(6分)计算:|﹣2|+4cos30°﹣()﹣1+.20.(6分)解不等式组,并把解集在数轴上表示出来.21.(8分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B (4,0),C(4,﹣4)(1)请画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在y轴右侧画出△A2B2C2,并求出∠A2C2B2的正弦值.22.(8分)在“书香八桂,阅读圆梦”读书活动中,某中学设置了书法、国学诵读、演讲、征文四个比赛项目(每人只参加一个项目),九(2)班全班同学都参加了比赛,该班班长为了了解本班同学参加各项比赛的情况,收集整理数据后,绘制以下不完整的折线统计图(图1)和扇形统计图(图2),根据图表中的信息解答下列各题:(1)请求出九(2)全班人数;(2)请把折线统计图补充完整;(3)南南和宁宁参加了比赛,请用“列表法”或“画树状图法”求出他们参加的比赛项目相同的概率.23.(8分)如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=10,CD=8,求BE的长.24.(10分)在南宁市地铁1号线某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的.(1)求乙队单独完成这项工程需要多少天?(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a 关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍?25.(10分)已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.26.(10分)如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.。
2019年广西南宁市中考数学试卷一、选择题(本大题共 12小题,毎小题 3分,共36分,在毎小题给出的四个选项中只有一项是符合要求的)A .打开电视机,正在播放新闻C .买一张电影票,座位号是奇数号D .掷一枚质地均匀的硬币,正面朝上(3分)如果温度上升 2C 记作+2 C, 那么温度下降3C 记作( ) A. +2 CB. - 2CC. +3 °CD . - 3C2.(3分)如图,将下面的平面图形绕直线l 旋转一周,得到的立体图形是(3.—B .C .D . IB •任意画一个三角形,其内角和是1804.(3分)2019年6月6日,南宁市地铁 3号线举行通车仪式,预计地铁 3号线开通 后日均客流量为700000人次,其中数据 700000用科学记数法表示为(4A . 70 X 10 5B. 7X 10 6C . 7X 10 6D . 0.7 X 10 5. (3分)将一副三角板按如图所示的位置摆放在直尺上,则/ 1的度数为()A . (3分)下列事件为必然事件的是(6.( 3分)下列运算正确的是( )3、22 6A . ( ab ) = a bD. ( a+1) 2= a 2+17.( 3分)如图,在△ ABC 中,AC = BC ,Z A = 40°,观察图中尺规作图的痕迹,可 知/ BCG 的度数为( ) A . 40° B . 45°C . 50 °D . 60 °&( 3分)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴 和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰 好选择同一场馆的概率是()10 . ( 3分)扬帆中学有一块长 30m ,宽20m 的矩形空地,计划在这块空地上划出四 分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为 xm ,则可列方程为()B . 65C . 75D 85B . 2a+3b = 5abC . 5a 2 - 3a 2= 2 9. (3 分)若点(—1 , y i ),( 2, y 2), 象上,贝【J y i , y 2, y 3的大小关系是( A . y i > y 2> y 3 B . y 3> y 2> y i(3, y 3)在反比例函数y -(k v 0)的图 )C . y i > y 3> y 2D . y 2> y 3> y iA . ( 30 - x)( 20 - x) - 20X 30B .( 30 - 2x )( 20 - x ) 20 X 302 214.( 3分)因式分解:3ax - 3ay =C . 30x+2 X 20x -20X 30(30- 2x ) ( 20 - x )20X 3011.( 3分)小菁同学在数学实践活动课中测量路灯的高度•如图,已知她的目高AB为1.5米,她先站在A 处看路灯顶端O 的仰角为35°,再往前走3米站在C 处,看 路灯顶端O 的仰角为65°,则路灯顶端 O 到地面的距离约为(已知 sin35°~ 0.6, cos35°~ 0.8, tan35 °~ 0.7, sin65 °~ 0.9 , cos65°~ 0.4, tan65-2.1)( )严胃.4CA . 3.2 米B . 3.9 米C . 4.7 米 5.4米12.( 3分)如图,AB 为O O 的直径,BC 、CD 是O O 的切线,切点分别为点 B 、D ,点E 为线段OB 上的一个动点,连接OD , CE , DE ,已知 AB = 2 : BC = 2,当 CE+DE 的值最小时, 则一的值为(C .二、填空题(本大题共 6小题,每嗯题3分,共18分)13.( 3分)若二次根式有意义, 则x 的取值范围是15.(3分)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8, 9, 6, 10,6•甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是_____ •(填“甲”或“乙”)16. (3分)如图,在菱形ABCD中,对角线AC, BD交于点0,过点A作AH丄BC于点H,已知B0 = 4 , S菱形ABCD = 24,则AH = _________________ .17. (3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB =1尺(1尺=10寸),则该圆材的直径为 _________寸.18. (3 分)如图,AB 与CD 相交于点O, AB= CD,/ AOC = 60 ° ,Z ACD + Z ABD=210°,则线段AB, AC, BD之间的等量关系式为__________ .三、解答题共(本大题共8小题,共66分,解答应写岀文字说明,证明过程或演算步骤)2 — 219. (6 分)计算:(-1)+ () -(- 9)+ (- 6)* 2.<20. (6分)解不等式组:,并利用数轴确定不等式组的解集.第5页(共473页)-5 -4 -3 -2 -1 0 1 2 3 4(8分)如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标分别是 A (2, -1),B( 1,- 2), C (3, - 3)(1) 将厶ABC向上平移4个单位长度得到厶A i B i C i,请画出厶A i B i C i;(2) 请画出与厶ABC关于y轴对称的厶A2B2C2;22. ( 8分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共io题,每题io分•现分别从三个班中各随机取io名同学的成绩(单位: 分),收集数据如下:i 班:90, 70, 80, 80, 80, 80, 80, 90, 80, i00;2 班:70, 80, 80, 80, 60, 90, 90, 90, i00, 90;3 班:90, 60, 70, 80, 80, 80, 80, 90, i00, i00整理数据:分数人数班级60708090i00i班0i62i2i.(3)请写出A i、A2的坐标.2班113a13班11422分析数据:平均数中位数众数1班8380802班83c d3班b8080根据以上信息回答下列问题:(1)请直接写出表格中a, b, c, d的值;(2 )比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好? 请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?23. (8分)如图,△ ABC是O O的内接三角形,AB为O O直径,AB= 6, AD平分/BAC,交BC于点E,交O O于点D,连接BD .(1)求证:/ BAD = Z CBD ;的长(结果保留n)求24. (10分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具•已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面•设购买国旗图案贴纸a 袋(a为正整数),则购买小红旗多少袋能恰好配套?请用含a的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠•学校按(2)中的配套方案购买,共支付w元,求w关于a的函数关系式.现全校有1200 名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?25. ( 10分)如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A, B不重合),连接CE,过点B作BF丄CE于点G,交AD于点F.(1)求证:△ ABFBCE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC = DG;(3)如图3,在(2)的条件下,过点C作CM丄DG于点H,分别交AD , BF于点E S A E $関3M , N,求一的值.26. ( 10分)如果抛物线C1的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C1上时,那么我们称抛物线C1与C2 “互为关联”的抛物线.如图1,已知抛物线C1:y1 -x2+x 与C2:y2= ax2+x+c是“互为关联"的拋物线,点A, B分别是抛物线C1, C2的顶点,抛物线C2经过点D (6,- 1).(1)直接写出A, B的坐标和抛物线C2的解析式;(2)抛物线C2上是否存在点E,使得△ ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;(3)如图2,点F (- 6, 3)在抛物线C1上,点M , N分别是抛物线C1, C2上的动点,且点M , N的横坐标相同,记△ AFM面积为Si (当点M与点A, F重合时Si=0),A ABN的面积为Q察图象,当y i< y2时,写出(当点N与点A, B重合时,S2= 0),令S= S1+S2,观x的取值范围,并求出在此范围内S的最大值.2019年广西南宁市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,毎小题3分,共36分,在毎小题给出的四个选项中只有一项是符合要求的)1. (3分)如果温度上升2C记作+2 C,那么温度下降3C记作()A . +2°CB . - 2C C. +3 °CD . - 3C【解答】解:上升2C记作+2C,下降3C记作-3C;故选:D.2. (3分)如图,将下面的平面图形绕直线l 旋转一周,得到的立体图形是()【解答】解:面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱,那么所求的图形是下面是圆锥,上面是圆柱的组合图形.故选:D.3. (3分)下列事件为必然事件的是()A .打开电视机,正在播放新闻B •任意画一个三角形,其内角和是180°C.买一张电影票,座位号是奇数号D .掷一枚质地均匀的硬币,正面朝上【解答】解:T A, C, D选项为不确定事件,即随机事件,故不符合题意.二一定发生的事件只有B,任意画一个三角形,其内角和是180 °,是必然事件, 符合题意.故选:B.4. (3分)2019年6月6日,南宁市地铁3号线举行通车仪式,预计地铁3号线开通后日均客流量为700000人次,其中数据700000用科学记数法表示为()" “ “4 5 6 6A . 70X 10B . 7X 10 C. 7X 10 D . 0.7 X 105【解答】解:700000 = 7X 105;故选:B.3、 2 2 6A . ( ab ) = a bB . 2a+3b = 5ab 2 2C . 5a - 3a = 22 2D .( a+1) 2= a 2+1【解答】解:2a+3b 不能合并同类项, B 错误;5a 2- 3a 2= 2a 2, C 错误;2 2(a+1) = a +2a+1 , D 错误; 故选:A . 7.( 3分)如图,在△ ABC 中,AC = BC ,Z A = 40°,观察图中尺规作图的痕迹,可 知/ BCG 的度数为()5.(3分)将一副三角板按如图所示的位置摆放在直尺上,则/1的度数为()6. 【解答】解:如图:•••7 BCA = 60°,7•••上 2= 180°- ••• HF II BC ,故选:C .C .75°D . 85DCE = 45°,-45°= 75°,(3分)下列运算正确的是( 65OA. 40°B. 45°C. 50° D . 60【解答】解:由作法得CG丄AB,••• AC = BC,•••CG 平分/ ACB,Z A=Z B,vZ ACB = 180°- 40°- 40°= 100••丄 BCG -Z ACB= 50°.故选:C.&(3分)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A . -B . - C. - D .-【解答】解:画树状图为:(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)B CZK /N /1\A B C ABC A B C共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为 3, 所以两人恰好选择同一场馆的概率故选:A .象上,贝【J y i ,y 2, y 3的大小关系是( )【解答】解:T k v 0,.•.在每个象限内,y 随x 值的增大而增大, •••当 x =— i 时,y i >0, •/ 2v 3, 二 y 2v y 3v y i 故选:C .i0.( 3分)扬帆中学有一块长 30m ,宽20m 的矩形空地,计划在这块空地上划出四 分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为 xm ,则可列方程为()A . ( 30 — x )( 20 — x) - 20X 30B . ( 30 — 2x )( 20 — x )一 20 X 309.( 3分)若点(-1 , y i ) (2, y 2), (3, y 3)在反比例函数y - (k v 0)的图A . y i >y 2>y 3B . y 3>y 2>y iC . y i >y 3>y 2D . y 2> y 3> y iC . 30x+2 X 20x 一20X 30D .( 30 - 2x) ( 20 - x) 20X 30【解答】解:设花带的宽度为xm,贝【J可列方程为(30 - 2x) ( 20 - x) - 20 X 30, 故选:D.11. ( 3分)小菁同学在数学实践活动课中测量路灯的高度•如图,已知她的目高AB 为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端0的仰角为65°,则路灯顶端0到地面的距离约为(已知sin35°〜0.6, cos35°~ 0.8, tan35 °~ 0.7, sin65°~ 0.9 , cos65°~ 0.4, tan65°~ 2.1)( ) OJ A/ fA CA . 3.2 米B . 3.9米C. 4.7 米 D . 5.4 米【解答】解:过点O作OE丄AC于点F,延长BD交OE于点F ,设DF = x,••• tan 65°OF = xtan65°,BF = 3+x,••• tan 35°•OF =( 3+x) tan35°,• 2.1x= 0.7 (3+x),•- x= 1.5,•OF = 1.5X 2.1 = 3.15,/ / I•OE= 3.15+1.5 = 4.65, 故选:C.A C E12. (3分)如图,AB为O O的直径,BC、CD是O O的切线,切点分别为点B、D , 点E为线段0B上的一个动点,连接0D, CE, DE,已知AB= 2 : BC= 2,当CE+DE的值最小时,则一的值为()A . —B . - C. — D .【解答】解:延长CB到F使得BF= BC,贝V C与F关于0B对称,连接DF与0B相交于点E,此时CE+DE = DF值最小,贝y OC 丄BD , OC••• OB?BC = OC?BG,••• BD = 2BG••• OD2- OH2= DH2= BD2- BH2,第19页(共473页)••• BH••• DH II BF,故选:A.二、填空题(本大题共6小题,每嗯题3分,共18分)13. ( 3分)若二次根式有意义,则x的取值范围是X》-4 .【解答】解:x+4> 0,• x>- 4;故答案为x >- 4;2 214. ( 3 分)因式分解:3ax2-2 2 2 2【解答】解:3ax - 3ay = 3a (x - y )= 3a (x+y)( x- y).故答案为:3a (x+y)( x- y)15. ( 3分)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9, 8, 9, 6, 10, 6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是甲.(填“甲”或“乙”)【解答】解:甲的平均数—-(9+8+9+6+10+6 ) = 8,所以甲的方差-[(9- 8) 2+ (8 - 8) 2+ ( 9- 8)2+ ( 6 -8) 2+ (10- 8) 2+ (6 - 8) 2]-,因为甲的方差比乙的方差小,所以甲的成绩比较稳定.3ay2= 3a (x+y)( x-y) .16. (3分)如图,在菱形ABCD中,对角线AC, BD交于点0,过点A作AH丄BC 于点H,已知B0 = 4 , S菱形ABCD = 24,则AH =—.【解答】解:•••四边形ABCD是菱形,••• B0= DO = 4, A0= CO, AC丄BD ,BD = 8,T S菱形ABCD -AC X BD = 24,•• AC = 6,•OC -AC= 3,•BC 5,T S 菱形ABCD = BC X AH = 24 ,• AH故答案为:一.17. (3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB =1尺(1尺=10寸),则该圆材的直径为26寸.故答案为甲.第21页(共473页)【解答】解:设O O的半径为r•在Rt A ADO 中,AD = 5, OD = r - 1, OA= r,则有r2= 52+ (r - 1) 2,解得r = 13,O O的直径为26寸,故答案为:26 •◎18. ( 3 分)如图,AB 与CD 相交于点O,AB= CD,/ AOC = 60 ° ,Z ACD + Z ABD =210°,则线段AB, AC, BD之间的等量关系式为AB2= AC2+BD2.【解答】解:过点A作AE II CD,截取AE = CD,连接BE、DE,如图所示:则四边形ACDE是平行四边形,••• DE = AC,Z ACD = Z AED ,T Z AOC = 60°, AB = CD ,•Z EAB= 60°, CD = AE = AB,•△ ABE为等边三角形,•BE = AB,第22页(共473页)T Z ACD + Z ABD = 210°,•Z AED + Z ABD = 210°,•Z BDE = 360°-(Z AED + Z ABD) -Z EAB= 360°- 210°- 60 ° = 90°,第23页(共473页)第24页(共473页)222• • BE = DE + BD ,222• AB = AC +BD ;共66分,解答应写岀文字说明,证明过程或演算步19.( 6分)计算:(- 1)2)-(-9) + (- 6) 一 2. 【解答】解:(-1) _)2-(- 9) + (- 6)- 2=1+6+9 - 3 =13.20.( 6分)解不等式组: ,并利用数轴确定不等式组的解集.骤)第25页(共473页)故答案为: AB 2=AC 2+BD 2.21. ( 8分)如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标分别是 A (2,-1), B (1 , - 2), C (3, - 3)(1) 将厶ABC 向上平移4个单位长度得到厶A 1B 1C 1,请画出厶A 1B 1C 1; (2) 请画出与厶ABC 关于y 轴对称的厶A 2B 2C 2; (3) 请写出A 1、A 2的坐标.【解答】解:(1)如图所示:△ A i B i C i ,即为所求;(2)如图所示:△ A 2B 2C 2,即为所求;(3) A i (2, 3), A 2 (- 2,- 1)解①得x < 3,解得x >- 2 , 所以不等式组的解集-5 -4 *3 -2 *1 0 1 2 3 4 5第26页(共473页)22. ( 8分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分•现分别从三个班中各随机取10名同学的成绩(单位: 分),收集数据如下:1 班:90, 70, 80, 80, 80, 80, 80, 90, 80, 100;2 班:70, 80, 80, 80, 60, 90, 90, 90, 100, 90;3 班:90, 60, 70, 80, 80, 80, 80, 90, 100, 100整理数据:根据以上信息回答下列问题:(1)请直接写出表格中a, b, c, d的值;(2 )比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好? 请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?【解答】解:(1)由题意知a = 4,第21页(共473页)b —(90+60+70+80+80+80+80+90+100+100 )= 83,2班成绩重新排列为60, 70, 80, 80, 80, 90, 90, 90, 90, 100,二 c --------- 85, d= 90;(2)从平均数上看三个班都一样;从中位数看,1班和3班一样是80, 2班最高是85;从众数上看,1班和3班都是80, 2班是90;综上所述,2班成绩比较好;(3)570 —76 (张),答:估计需要准备76张奖状.23. (8分)如图,△ ABC是O O的内接三角形,AB为O O直径,AB= 6, AD平分/BAC,交BC于点E,交O O于点D,连接BD .(1)求证:/ BAD = Z CBD ;/•Z CAD = Z BAD,vZ CAD = Z CBD,•••Z BAD = Z CBD ;第28页(共473页)(2)解:连接OD,vZ AEB= 125°,••上AEC = 55°,v AB为O O直径,•Z ACE = 90°,•Z CAE = 35°,•Z DAB = Z CAE= 35°•Z BOD = 2 Z BAD = 70的长24. ( 10分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具•已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面•设购买国旗图案贴纸a袋(a为正整数),则购买小红旗多少袋能恰好配套?请用含a的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠•学校按(2)中的配套方案购买,共支付w元,求w关于a的函数关系式.现全校有1200 名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?第21页(共473页)【解答】解:(1)设每袋国旗图案贴纸为x元,则有一解得x= 15,经检验x= 15时方程的解,•••每袋小红旗为15+5 = 20元;答:每袋国旗图案贴纸为15元,每袋小红旗为20元;(2)设购买b袋小红旗恰好与a袋贴纸配套,则有50a: 20b= 2:1,解得b -a,答:购买小红旗-a袋恰好配套;(3)如果没有折扣,则W= 15a+20 -a= 40a,依题意得40a w 800,解得a w 20,当a>20 时,贝V W= 800+0.8 (40a- 800)= 32a+160,即W ,,,>国旗贴纸需要:1200 X 2= 2400张,小红旗需要:1200 X 1 = 1200面,则a ——48袋,b - 60袋,总费用W= 32 X 48+160 = 1696 元.25. ( 10分)如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF丄CE于点G,交AD于点F.(1)求证:△ ABFBCE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC = DG;(3)如图3,在(2)的条件下,过点C作CM丄DG于点H,分别交AD , BF于点M , N,求——的值.第30页(共473页)D C U ______________ C r D ______________ C匮11 関3【解答】(1)证明:T BF丄CE,••上 CGB = 90°,/•Z GCB+Z CBG = 90,•••四边形ABCD是正方形,•Z CBE = 90°=Z A, BC= AB,•Z FBA+ Z CBG = 90,•Z GCB = Z FBA,•△ ABF BCE (ASA);(2)证明:如图2,过点D作DH丄CE于H ,设AB = CD = BC= 2a,•••点E是AB的中点,•EA = EB -AB = a,•CE a,在Rt A CEB中,根据面积相等,得BG?CE= CB?EB,•BG —a,•CG —a,T Z DCE + Z BCE= 90°,Z CBF+ Z BCE = 90 ° ,• Z DCE = Z CBF,•••CD = BC,Z CQD = Z CGB= 90•••△CQD ◎△ BGC (AAS),CQ= BG a,•GQ = CG - CQ —a= CQ,•DQ = DQ,上 CQD = Z GQD = 90•△DGQ ◎△ CDQ (SAS),•CD = GD;(3)解:如图3,过点D作DQ丄CE于Q,S A CDG -?DQ?CH -CH?DG,•- CH ---------- —a,在Rt A CHD 中,CD = 2a,•DH -a,•Z MDH + Z HDC = 90°,/ HCD + Z HDC = 90 .•Z MDH =Z HCD ,•△CHD sA DHM ,•HM —a,在Rt A CHG 中,CG ——a, CH -a,•GH - a,第24页(共473页)•Z MGH+ Z CGH = 90°,Z HCG + Z CGH = 90•••/ QGH =Z HCG , •••△ QGH s\GCH ,•-——,•HN ——-a,•MN = HM - HN —a.D C26. ( 10分)如果抛物线C i的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C i上时,那么我们称抛物线C i与C2 “互为关联”的抛物线•如图1,已知抛物线C i:y i -x2+x 与C2:y2= ax2+x+c是“互为关联"的拋物线,点A, B分别是抛物线C i, C2的顶点,抛物线C2经过点D (6,- i).(i)直接写出A, B的坐标和抛物线C2的解析式;(2)抛物线C2上是否存在点E,使得△ ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;(3)如图2,点F (- 6, 3)在抛物线C i上,点M , N分别是抛物线C i, C2上的动点,且点M , N的横坐标相同,记△ AFM面积为Si (当点M与点A, F重合时Si =0),厶ABN的面积为Q (当点N与点A,B重合时,S2= 0),令S= S+S2,观察图象,当y i< y2时,写出x的取值范围,并求出在此范围内S的最大值.匮II【解答】解:由抛物线C i: y i -x2+x可得A (- 2,- 1), 将A (- 2,- 1), D (6,- 1)代入y2= ax2+x+c得,解得一,二y2 - x+2,二 B (2, 3);(2)易得直线AB的解析式:y= x+1,①若B为直角顶点,BE丄AB, k BE?k AB=- 1,二k BE=- 1 ,直线BE解析式为y=- x+5联立解得x = 2, y= 3或x= 6, y=- 1,二 E (6,- 1);若A为直角顶点,AE丄AB,同理得AE 解析式:y =- x - 3,联立 ,解得 x =— 2, y =— 1 或 x = 10, y =— 13, 二 E (10,— 13);2③若E 为直角顶点,设 E (m , -m+m+2)由 AE 丄 BE 得 k BE ?k AE =— 1,解得m = 2或-2 (不符合题意舍去),•••点 E 的坐标二 E (6, — 1 )或 E (10, — 13);(3)v y 1< y 2,则 Q (- ,- ),Si -QM?|y F — y A |设AB 交MN 于点P ,易知P (t , t+1), S 2 -PN?|X A - X B |设 M (t,-),N (t,-),且-2<t w 2,易求直线AF 的解析式:y =- x — 3, 过M 作x 轴的平行线MQ 交AF 于Q ,=2 —S= S i+S2= 4t+8,当t= 2时,S的最大值为16.2018年广西南宁市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
南宁中考数学试题及答案今年南宁市中考数学试题涵盖了多个知识点,包括代数、几何、概率等。
考试题目难度适中,要求考生综合运用所学知识解决实际问题。
以下是南宁中考数学试题及答案的详细内容:一、选择题1. 设函数 f(x) = 3x^2 + 2x - 5,则 f(2) = ?A. 9B. 14C. 17D. 192. 一条直线上有三个点 A(-3, 2)、B(1, -4)、C(5, -10),则这三个点是否共线?A. 是B. 否3. 设集合 A = {x | -3 ≤ x ≤ 3},集合 B = {y | y = 2x + 1},则A ∩ B = ?A. {-3, 3}B. {-1, 1}C. {-2, 2}D. {-∞, +∞}4. 甲、乙两人摇掷一颗骰子,同时进行。
甲的目标是出现奇数点数,乙的目标是出现偶数点数。
则两人获胜的概率之和为?A. 1/3B. 2/3C. 5/9D. 7/9二、填空题1. 已知直线 y = 2x + 3,点 P(1, 5) 在直线上,求直线上另一个点的坐标。
2. 南宁市某中学学生身高数据如下:140, 145, 150, 155, 160, 165, 170, 175, 180。
求学生身高的平均数。
三、解答题1. 已知平行四边形 ABCD 中,边 AD 的长度为 6cm,且通过点 M 在 BD 上作线段 MN,使得 AM:AD = 2:1。
求线段 MN 的长度。
解答步骤:根据平行四边形的性质,平行四边形的对角线互相平分。
所以,由题意可知线段 BM 的长度为 6cm。
根据 AM:AD = 2:1 可以推出 AM 的长度为 4cm。
根据 BM:BN = AM:AD,可以得出 BN = 2cm。
由此可知线段 MN 的长度为 4cm + 2cm = 6cm。
2. 有一圆的半径为4cm,一只苍蝇从圆的某一点出发,每秒沿着圆的边缘随机行走1cm的距离。
当苍蝇的路径第一次围绕圆一周回到起点时,求苍蝇行走的总路径长度。
中考数学试卷一、选择题(本大题共12小题,每题3分,共36分。
在每题给出的四个选项中只有一项是切合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑。
)1.(分)﹣3的倒数是()A.﹣3B.3 C.﹣D.【剖析】依据倒数的定义可得﹣3的倒数是﹣.【解答】解:﹣3的倒数是﹣.应选:C.【评论】主要考察倒数的观点及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(分)以下漂亮的壮锦图案是中心对称图形的是()A.B.C.D.【剖析】依据把一个图形绕某一点旋转180°,假如旋转后的图形能够与本来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【解答】解:A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;应选:A.【评论】本题主要考察了中心对称图形,重点是掌握中心对称图形的定义.3.(分)2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行,该球场可容纳81000名观众,此中数据81000用科学记数法表示为()A.81×103B.×104C.×105D.×105【剖析】科学记数法的表示形式为a×10n的形式,此中1≤|a|<10,n为整数.确立n的值时,要看把原数变为a时,小数点挪动了多少位,n的绝对值与小数点挪动的位数同样.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.第1页共19页【解答】解:81000用科学记数法表示为×104,应选:B.【评论】本题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,此中1≤|a|<10,n为整数,表示时重点要正确确立a的值以及n的值.4.(分)某球员参加一场篮球竞赛,竞赛分4节进行,该球员每节得分如折线统计图所示,则该球员均匀每节得分为()A.7分B.8分C.9分D.10分【剖析】依据均匀分的定义即可判断;【解答】解:该球员均匀每节得分==8,应选:B.【评论】本题考察折线统计图、均匀数的定义等知识,解题的重点是理解题意,掌握均匀数的定义;5.(分)以下运算正确的选项是()A.a(a+1)=a2+1B.(a2)3=a5C.3a2+a=4a3D.a5÷a2=a3【剖析】依据单项式乘多项式、归并同类项、同底数幂的除法以及幂的乘方的运算法例,分别对每一项进行剖析即可得出答案.【解答】解:A、a(a+1)=a2+a,故本选项错误;B、(a2)3=a6,故本选项错误;C、不是同类项不可以归并,故本选项错误;D、a5÷a2=a3,故本选项正确.应选:D.【评论】本题考察了单项式乘多项式、归并同类项、同底数幂的除法以及幂的乘方,娴熟掌握运算法例是解题的重点.第2页共19页6.(分)如图,∠ACD是△ABC的外角,CE均分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°【剖析】依据三角形外角性质求出∠ACD,依据角均分线定义求出即可.【解答】解:∵∠A=60°,∠B=40°,∴∠ACD=∠A+∠B=100°,∵CE均分∠ACD,∴∠ECD=∠ACD=50°,应选:C.【评论】本题考察了角均分线定义和三角形外角性质,能熟记三角形外角性质的内容是解本题的重点.7.(分)若m>n,则以下不等式正确的选项是()A.m﹣2<n﹣2B.C.6m<6nD.﹣8m>﹣8n 【剖析】将原不等式两边分别都减2、都除以4、都乘以6、都乘以﹣8,依据不等式得基天性质逐个判断即可得.【解答】解:A、将m>n两边都减2得:m﹣2>n﹣2,此选项错误;B、将m>n两边都除以4得:>,此选项正确;C、将m>n两边都乘以6得:6m>6n,此选项错误;D、将m>n两边都乘以﹣8,得:﹣8m<﹣8n,此选项错误;应选:B.【评论】本题主要考察不等式的性质,解题的重点是掌握不等式的基天性质,特别是性质不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.8.(分)从﹣2,﹣1,2这三个数中任取两个不一样的数相乘,积为正数的概率是()A.B.C.D.第3页共19页【剖析】第一依据题意列出表格,而后由表格即可求得全部等可能的结果与积为正数的状况,再利用概率公式求解即可求得答案.【解答】解:列表以下:积﹣﹣212﹣24﹣2﹣2﹣﹣42由表可知,共有6种等可能结果,此中积为正数的有2种结果,因此积为正数的概率为=,应选:C.【评论】本题考察的是用列表法或画树状图法求概率.列表法或画树状图法能够不重复不遗漏的列出全部可能的结果,合适于两步达成的事件;树状图法合适两步或两步以上达成的事件;注意概率=所讨状况数与总状况数之比..(分)将抛物线y=x2﹣6x+21向左平移2个单位后,获得新抛物线的分析式为()9A.y=(x﹣8)2+5B.y=(x﹣4)2+5C.y=(x﹣8)2+3D.y=(x﹣4)2+3【剖析】直接利用配方法将原式变形,从而利用平移规律得出答案.【解答】解:y=x2﹣6x+21(x2﹣12x)+21[(x﹣6)2﹣36]+21(x﹣6)2+3,故y=(x﹣6)2+3,向左平移2个单位后,获得新抛物线的分析式为:y=(x﹣4)2+3.应选:D.第4页共19页【评论】本题主要考察了二次函数图象与几何变换,正确配方将原式变形是解题重点.10.(分)如图,分别以等边三角形ABC的三个极点为圆心,以边长为半径画弧,获得的关闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即暗影部分面积)为()A.B.C.2D.2【剖析】莱洛三角形的面积是由三块同样的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【解答】解:过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面积为=,S扇形BAC==π,∴莱洛三角形的面积S=3×π﹣2×=2π﹣2,应选:D.【评论】本题考察了等边三角形的性质好扇形的面积计算,能依据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解本题的重点.11.(分)某栽种基地2016年蔬菜产量为80吨,估计2018年蔬菜产量达到100吨,求蔬菜产量的年均匀增添率,设蔬菜产量的年均匀增添率为x,则可列方程为()A.80(1+x)2=100B.100(1﹣x)2=80 C.80(1+2x)=100D.80(1+x2)=100【剖析】利用增添后的量=增添前的量×(1+增添率),设均匀每次增添的百分率为x,依据“从第5页共19页80吨增添到100吨”,即可得出方程.【解答】解:由题意知,蔬菜产量的年均匀增添率为x,依据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,估计2018年蔬菜产量达到100吨,即:80(1+x)(1+x)=100或80(1+x)2=100.应选:A.【评论】本题考察了一元二次方程的应用(增添率问题).解题的重点在于理清题目的含义,找到2017年和2018年的产量的代数式,依据条件找准等量关系式,列出方程.12.(分)如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则cos∠ADF的值为()A.B.C.D.【剖析】依据折叠的性质可得出DC=DE、CP=EP,由∠EOF=∠BOP、∠B=∠E、OP=OF可得出△OEF≌△OBP(AAS),依据全等三角形的性质可得出OE=OB、EF=BP,设EF=x,则BP=x、DF=4﹣x、BF=PC=3﹣x,从而可得出AF=1+x,在Rt△DAF中,利用勾股定理可求出x的值,再利用余弦的定义即可求出cos∠ADF的值.【解答】解:依据折叠,可知:△DCP≌△DEP,∴DC=DE=4,CP=EP.在△OEF和△OBP中,,∴△OEF≌△OBP(AAS),∴OE=OB,EF=BP.EF=x,则BP=x,DF=DE﹣EF=4﹣x,又∵BF=OB+OF=OE+OP=PE=PC,PC=BC﹣BP=3﹣x,∴AF=AB﹣BF=1+x.在Rt△DAF中,AF2+AD2=DF2,即(1+x)2+32=(4﹣x)2,第6页共19页解得:x=,∴DF=4﹣x=,∴cos∠ADF==.应选:C.【评论】本题考察了全等三角形的判断与性质、勾股定理以及解直角三角形,利用勾股定理联合AF=1+x,求出AF的长度是解题的重点.二、填空题(本大题共6小题,每题3分,共18分)13.(分)要使二次根式在实数范围内存心义,则实数x的取值范围是x≥5.【剖析】依据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣5≥0,解得x≥5.故答案为:x≥5.【评论】本题考察的知识点为:二次根式的被开方数是非负数.14.(分)因式分解:2a2﹣2= 2(a+1)(a﹣1).【剖析】原式提取2,再利用平方差公式分解即可.【解答】解:原式=2(a2﹣1)=2(a+1)(a﹣1).故答案为:2(a+1)(a﹣1).【评论】本题考察了提公因式法与公式法的综合运用,娴熟掌握运算法例是解本题的重点.∴15.(分)已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是4.【剖析】先依据众数的定义求出x=5,再依据中位数的定义求解可得.【解答】解:∵数据6,x,3,3,5,1的众数是3和5,x=5,第7页共19页数据1、3、3、5、5、6,∴数据=4,故答案:4.【点】本主要考众数和中位数,解的关是掌握众数和中位数的定.16.(分)如,从甲楼底部A得乙楼部C的仰角是30°,从甲楼部B得乙楼底部D的俯角是45°,已知甲楼的高AB是120m,乙楼的高CD是40m(果保存根号)【剖析】利用等腰直角三角形的性得出AB=AD,再利用角三角函数关系得出答案.【解答】解:由意可得:∠BDA=45°,AB=AD=120m,又∵∠CAD=30°,∴在Rt△ADC中,tan∠CDA=tan30°==,解得:CD=40(m),故答案:40.【点】此主要考认识直角三角形的用,正确得出tan∠CDA=tan30°=是解关.17.(分)察以下等式:30=1,31=3,32=9,33=27,34=81,35=243,⋯,依据此中律可得30+31+32+⋯+32018的果的个位数字是3.【剖析】第一得出尾数化律,而得出30+31+32+⋯+32018的果的个位数字.【解答】解:∵30=1,31=3,32=9,33=27,34=81,35=243,⋯,∴个位数4个数一循,∴(2018+1)÷4=504余3,第8页共19页∴1+3+9=13,∴30+31+32+⋯+32018的果的个位数字是:3.故答案:3.【点】此主要考了尾数特点,正确得出尾数化律是解关.18.(分)如,矩形ABCD的点A,B在x上,且对于y称,反比率函数y= x>0)的象点C,反比率函数y=(x<0)的象分与AD,CD交于点E,F,若S△BEF=7,k1+3k2=0,k1等于9.【剖析】出点A坐,依据函数关系式分表示各点坐,依据割法表示△BEF的面,结构方程.【解答】解:点B的坐(a,0),A点坐(a,0)由象可知,点C(a,),E(a,),D(a,),F(,)矩形ABCD面:2a? =2k1∴S△DEF=S△BCF=S△ABE=∵S△BEF=7∴2k1++k1=7①k1+3k2=0∴k2=k1代入①式得第9页共19页解得k1=9故答案为:9【评论】本题是反比率函数综合题,解题重点是设出点坐标表示有关各点,应用面积法结构方程.三、解答题(本大题共8小题,共66分,解答题因写出文字说明、证明过程或演算步骤)19.(分)计算:|﹣4|+3tan60﹣°﹣()﹣1【剖析】直接利用特别角的三角函数值以及二次根式的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=4+3﹣2﹣2+2.【评论】本题主要考察了实数运算,正确化简各数是解题重点.20.(分)解分式方程:﹣1=.【剖析】依据解分式方程的步骤:①去分母;②求出整式方程的解;③查验;④得出结论挨次计算可得.【解答】解:两边都乘以3(x﹣1),得:3x﹣3(x﹣1)=2x,解得:,查验:时,3(x﹣1)≠0,因此分式方程的解为.【评论】本题主要考察解分式方程,解题的重点是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③查验;④得出结论.21.(分)如图,在平面直角坐标系中,已知△ABC的三个极点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后获得△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后获得△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为极点的三角形的形状.(不必说明原因)第10页共19页【剖析】(1)利用点平移的坐标特点写出A1、B1、C1的坐标,而后描点即可获得△A1B1C1为所作;(2)利用网格特定和旋转的性质画出A、B、C的对应点A2、B2、C2,从而获得△A2B2C2,(3)依据勾股定理逆定理解答即可.【解答】解:(1)以下图,△A1B1C1即为所求:(2)以下图,△A222即为所求:BC(3)三角形的形状为等腰直角三角形,OB=OA1,1B=,=A即因此三角形的形状为等腰直角三角形.【评论】本题考察了作图﹣旋转变换:依据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此能够经过作相等的角,在角的边上截取相等的线段的方法,找到对应点,按序连结得出旋转后的图形.22.(分)某市将展开以“走进中国数学史”为主题的知识凳赛活动,红树林学校正本校100名参加选拔赛的同学的成绩按A,B,C,D四个等级进行统计,绘制成以下不完好的统计表第11页共19页和扇形统计图:成绩等级频数(人数)频次A4BmCnD共计1001(1)求m= 51,n=30;(2)在扇形统计图中,求“C等级”所对应心角的度数;(3)成绩等级为A的4名同学中有1名男生和3名女生,现从中随机精选2名同学代表学校参加全市竞赛,请用树状图法或许列表法求出恰巧选中“1男1女”的概率.【剖析】(1)由A的人数和其所占的百分比即可求出总人数,由此即可解决问题;(2)由总人数求出C等级人数,依据其占被检查人数的百分比可求出其所对应扇形的圆心角的度数;(3)列表得出全部等可能的状况数,找出恰巧抽到一男一女的状况数,即可求出所求的概率;【解答】解:(1)参加本次竞赛的学生有:4÷0.04=100(人);×100=51(人),D组人数=100×15%=15(人),n=100﹣4﹣51﹣15=30(人)故答案为51,30;(2)B等级的学生共有:50﹣4﹣20﹣8﹣2=16(人).∴所占的百分比为:16÷50=32%∴C等级所对应扇形的圆心角度数为:360°×30%=108°.(3)列表以下:男女1女2女3第12页共19页男﹣﹣﹣(女,男)(女,男)(女,男)女1(男,女)﹣﹣﹣(女,女)(女,女)女2(男,女)(女,女)﹣﹣﹣(女,女)女3(男,女)(女,女)(女,女)﹣﹣﹣∵共有12种等可能的结果,选中1名男生和1名女生结果的有6种.∴P(选中1名男生和1名女生)==.【评论】本题考察了列表法与树状图法,用到的知识点为:概率=所讨状况数与总状况数之比.23.(分)如图,在?ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:?ABCD是菱形;(2)若AB=5,AC=6,求?ABCD的面积.【剖析】(1)利用全等三角形的性质证明AB=AD即可解决问题;(2)连结BD交AC于O,利用勾股定理求出对角线的长即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°,∵BE=DF,∴△AEB≌△AFD∴AB=AD,∴四边形ABCD是平行四边形.(2)连结BD交AC于O.∵四边形ABCD是菱形,AC=6,∴AC⊥BD,AO=OC= AC=×6=3,∵AB=5,AO=3,第13页共19页∴BO===4,∴BD=2BO=8,∴S平行四边形ABCD=×AC×BD=24.【评论】本题考察菱形的判断和性质、勾股定理、全等三角形的判断和性质等知识,解题的重点是正确找寻全等三角形解决问题,属于中考常考题型.24.(分)某企业在甲、乙库房共寄存某种原料450吨,假如运出甲库房所存原料的60%,乙库房所存原料的40%,那么乙库房节余的原料比甲库房节余的原料多30吨.(1)求甲、乙两库房各寄存原料多少吨?(2)现企业需将300吨原料运往工厂,从甲、乙两个库房到工厂的运价分别为120元/吨和100元/吨.经磋商,从甲库房到工厂的运价可优惠a元吨(10≤a≤30),从乙库房到工厂的运价不变,设从甲库房运m吨原想到工厂,恳求出总运费W对于m的函数分析式(不要求写出m的取值范围);(3)在(2)的条件下,请依据函数的性质说明:跟着m的增大,W的变化状况.【剖析】(1)依据甲乙两库房原料间的关系,可得方程组;(2)依据甲的运费与乙的运费,可得函数关系式;(3)依据一次函数的性质,要分类议论,可得答案.【解答】解:(1)设甲库房寄存原料 x吨,乙库房寄存原料y吨,由题意,得,解得,甲库房寄存原料240吨,乙库房寄存原料210吨;(2)由题意,从甲库房运m吨原想到工厂,则从乙库房云原料(300﹣m)吨到工厂,总运费W=(120﹣a)m+100(300﹣m)=(20﹣a)m+30000;(3)①当10≤a<20时,20﹣a>0,由一次函数的性质,得W随m的增大而增大,②当a=20是,20﹣a=0,W随m的增大没变化;③当20≤a≤30时,则20﹣a<0,W随m的增大而减小.第14页共19页【评论】本题考察了二元一次方程组及一次函数的性质,解(1)的重点是利用等量关系列出二元一次方程组,解(2)的重点是利用运费间的关系得出函数分析式;解(3)的重点是利用一次函数的性质,要分类议论.25.(分)如图,△ABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB订交于点E,过点E作EF⊥BC,垂足为F,延伸CD交GB的延伸线于点P,连结BD.(1)求证:PG与⊙O相切;(2)若=,求的值;(3)在(2)的条件下,若⊙O的半径为8,PD=OD,求OE的长.【剖析】(1)要证PG与⊙O相切只要证明∠OBG=90°,由∠A与∠BDC是同弧所对圆周角且∠BDC=∠DBO可得∠CBG=∠DBO,联合∠DBO+∠OBC=90°即可得证;(2)求需将BE与OC或OC相等线段放入两三角形中,经过相像求解可得,作OM⊥AC、连结OA,证△BEF∽△OAM得=,由AM=AC、OA=OC 知=,联合=即可得;(3)Rt△DBC中求得BC=8、∠DCB=30°,在Rt△EFC中设EF=x,知EC=2x、FC=x、BF=8 ﹣x,既而在Rt△BEF中利用勾股定理求出x的,从而得出答案.【解答】解:(1)如图,连结OB,则OB=OD,∴∠BDC=∠DBO,∵∠BAC=∠BDC、∠BDC=∠GBC,第15页共19页∴∠GBC=∠BDC,∵CD是⊙O的切线,∴∠DBO+∠OBC=90°,∴∠GBC+∠OBC=90°,∴∠GBO=90°,∴PG与⊙O相切;(2)过点O作OM⊥AC于点M,连结OA,则∠AOM=∠COM=∠AOC,=,∴∠ABC=∠AOC,又∵∠EFB=∠OGA=90°,∴△BEF∽△OAM,∴=,∵AM=AC,OA=OC,∴=,又∵=,=2×=2×=;(3)∵PD=OD,∠PBO=90°,∴BD=OD=8,在Rt△DBC中,BC==8,又∵OD=OB,∴△DOB是等边三角形,∴∠DOB=60°,∵∠DOB=∠OBC+∠OCB,OB=OC,∴∠OCB=30°,第16页共19页=,=,∴可设EF=x,则EC=2x、FC= x,∴BF=8﹣x,Rt△BEF中,BE2=EF2+BF2,∴100=x2+(8﹣x)2,解得:x=6±,∵6+>8,舍去,x=6﹣,EC=12﹣2,∴OE=8﹣(12﹣2)=2﹣4.【评论】本题主要考察圆的综合问题,解题的重点是掌握圆周角定理、圆心角定理、相像三角形的判断与性质、直角三角形的性质等知识点.26.(分)如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,此中A(﹣3,0),C (0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连结MN,AM,AN.(1)求抛物线的分析式及点D的坐标;(2)当△CMN是直角三角形时,求点M的坐标;(3)试求出AM+AN的最小值.【剖析】(1)利用待定系数法求抛物线分析式;利用等腰三角形的性质得B(3,0),而后计算自变量为3所对应的二次函数值可获得D点坐标;(2)利用勾股定理计算出BC=5,设M(0,m),则BN=4﹣m,CN=5﹣(4﹣m)=m+1,由于∠MCN=∠OCB,依据相像三角形的判断方法,当=时,△CMN∽△COB,于是有∠CMN=∠COB=90°,即=;当=时,△CMN∽△CBO,于是有第17页共19页∠CNM=∠COB=90°,即=,而后分别求出m的值即可获得M点的坐标;(3)连结DN,AD,如图,先证明△ACM≌△DBN,则AM=DN,因此AM+AN=DN+AN,利用三角形三边的关系获得DN+AN≥AD(当且仅当点A、N、D共线时取等号),而后计算出AD即可.【解答】解:(1)把A(﹣3,0),C(0,4)代入y=ax2﹣5ax+c得,解得,∴抛物线分析式为 y=﹣x2+ x+4;∵AC=BC,CO⊥AB,∴OB=OA=3,∴B(3,0),∵BD⊥x轴交抛物线于点D,∴D点的横坐标为3,x=3时,y=﹣×9+×3+4=5,∴D点坐标为(3,5);(2)在Rt△OBC中,BC=== 5,M(0,m),则BN=4﹣m,CN=5﹣(4﹣m)=m+1,∵∠MCN=∠OCB,∴当=时,△CMN∽△COB,则∠CMN=∠COB=90°,即=,解得m=,此时M点坐标为(0,);当=时,△CMN∽△CBO,则∠CNM=∠COB=90°,即=,解得m=,此时M点坐标为(0,);综上所述,M点的坐标为(0,)或(0,);(3)连结DN,AD,如图,∵AC=BC,CO⊥AB,∴OC均分∠ACB,∴∠ACO=∠BCO,∵BD∥OC,第18页共19页∴∠BCO=∠DBC,∵DB=BC=AC=5,CM=BN,∴△ACM≌△DBN,∴AM=DN,∴AM+AN=DN+AN,而DN+AN≥AD(当且仅当点A、N、D共线时取等号),∴DN+AN的最小值==,∴AM+AN的最小值为.【评论】本题考察了二次函数的综合题:娴熟掌握二次函数图象上点的坐标特点、二次函数的性质和相像三角形的判断与性质;会利用待定系数法求函数分析式;理解坐标与图形性质;会运用分类议论的思想解决数学识题.第19页共19页。
ABDC图22010年广西南宁市中等学校招生考试数学试题数 学本试卷分第Ⅰ卷和第Ⅱ卷,满分120分,考试时间120分钟.注意:答案一律填写在答题卷上,在试题卷上作答无效..........考试结束,将本试卷和答题卷一并交回.第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为(A )、(B )、(C )、(D)四个结论,其中只有一个是正确的.请考生用2B 铅笔在答题卷上将选定的答案标号涂黑. 1.下列所给的数中,是无理数的是: (A)2 (B)2 (C)12(D)0.1 2.下图所示的几何体中,主视图与左视图不相同的几何体是:3.下列计算结果正确的是: (A)257+=(B)3223-=(C)2510⨯= (D)25105= 4.图1中,每个小正方形的边长为1,ABC V 的三边a ,b ,c 的大小关系是: (A)a<c<b (B)a<b <c (C)c<a<b (D)c<b<a5.有“华南第一湖”美称的青狮潭,风光秀丽,气候宜人,2010年6月第一周每天的最高气温(单位:℃)分别是:23,24,23,24,x ,25,25,这周的平均最高气温为24°,则这组数据的众数是:(A)23 (B)24 (C)24.5 (D)25 6.不等式组24,241x x x x +⎧⎨+<-⎩≤的正整数解有:(A)1个 (B)2个 (C)3个 (D)4个 7.如图2所示,在Rt ABC △中,90A ∠=°,BD 平分ABC ∠,交AC 于点D ,且4,5AB BD ==,则点D 到BC 的距离是:圆锥 圆柱 球 正三棱柱 (A )(B )(C )(D )图3(A)3 (B)4 (C)5 (D)6 8.下列二次三项式是完全平方式的是:(A)2816x x -- (B)2816x x ++ (C)2416x x -- (D)2416x x ++ 9.将分式方程()523111x x x x +-=++去分母,整理后得:(A)810x += (B)830x -= (C)2720x x -+= (D)2720x x --=10.如图3,从地面坚直向上抛出一个小球,小球的高度h (单位:m )与小球运动时间t (单位:s )之间的关系式为2305h t t =-,那么小球从抛出至回落到地面所需要的时间是:(A)6s (B)4s (C)3s (D)2s11.一个质地均匀的正方体骰子的六个面上分别刻有1到6的点数.将骰子抛掷两次,掷第一次,将朝上一面的点数记为x ,掷第二次,将朝上一面的点数记为y ,则点(x y ,)落在直线5y x =-+上的概率为:(A)118 (B)112 (C )19 (D)41 12.正方形ABCD 、正方形BEFG 和正方形RKPF 的位置如图4所示,点G 在线段DK 上,正方形BEFG 的边长为4,则DEK △的面积为:(A)10 (B)12 (C)14 (D)16第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每小题3分,共18分)13.当x =__________时,分式21x -没有意义. 14.如图5所示,直线a 、b 被c 、d 所截,且c a ⊥,c b ⊥,170∠=°,则2∠=_________°.15.2010年上海世博会中国国家馆,采用极富中国建筑文化元素的红色“斗冠”造型,建筑面积46500m 2,高69m ,表现出“东方之冠,鼎盛中华,天下粮仓,富庶百姓”的中国文化精神与气质,将数46500用科学记数法表示为__________.ad21b图5cDABRP F CGK图4EAB图6CE ODE1A 2A 3B2B1B3C2C 1C Oxy3A图716.如图6,AB 为半圆O 的直径,OC AB OD ⊥,平分BOC ∠,交半圆于点D ,AD 交OC 于点E ,则AEO ∠的度数是____________°.17.如图7所示,点1A 、2A 、3A 在x 轴上,且11223OA A A A A ==,分别过点1A 、2A 、3A 作y 轴的平行线,与反比例函数()80y x x=>的图象分别交于点1B 、2B 、3B ,分别过点1B ,2B ,3B 作x 轴的平行线,分别与y 轴交于点1C ,2C ,3C ,连接1OB ,2OB ,3OB ,那么图中阴影部分的面积之和为___________. 18.古希腊数学家把数1,3,6,10,15,21……叫做三角形数,它有一定的规律性.若把第一个三角形数记为1a ,第二个三角形数记为2a ,……,第n 个三角形数记为n a ,计算213243a a a a a a ---,,,……,由此推算,10099a a -=____________,100a =__________.考生注意:第三至第八大题为解答题,要求在答题卷上写出解答过程.如果运算含有根号,请保留根号.三、(本大题共2小题,每小题满分6分,共12分) 19.计算:()()()011π20103tan 60---+--°+2.20.先化简,再求值:()()()322484a b a b ab a b ab +-+-÷,其中a =2,1b =. 四、(本大题共2小题,每小题满分8分,共16分)21.某厂房屋顶呈人字架形(等腰三角形),如图8所示,已知8AC BC ==m ,30A ∠=°,CD AB ⊥,于点D .(1)求ACB ∠的大小. (2)求AB 的长度.22.2010年世界杯足球赛在南非举行.赛前某足球俱乐部组织了一次竞猜活动,就哪一支球队将在本届世界杯足球赛中夺冠进行竞猜,并绘制了两幅不完整的统计图(如图9-①和9-②所示).请你根据图中提供的信息,解答下列问题: (1)求出参加这次竞猜的总人数;(2)请你在图9-①中补全频数分布直方图,在图9-②中分别把“阿根廷队”和“巴西队”所对应的扇形图表示出来.ACD图8B五、(本大题满分8分)23.如图10,已知ABC ADE Rt △≌Rt △,90ABC ADE ∠=∠=°,BC 与DE 相交于点F ,连接CD ,EB .(1)图中还有几对全等三角形,请你一一列举. (2)求证:.CF EF =六、(本大题满分10分)24.2010年1月1日,全球第三大自贸区——中国——东盟自由贸易区正式成立,标志着该贸易区开始步入“零关税”时代.广西某民营边贸公司要把240吨白砂糖运往东盟某国的A 、B 两地,现用大、小两种货车共20辆,恰好能一次性装完这批白砂糖.已知这两种货车的载重量分别为15吨/辆和10吨/辆,运往A 地的运费为:大车630元/辆,小车420元/辆;运往B 地的运费为:大车750元/辆,小车550元/辆. (1)求这两种货车各用多少辆;(2)如果安排10辆货车前往A 地,某余货车前往B 地,且运往A 地的白砂糖不少于115吨.请你设计出使总运费最少的货车调配方案,并求出最少总运费. 七、(本大题满分10分)25.如图11-①,AB 为⊙O 的直径,AD 与⊙O 相切于点A DE ,与⊙O 相切于点E ,点C 为DE 延长线上一点,且.CE CB = (1)求证:BC 为⊙O 的切线;(2)连接AE ,AE 的延长线与BC 的延长线交于点(如图11-②所示).若2AB AD ==,求线段BC 和EG 的长.ACEBDF图10B图11-②GAC图11-①BAC八、(本大题满分10分)26.如图12,把抛物线2y x =-(虚线部分)向右平移1个单位长度,再向上平移1个单位长度,得到抛物线1l ,抛物线2l 与抛物线1l 关于y 轴对称.点A 、O 、B 分别是抛物线1l 、2l 与x 轴的交点,D 、C 分别是抛物线1l 、2l 的顶点,线段CD 交y 轴于点E .(1)分别写出抛物线1l 与2l 的解析式;(2)设P 是抛物线1l 上与D 、O 两点不重合的任意一点,Q 点是P 点关于y 轴的对称点,试判断以P 、Q 、C 、D 为顶点的四边形是什么特殊的四边形?说明你的理由.(3)在抛物线1l 上是否存在点M ,使得ABM AOED S S ∆∆=四边形,如果存在,求出M 点的坐标,如果不存在,请说明理由.ACDE BO2l 1l图12y x2010年南宁市中等学校招生考试 数学试题参考答案及评分标准二、填空题(本大题共6小题,每小题3分,共18分) 13.1 14.70 15.44.6510⨯ 16.67.5 17.49918.100(1分) 5050(2分) 三、(本大题共2小题,每小题满分6分,共12分)19.解:()()()011π201060---+- °+2=1112+……………………………………………………………(4分) =1232-+…………………………………………………………………………(5分)=12-………………………………………………………………………………(6分) 20.解:(1)()()()322484a b a b ab a bab +-+-÷=2222a b b ab -+-……………………………………………………………(3分) =22a ab -………………………………………………………………………(4分) 当2a =,1b =时,原式=22221-⨯⨯…………………………………………………(5分) =44-=0………………………………………………………………(6分)四、(本大题共2小题,每小题满分8分,共16分)21.解:(1)30AC BC A=∠=Q,°,30A B∴∠=∠=°…………………………(1分)180A B ACB∠+∠+∠=Q°…………………………(2分)180ACB A B∴∠=∠-∠°-=180°30-°30-°=120°…………………………(4分)(2)AC BC CD AB=⊥Q,2AB AD∴=………………………………………………………………(5分)在Rt ADC△中,30A AC∠==°,8.cosAD AC A∴=·,………………………………………………………(6分)=8·cos30°=3832⨯=)283mAB AD∴==.…………………………………………………(8分)22.(1)参加这次竞猜的总人数是500人.………………………………………………(2分)(2)补充图①……………………………………………………………………………(4分)补充图②…………………………………………………………………………(8分)五、(本大题满分8分)23.(1)ADC ABE CDF EBF∆∆∆∆≌,≌.…………………………………………(2分)(2)证法一:连接CE…………………………………(3分)Rt ABC ADE∆∆Q≌RtAC AE∴=…………………………………(4分)ACE AEC∴∠=∠ACD BACBDF…………………………………(5分) 又Rt Rt ABC ADE △≌△Q ACB AED ∴∠=∠…………………………………(6分) ACE ACB AEC AED ∴∠-∠=∠-∠即BCE DEC ∠=………………………………………………………………(7分) CF EF ∴=.………………………………………………………………………(8分) 证法二:Rt Rt ABC ADE △≌△Q AC AE AD AB CAB EAD ∴==∠=∠,, CAB DAB EAD DAB ∴∠-∠=∠-∠ 即CAD EAB ∠=……………………(3分) ()ACD AEB SAS ∴△≌△.………………………………(4分) CD EB ADC ABE ∴=∠=∠,………………………………(5分) 又ADE ABC ∠=∠Q CDF EBF ∴∠=∠………………………………(6分) 又DFC BFE ∠=∠Q()CDF EBF AAS ∴△≌△.……………………………………………………(7分) CF EF ∴=.………………………………………………………………………(8分) 证法三:连接AF .………………………………………………………………(3分) Rt Rt ABC ADE △≌△,Q90AB AD BC DE ABC ADE ∴==∠=∠=,,°. 又AF AF =Q .()Rt Rt ABF ADF HL ∴△≌△.……………………………(5分) BF DF ∴=.……………………………(6分) 又BC DE =Q . BC BF DE DF ∴-=-,………………………………(7分) 即CF EF =.……………………………(8分)六、(本大题满分10分)24.解(1)解法一:设大车用x 辆,小车用y 辆.依据题意,得ACBDFACEBDF20x y x y +=⎧⎨⎩,15+10=240.…………………………………………………………………(2分) 解得812x y =⎧⎨=⎩,.∴大车用8辆,小车用12辆.……………………………………………………(4分)解法二:设大车用x 辆,小车用()20x -辆.依题意,得()151020240x x +-=…………………………………………………………(2分)解得8x =.2020812x ∴-=-=.∴大车用8辆,小车用12辆.……………………………………………………(4分) (2)设总运费为W 元,调往A 地的大车a 辆,小车()10a -辆;调往B 地的大车()8a -辆,小车()2a +辆.则……………………………………………………………………(5分)()()()6304201075085502W a a a a =+-+-++,即:1011300W a =+ (0a a ≤≤8,为整数),………………………………(7分) ()151010a a +-Q 115≥.a ∴≥3.………………………………………………………………………………(8分) 又W Q 随a 的增大而增大, ∴当3a =时,W 最小.当3a =时,1031130011330W =⨯+ = .…………………………………………(9分) 因此,应安排3辆大车和7辆小车前往A 地;安排5辆大车和5辆小车前往B 地.最少运费为11 330元.……………………………………………………………………………(10分) 七、(本大题满分10分)25.(1)连接OE OC ,……………………………………………………………………(1分) CB CE OB OE OC OC ===Q ,,, ()OBC OEC SSS ∴△≌△, OBC OEC ∴∠=∠.………………………(2分) 又DE Q 与O ⊙相切于点E , 90OEC ∴∠=°.…………………………(3分) 90OBC ∴∠=°.BC ∴为O ⊙的切线.…………………………(4分) (2)过点D 作DF BC ⊥于点F ,BACAAD DC BG Q ,,分别切O ⊙于点A E B ,,, DA DE CE CB ∴==,. ………………………………(5分)设BC 为x ,则22CF x DC x =-=+,.在Rt DFC △中,()()(22222x x +--=,解得:52x =.…………………………………………………………………………(6分)AD BG Q ∥,DAE EGC ∴∠=∠.DA DE =Q ,DAE AED ∴∠=∠.AED CEG ∠=∠Q , EGC CEG ∴∠=∠, 52CG CE CB ∴===,………………………………………………………………(7分) 5BG ∴=.AG ∴===……………………………………………(8分) 解法一:连接BE ,12ABG ∆=S AB BG AG BE =1··,25∴=,103BE ∴=.…………………………………………………………………………(9分)在Rt BEG △中,EG ===…………………(10分) 解法二:DAE EGC AED CEG ∠=∠∠=∠Q ,,ADE GCE ∴△∽△,…………………………………………………………………(9分)AD AE EGCG EG EG-∴==2,,2.5解得:EG =…………………………………………………………………(10分) 八、(本大题满分10分)26.解:(1)()21:11l y x =--+(或22y x x =-+);………………………………(1分)()22:11l y x =--+(或22y x x =--);………………………………(2分)(2)以P 、Q 、C 、D 为顶点的四边形为矩形或等腰梯形.………………………(3分)理由:Q 点C 与点D ,点P 与点Q 关于y 轴对称,CD PQ x ∴∥∥轴.①当P 点是2l 的对称轴与l 1的交点时,点P 、Q 的坐标分别为(-1,-3)和(1, -3),而点C 、D 的坐标分别为(1-,1)和(1,1),所以CD PQ CP CD =⊥,,四边形CPQD 是矩形.………………………………………………………………………………………(4分) ②当P 点不是2l 的对称轴与1l 的交点时,根据轴对称性质,有:CP DQ =(或CQ DP =),但CD PQ ≠.∴四边形CPQD (或四边形CQPD )是等腰梯形.…………………………………(5分)(3)存在.设满足条件的M 点坐标为()x y ,,连接MA MB AD ,,,依题意得: ()()()20A B E ,,-2,0,0,1,()121322AOED S +⨯==梯形.……………………………………………………………(6分) ①当0y >时,13422ABM S y ∆=⨯⨯=, 34y ∴=.…………………………………………………………………………………(7分) 将34y =代入1l 的解析式,解得:132x =,2x 1=.2 132M ⎛⎫∴ ⎪⎝⎭3,4,212M ⎛⎫ ⎪⎝⎭3,.4……………………………………………………………(8分) ②当0y <时,()13422ABM S y ∆=⨯⨯-=, 34y ∴=-.………………………………………………………………………………(9分) 将34y =-代入1l的解析式,解得:12x =±3M ⎫∴⎪⎪⎝⎭3-4,4M ⎫⎪⎪⎝⎭3-.4……………………………………(10分)。
≥02003年南宁市中等学校招生考试数 学(考试时间:120分钟 满分:120分)一、填空题:(本大题10个小题;每小题2分,共20分) 1.-3与2的大小关系是 .2.分解因式:=-x x 2. 3.在函数1-=x y 中,自变量x 的取值范围是 .4.如图1,已知AB ∥CD ,∠1=∠2 ,若︒=∠501,则∠3 = 度.5.2003年一到四月份,中国财政收入比去年同期增长百分之二十九点九,达到7270亿,用科学记数法表示为: 亿元(保留两个有效数字).6.如图2,已知AB = AC ,EB = EC ,AE 的延长线交BC 于D ,则图中全等的三角形共有 对.7.图3是反比例函数xk y =的图象,那么k 与0的大小关系是k 0.8.已知△ABC ∽△C B A ''',他们的相似比是2∶3,△ABC 的周长为6,则△C B A '''的周长为 .9.如图4,已知P A 是⊙O 的切线,A 是切,PC 是过圆心的一条割线,点B 、C 是它与⊙O 的交点,且P A =8,PB = 4,则⊙O 的半径为 .10.将一张长方形的纸对折,如图5所示可得到一条折痕(图中虚线). 继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到 条折痕 .如果对折n 次,可以得到 条折痕.二、选择题(本大题6个小题,每小题3分,共18分). 每小题都给出代号为(A )、(B )、(C )、(D )的四个结论,其中只有一个是正确的,选择正确结论的代号填在括号内 . 11.二元一次方程组⎩⎨⎧=+-=+522y x y x 的解是……………………………………………………………………( )(A )⎩⎨⎧==61y x (B )⎩⎨⎧=-=41y x (C )⎩⎨⎧=-=23y x (D )⎩⎨⎧==23y x12.下列命题正确的是…………………………………………………………………………………………( )(A )一组对边平行,另一组对边相等的四边形是平行四边形 (B )对角线互相垂直的四边形是菱形 (C )对角线相等的四边形是矩形 (D )一组邻边相等的矩形是正方形 13.已知⊙Q 1和⊙Q 2的半径分别为3cm 和5cm ,两圆的圆心矩是7cm ,则两圆的位置关系是…………( ) (A )内含 (B )外离 (C )外切 (D )相交 14.已知一元二次方程0232=+-a x x 有实数根,则a 的取值范围是……………………………………( ) (A )a ≤31 (B )a <31 (C )a ≤31- (D ) a ≥3115.如图6,已知DE ∥BC ,EF ∥AB ,则下列比例式,错误..的是…………… ( ) (A )AC AE AB AE = (B )FBEA CF CE =(C )BD AD BC DE = (D )CBCF AB EF =16.一条信息可通过如图7的网络线由上(A 点)往下向各站点传送 . 例如信息到b 2点可由经a 1的站点送达,也可由经a 2的站点送达,共有两条途径传达 . 则信息由A 点到达d 3的不同途径共有…………………( ) (A )3条 (B )4条 (C )6条 (D )12条以下为解答题,做解答题的关键在于................注意审题,只要把题目理解清楚了,做.................起来并不难.......三、本大题共4小题,满分24分 .17.(本题满分6分)计算:012)2003(5)21()1(π-÷-+--18.(本题满分6分)化简:)2(2)()2)(2(22xy x y x y x y x --++-+19.(本题满分6分)尺规作图:把右图8(实线部分)补成以虚线l 为对称轴的轴对称图形,你会得到一只美丽蝴蝶的图案。
(不用写作法,保留作图痕迹).20.(本题满分6分)图9是2001年南宁市年鉴记载的本市社会消费品零售总额(亿元)统计图.请你仔细观察图中的数据,并回答下面问题 .(1)图中所列的六年消费品零售总额的最大值与最小值的差是多少亿元?(2)求1990年、1995年和2000年这三年社会消费品零售总额的平均数 .(精确到0.01) (3)从图中你还发现哪些信息,请说出其中两个 .四、本大题共2小题,满分16分请你根据以上的条件,计算出河宽CD (结果保留根号).22.(本题满分8分)2003年我国政府工作报告指出:为解决农民负担过重问题,在近两年的税费改革中,我国政府采取了一系列政策措施 . 2001年中央财政用于支持这项改革试点的资金约为180亿元,预计2003年将达到304.2亿元 . 求2001年到2003年中央财政每年投入支持这项改革资金的平均增长率 . (参考数据:2.144.1=,3.169.1=)五、本题满分8分23.如图10,P 是线段AB 上一点,△APC 与△BPD 是等边三角形,请你判断:AD 与BC 相等吗?并证明你的判断.六、本题满12分根据上表解答下列问题:(1)请你按体积 = 面积×高来估算,南湖的淤泥量大约有多少万立方米? (2)设清除淤泥x 天后,剩余的淤泥量为y (万米3),求y 与x 的函数关系 .(不要求写出x 的取值范围) (3)为了使南湖的生物链不遭破坏,仍需保留一定量的淤泥 . 若需保留的淤泥量约为22万米3,求请除淤泥所需天数.七、本题满分10分25.如图11,已知E 是△ABC 的内心,∠A 的平分线交BC 于点F ,且与△ABC 的外接圆相交于点D .(1)求证:DEB DBE ∠=∠(2)若AD =8cm ,DF ∶F A =1∶3求DE 的长.八、本题满分12分26.如图12所示,已知A 、B 两点的坐标分别为(28,0)和(0,28),动点P 从A 点开始在线段AO 上以每秒3个长度单位的速度向原点O 运动 . 动直线EF 从x 轴开始以每秒1个长度单位的速度向上平行移动(即EF ∥x 轴),并且分别与y 轴、线段AB 交于E 、F 点. 连结FP ,设动点P 与动直线EF 同时出发,运动时间为t 秒 .(1)当t = 1秒时,求梯形OPFE 的面积 . t 为保值时,梯形OPFE 的面积最大,最大面积是多少?(2)当梯形OPFE 的面积等三角形APF 的面积时 . 求线段PF 的长 . (3)设t 的值分别取t 1、t 2时(21t t ≠),所对应的三角形分别为△AF 1P 1和△AF 2P 2 .试判断这两个三角形是否相似,请证明你的判断 .2003年南宁市中等学校招生考试数学试题参考答案与评分标准一、填空题(每小题20分)1.23<- 2.)1(-x x 3.x ≥1 4.80 5.7.3×103 6.3 7.> 8.9 9.6 10.15,2n -1或1+2+22+23+…+21-n (每空1分)二、选择题(每小题3分)11.B 12.D 13.D 14.A 15.C 16.C 三、解答题(共24分)17.解:原式=1521÷-+ (4分) =53- (5分) =2- (6分)18.解:原式=xy x y xy x y x 242422222+-+++- (4分) =xy x 42+(6分)19.答:每个对称点得1分,连线2分,共6分 20.(1)163.44-0.33 = 163.11(亿元) (2分)(2)25.86359.14999.8316.25≈++(亿元) (2分)(3)如2000年至2001年的消费品零售总额的增长速度比1980年至1990年十年间的消费品零售总额平均增长的速度快;可以看出2000年人民生活水平比十年前有大幅度提高等等(2分) 21.解:方法一:设DA 为x 米20+=+=∴x AB DA DB (米) (1分) ︒=∠45CBD ,︒=∠90CDA20+==∴x DB DC (2分) 在Rt △CDA 中,︒=∠60DAC ∴tg60DA DC = (5分)x 203+=∴203+=∴x x 20)13(=-x )13(10213201320+=+=-=x (米) (7分)3031020)13(10+=++=∴DC (米) (8分) 答:方法二:设DC 为 x 米20=AB ,︒=∠90CDB ,︒=∠45DBC x DB DC ==∴米 (1分) 在Rt △CDA 中,︒=∠60DAC ∴tg DA CD =︒60 (5分)x x =-∴)20(3 320)13(=-∴x13320-=x (7分)=)13(310+ (8分) =30310+(米)答:22.解:设2001年至2003年每年平均增长率为x (1分)依题意,得 2.304)1(1802=+x (4分) 69.1)1(2=+x3.11±=+x (5分) 3.11±-=x%303.01==∴x 3.22-=x (舍去) (7分)答:这两年平均年增长率为30% . (8分)23.答: △APC 与 △BPD 是等边三角形 CP AP =∴,BP DP = (2分) ︒=∠=∠60BPD APC (3分) CPD BPD CPD APC ∠+∠=∠+∠∴ 即CPB APD ∠=∠ (5分) ∴△APD ≌△CPB (7分) BC AD =∴ (8分) 24.答:(1)1127.0160=⨯万米3 (4分)(2)1126.0+-=x y (8分) (3)当22=y 时1126.022+-=x (10分) 221126.0-=x 906.0=x150=x (天) (12分) 答:需要150天25.(1)证明: E 是△ABC 的内心43,21∠=∠=∠∴ (1分)25,13∠=∠∠+∠=∠BED (3分) 132354∠+∠=∠+∠=∠+∠∴即BED EBD ∠=∠ (4分)(2)解:BED EBD ∠=∠DB DE =∴ (5分) 125,∠=∠=∠∠=∠D D ∴△BED ∽△ABD (7分) FD AD BD ⋅=∴2(8分) DF ∶F A = 1∶3,AD = 8∴DF ∶AD = 1∶4418=∴DF 2=DF (cm) (9分) 16282=⨯=∴BD4==∴BD DE (cm) (10分)26.解:(1)当1=t 秒时,1=OE 3=AP 25328=-=∴OP,OB OA = EF ∥OA27128=-==∴EB EF (1分)2)(OEEF OP S OPFE +=∴梯形21)2725(⨯+=26= (2分) 228328t t S -+-= (3分)t t 2822+-=98)7(22+--=t (4分)∴当7=t 秒时,梯形OPFE 的面积最大,最大面积等于98 (5分)(2)2)456(2)28328(tt t t t S OPFE ⋅-=⋅-+-=梯形 S△AFP23tt ⋅=当=OPFE S 梯形S △AFP时有:232)456(2t t t =- (6分) 0,3456==-∴t t t81=t (秒),02=t (舍去) (7分)过点F 作FH ⊥AO ,垂足为H ︒=∠45OAB 168838=-⨯=∴==∴PH FH AH在Rt △FHP 中,22PH FH FP += (8分) 22168+= (9分) 58=(3)相似 (10分)证明:分别过点F 1、F 2作F 1H 1⊥AP 2,F 2H 2⊥AP 2,垂足分别为H 1、H 2︒=∠45OAB∴AH 1=F 1H 1= t 1, AH 2=F 2H 2= t 2112t AF =∴, 222t AF = 2121t t AF AF =∴(11分) 又113t AP = ,223t AP =21212133t t t t AP AP ==∴ 212121t AF AP ==∴且OAB OAB ∠=∠∴△11P AF ∽△22P AF (12分)。