传感器实验四报告
- 格式:doc
- 大小:251.00 KB
- 文档页数:6
传感器实验实验报告传感器实验实验报告引言:传感器是一种能够将各种物理量、化学量或生物量转换为可测量电信号的装置。
它在各个领域中都有着广泛的应用,如环境监测、医疗诊断、智能家居等。
本次实验旨在通过对不同类型传感器的测试和比较,深入了解传感器的原理和性能。
实验一:温度传感器温度传感器是一种常见的传感器类型,用于测量环境中的温度。
我们选择了一款热敏电阻温度传感器进行测试。
实验中,我们将传感器连接到一个电路板上,并使用示波器测量输出电压随温度的变化。
通过改变环境温度,我们观察到传感器输出电压与温度之间的线性关系。
这表明该传感器具有良好的灵敏度和稳定性。
实验二:光照传感器光照传感器是一种能够测量环境中光照强度的传感器。
我们选择了一款光敏电阻光照传感器进行测试。
实验中,我们将传感器暴露在不同光照条件下,并使用万用表测量输出电阻的变化。
结果显示,传感器输出电阻随光照强度的增加而减小。
这说明该传感器能够准确地感知光照强度,并将其转化为电信号输出。
实验三:湿度传感器湿度传感器是一种用于测量环境湿度的传感器。
我们选择了一款电容式湿度传感器进行测试。
实验中,我们将传感器放置在一个密封的容器中,并通过改变容器内的湿度来模拟不同湿度条件。
通过连接传感器到一个数据采集系统,我们能够实时监测到传感器的输出信号。
结果显示,传感器的输出电容随湿度的增加而增加。
这说明该传感器对湿度变化非常敏感,并能够准确地测量环境湿度。
实验四:气体传感器气体传感器是一种能够检测环境中气体浓度的传感器。
我们选择了一款气敏电阻气体传感器进行测试。
实验中,我们将传感器暴露在不同浓度的气体环境中,并使用示波器测量输出电阻的变化。
结果显示,传感器的输出电阻随气体浓度的增加而减小。
这表明该传感器能够准确地感知气体浓度,并将其转化为电信号输出。
结论:通过本次实验,我们深入了解了不同类型传感器的原理和性能。
温度传感器、光照传感器、湿度传感器和气体传感器在各自的应用领域中都具有重要的作用。
传感器的实训报告一、引言传感器是现代工业,信息化,机器人,生物医疗等领域必不可少的一项技术。
传感器的应用范围广泛,从家用电器到工业的生产控制系统,从交通信号灯到机器人,从现代化教育设备到医疗诊断设备,传感器都有着重要的应用。
在大学学习中,对于传感器的理论知识已有所了解,而对于传感器在具体实践中的应用及工作原理,还需要通过实训来深入掌握。
本文将介绍一次传感器的实训报告,对传感器的应用进行了简单地介绍和总结。
二、实训内容本次实训主要是通过利用传感器对环境的监测,这种电子信息技术在现代环境监测中广泛应用。
具体实训包括以下内容:1. 实验一:温度传感器的应用2. 实验二:湿度传感器的应用3. 实验三:气体传感器的应用4. 实验四:光线传感器的应用三、实训结果1. 实验一:温度传感器的应用在第一次实验中,通过使用温度传感器来测量温度。
我们使用的是DS18B20型号的温度传感器。
该传感器的特点是可以使用单个总线,采用了数字信号输出。
实验结果:通过实验表明,DS18B20温度传感器测量的数值与实际温度误差很小,在实际应用中具有很高的精度。
2. 实验二:湿度传感器的应用在第二次实验中,我们使用DHT11型号的湿度传感器,该传感器可以同时测量温度和湿度。
我们将它安装在室内中央位置。
实验结果:实验结果表明,该传感器不只可以测量温度,同时还可以测量湿度。
在测试过程中,不同湿度环境下传感器输出的数字信号的数值具有很大的变化。
而且当环境湿度较高时,传感器的误差也相对较大。
3. 实验三:气体传感器的应用在第三次实验中,我们使用mq-2型号的气体传感器,该传感器可以测量多种气体。
实验结果:实验结果表明,该传感器可以检测多种有毒有害气体,一般用于煤气泄漏和可燃气体(含烟雾)检测,但在使用时需要注意其灵敏度,以免误报。
4. 实验四:光线传感器的应用在第四次实验中,我们使用TSL2561型号的光线传感器。
该传感器主要用于测量光照强度。
广东技术师范学院实验报告学院:自动化专业:自动化班级:08自动化成绩:姓名:学号:组别:组员:实验地点:实验日期:指导教师签名:实验二项目名称:直流全桥的应用——电子秤实验一、实验目的了解应变直流全桥的应用及电路的标定。
二、基本原理电子秤实验原理与实验三相同,利用全桥测量原理,通过对电路调节使电路输出的电压值为重量对应值,电压量纲(V)改为重量量纲(g)即成为一台原始的电子秤。
三、需用器件和单元传感器实验箱(二)中应变式传感器实验单元,应变式传感器实验模板、砝码、智能直流电压表(或虚拟直流电压表)、±15V电源、±5V电源。
四、实验内容与步骤1.按实验一中的步骤2,将差动放大器调零,按图3-1全桥接线,打开直流稳压电源开关,调节电桥平衡电位器Rw1,使直流电压表显示为零。
2.将10只砝码全部置于传感器的托盘上,调节电位器Rw3(增益即满量程调节)使直流电压表显示为0.200V或-0.200V。
3.拿去托盘上的所有砝码,调节电位器Rw1(零位调节)使直流电压表显示为0.000V。
4.重复2、3步骤的标定过程,一直到精确为止,把电压量纲V改为重量量纲g,就可以称重,成为一台原始的电子秤。
5.把砝码依次放在托盘上,填入下表4-1。
表4-1电桥输出电压与加负载重量值6.误差:0% 非线性误差:0%五、实验注意事项1.不要在砝码盘上放置超过1kg的物体,否则容易损坏传感器。
2.电桥的电压为±5V,绝不可错接成±15V。
六、实验报告要求1.记录实验数据,绘制传感器的特性曲线。
2.分析什么因素会导致电子秤的非线性误差增大,怎么消除,若要增加输出灵敏度,应采取哪些措施。
答:环境因素和实验器材的校正不准会导致非线性误差增大。
通过多次校正,调节变位器可消除或减少误差。
若要增加输出灵敏度可增加相形放大电路。
广东技术师范学院实验报告学院:自动化专业:自动化班级:08自动化成绩:姓名:学号:组别:组员:实验地点:实验日期:指导教师签名:实验二项目名称:直流全桥的应用——电子秤实验一、实验目的了解应变直流全桥的应用及电路的标定。
光电传感器实验报告(文档4篇)以下是网友分享的关于光电传感器实验报告的资料4篇,希望对您有所帮助,就爱阅读感谢您的支持。
光电传感器实验报告第一篇实验报告2――光电传感器测距功能测试1.实验目的:了解光电传感器测距的特性曲线;掌握LEGO基本模型的搭建;熟练掌握ROBOLAB软件;2.实验要求:能够用LEGO积木搭建小车模式,并在车头安置光电传感器。
能在光电传感器紧贴红板,以垂直红板的方向作匀速直线倒车运动过程中进行光强值采集,绘制出时间-光强曲线,然后推导出位移-光强曲线及方程。
3.程序设计:编写程序流程图并写出程序,如下所示:ROBOLAB程序设计:4.实验步骤:1) 搭建小车模型,参考附录步骤或自行设计(创新可加分)。
2) 用ROBOLAB编写上述程序。
3) 将小车与电脑用USB数据线连接,并打开NXT的电源。
点击ROBOLAB 的RUN按钮,传送程序。
4) 取一红颜色的纸板(或其他红板)竖直摆放,并在桌面平面与纸板垂直方向放置直尺,用于记录小车行走的位移。
5) 将小车的光电传感器紧贴红板放置,用电脑或NXT的红色按钮启动小车,进行光强信号的采样。
从直尺上读取小车的位移。
6) 待小车发出音乐后,点击ROBOLAB的数据采集按钮,进行数据采集,将数据放入红色容器。
共进行四次数据采集。
7) 点击ROBOLAB的计算按钮,分别对四次采集的数据进行同时显示、平均线及拟和线处理。
8) 利用数据处理结果及图表,得出时间同光强的对应关系。
再利用小车位移同时间的关系(近似为匀速直线运动),推导出小车位移同光强的关系表达式。
5.调试与分析a) 采样次数设为24,采样间隔为0.05s,共运行1.2s。
采得数据如下所示。
b) 在ROBOLAB的数据计算工具中得到平均后的光电传感器特性曲线,如图所示:c) 对上述平均值曲线进行线性拟合,得到的光强与时间的线性拟合函数:d) 取四次实验小车位移的平均值,根据时间与光强的拟合函数求取距离与光强的拟合函数:由上图可得光强与时间的关系为:y=-25.261858×t+56.524457 ; 量取位移为4.5cm,用时1.2s,得:x=3.75×t ;光强与位移的关系为:y= -6.73649547×x+56.524457 ;e) 通过观测上图及导出的光强位移函数可知,光电传感器在短距离里内对位移信号有着良好的线性关系,可以利用光强值进行位移控制。
一、实习背景随着科技的不断发展,传感器在各个领域得到了广泛的应用。
为了更好地了解传感器的原理和应用,提高自己的实践能力,我参加了本次传感器实验实习。
通过本次实习,我对传感器的原理、结构、工作方式及在实际应用中的重要作用有了更深入的认识。
二、实习目的1. 了解传感器的基本原理、分类、结构和工作方式。
2. 掌握传感器实验的基本操作方法和技巧。
3. 通过实验验证传感器的性能,提高自己的实践能力。
4. 了解传感器在实际应用中的重要作用。
三、实习内容本次实习主要分为以下几个部分:1. 传感器基本原理学习首先,我们学习了传感器的定义、分类、工作原理和性能指标。
传感器是一种能够将非电学量转换为电学量的装置,它具有测量精度高、响应速度快、便于自动控制等优点。
传感器按照其工作原理可以分为电阻式、电容式、电感式、压电式等。
2. 传感器实验操作(1)电阻应变式传感器实验实验目的:了解电阻应变式传感器的结构、工作原理,掌握电桥测量应变片电阻的微小变化,进而测定悬臂梁的应变。
实验步骤:① 搭建惠斯通电桥,将电阻应变片接入电桥中;② 对悬臂梁施加微小形变,观察应变片电阻的变化;③ 通过电桥测量应变片电阻的微小变化,计算悬臂梁的应变。
(2)压电式传感器实验实验目的:了解压电式传感器的测量振动的原理和方法。
实验步骤:① 将压电传感器安装在振动台上;② 通过低频振荡器产生振动信号,接入振动台;③ 观察压电传感器输出信号的变化,分析振动信号的特点。
3. 传感器性能测试(1)灵敏度测试测试方法:通过改变输入信号的大小,观察输出信号的变化,计算灵敏度。
(2)线性度测试测试方法:在一定的输入范围内,分别测量输出信号,绘制输出信号与输入信号的关系曲线,分析线性度。
(3)频率响应测试测试方法:在一定的频率范围内,分别测量输出信号,绘制输出信号与频率的关系曲线,分析频率响应。
四、实习总结通过本次传感器实验实习,我收获颇丰。
以下是我对本次实习的总结:1. 深入了解了传感器的原理、分类、结构和工作方式。
传感器实验报告传感器实验实验⼀、电阻应变⽚传感器1.实验⽬的(1) 了解⾦属箔式应变⽚的应变效应,单臂电桥⼯作原理和性能。
(2) 了解半桥的⼯作原理,⽐较半桥与单臂电桥的不同性能、了解其特点(3) 了解全桥测量电路的原理及优点。
(4) 了解应变直流全桥的应⽤及电路的标定。
2.实验数据整理与分析由以上两趋势图可以看出,其中⼀个20.9997R =,另⼀个20.9999R =,两个的线性都较好。
其中产⽣⾮线性的原因主要有:(1)04x R e e R R ?=+?,0e 和R ?并不成严格的线性关系,只有当0R R ?<<才有04x Re e R=,所以理论上并不是绝对线性的,总会出现⼀些⾮线性。
(2)应变⽚与材料的性能有关,这也可能产⽣⾮线性。
(3)实验中外界因素的影响,包括外界温度之类的影响。
为什么半桥的输出灵敏度⽐单臂时⾼出⼀倍,且⾮线性误差也得到改善?答:单臂:04x R e e R ?=半桥:1201()2x R R e e R R ??=-灵敏度公式:U S W=;所以半桥测量时是单臂测量的灵敏度的两倍。
0k 受电阻变化影响变得很⼩改善了⾮线性误差。
3.思考题a .半桥测量时两⽚不同受⼒状态的电阻应变⽚接⼊电桥时,应放在:(1)对边(2)邻边。
解:邻边 b .桥路(差动电桥)测量时存在⾮线性误差,是因为:(1)电桥测量原理上存在⾮线性(2)应变⽚应变效应是⾮线性的(3)调零值不是真正为零。
解:(1)(2)(3)。
c .全桥测量中,当两组对边(R1、R3为对边)值R 相同时,即R1=R3,R2=R4,⽽R1≠R2时,是否可以组成全桥:(1)可以(2)不可以。
解:(1)d .某⼯程技术⼈员在进⾏材料拉⼒测试时在棒材上贴了两组应变⽚,如何利⽤这四⽚电阻应变⽚组成电桥,是否需要外加电阻。
解:可组成全路电桥实验⼆差动变压器1.实验⽬的(1)了解差动变压器的⼯作原理和特性(2)了解三段式差动变压器的结构(3)了解差动变压零点残余电压组成及其补偿⽅法(4)了解激励频率低差动变压器输出的影响2.实验数据整理与分析实验A中产⽣⾮线性误差的原因:(1)存在零点残余电压(2)零点附近波动较⼤(3)读数时的⼈为误差分析产⽣零点残余电压的原因,对差动变压器的性能有哪些不利影响。
传感器检测实验报告传感器检测实验报告一、引言传感器是一种能够将物理量转化为电信号的装置,广泛应用于各个领域,如工业自动化、环境监测、医疗诊断等。
本实验旨在通过对传感器的检测,了解其工作原理、性能参数以及应用范围。
二、实验目的1. 了解传感器的基本工作原理;2. 掌握传感器的性能参数检测方法;3. 分析传感器的应用场景。
三、实验装置与方法1. 实验装置:传感器、信号采集器、示波器等;2. 实验步骤:a. 连接传感器与信号采集器;b. 设置示波器参数;c. 对传感器进行检测。
四、实验结果与分析1. 传感器工作原理传感器通过感受外界物理量的变化,转化为电信号输出。
常见的传感器类型有温度传感器、压力传感器、光敏传感器等。
不同类型的传感器有不同的工作原理,如热敏电阻式温度传感器利用温度变化导致电阻值的变化,从而输出电信号。
2. 传感器性能参数检测a. 灵敏度:传感器对被测量物理量变化的响应能力。
通过改变被测量物理量,记录传感器输出信号的变化,计算灵敏度。
b. 线性度:传感器输出信号与被测量物理量之间的线性关系程度。
通过改变被测量物理量,记录传感器输出信号,绘制曲线,判断线性度。
c. 分辨率:传感器能够检测到的最小变化量。
通过改变被测量物理量,记录传感器输出信号的变化,计算分辨率。
d. 响应时间:传感器从感受到物理量变化到输出信号变化所需的时间。
通过改变被测量物理量,记录传感器输出信号的变化,计算响应时间。
3. 传感器应用场景a. 工业自动化:传感器在工业生产中广泛应用,如温度传感器用于监测设备温度,压力传感器用于监测管道压力等。
b. 环境监测:传感器用于监测环境中的各种物理量,如光敏传感器用于检测光照强度,湿度传感器用于检测空气湿度等。
c. 医疗诊断:传感器在医疗设备中起着重要作用,如心率传感器用于监测患者心率,血压传感器用于测量患者血压等。
五、实验总结通过本次实验,我们了解了传感器的工作原理、性能参数检测方法以及应用场景。
华北水利水电学院机械学院传感器原理实验报告实验项目:压电式传感器震动实验专业:学号:姓名:指导教师:李恒灿邰金华实验四压电式传感器震动实验一、实验目的:了解压电传感器测量振动的原理和方法。
二、基本原理:压电式传感器由惯性质量块和受压的压电陶瓷片等组成(观察实验用压电加速度计结构)。
工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在压电陶瓷片上,由于压电效应,压电陶瓷片上产生正比于运动加速度的表面电荷,经电荷放大器转换成电压,即可测量物体的运动加速度。
三、需用器件与单元:振动台(2000型)或振动测量控制仪(9000型)、压电传感器、检波/移相/低通滤波器模板、压电式传感器实验模板、双线示波器。
四、实验步骤:1、将压电传感器吸装在振动台面上。
2、将低频振荡器信号接入到振动源的低频输入插孔(2000型)。
3、将压电传感器两输出端插入压电传感器实验模板的两输入端,见图7-1,屏蔽层接地。
将压电传感器实验模板电路输出端V01(如增益不够大则V01接入IC2, V02接入低通滤波器)接入低通滤波器输入端VI,低通滤波器输出V0与示波器相连。
4、合上主控箱电源开关,调节Rw使低通滤波器输出Vo为零。
调节低频振荡器的频率及幅度旋钮使振动台振动,观察示波器波形。
5、改变低频振荡器频率,观察输出波形变化,比较一下频率不同时的输出有什么不同?6、用示波器的两个通道同时观察低通滤波器输入端和输出端波形,试比较一下有什么区别?低通滤波器的作用是什么?7、比较一下低通滤波器的输出信号与低频振荡器的输出信号的相位有什么不同?五、实验结果与思考题:1、改变低频振荡器频率,观察输出波形变化,比较一下频率不同时的输出有什么不同?当振荡大约为10hz时,产生共振2、用示波器的两个通道同时观察低通滤波器输入端和输出端波形,试比较一下有什么区别?低通滤波器的作用是什么?3、比较一下低通滤波器的输出信号与低频振荡器的输出信号的相位有什么不同?低频振荡器输出信号的相位是由振荡器自己决定的,而低通滤波器输出信号的相位取决于输入信号的相位和滤波器的相位特性。
第1篇一、实验背景随着科技的飞速发展,传感器技术在各个领域都得到了广泛的应用。
传感器作为一种将非电学量转换为电学量的装置,对于信息采集、处理和控制具有至关重要的作用。
本实验旨在通过一系列传感器实验,加深对传感器基本原理、工作原理和应用领域的理解。
二、实验目的1. 了解传感器的定义、分类和基本原理。
2. 掌握常见传感器的结构、工作原理和特性参数。
3. 熟悉传感器在信息采集、处理和控制中的应用。
4. 培养动手操作能力和分析问题、解决问题的能力。
三、实验内容本次实验共分为以下几个部分:1. 压电式传感器实验- 实验目的:了解压电式传感器的测量振动的原理和方法。
- 实验原理:压电式传感器由惯性质量块和受压的压电片等组成。
工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。
- 实验步骤:1. 将压电传感器装在振动台面上。
2. 将低频振荡器信号接入到台面三源板振动源的激励源插孔。
3. 将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。
将压电传感器实验模板电路输出端Vo1,接R6。
将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。
4. 合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波器波形。
5. 改变低频振荡器的频率,观察输出波形变化。
2. 电涡流传感器位移特性实验- 实验目的:了解电涡流传感器测位移的原理和方法。
- 实验原理:电涡流传感器利用电磁感应原理,当传感器靠近被测物体时,在物体表面产生涡流,通过检测涡流的变化来测量物体的位移。
- 实验步骤:1. 将电涡流传感器安装在实验平台上。
2. 调整传感器与被测物体的距离,观察示波器波形变化。
3. 改变被测物体的位移,观察示波器波形变化。
3. 光纤式传感器测量振动实验- 实验目的:了解光纤传感器动态位移性能。
三、实验效果分析(包过仪器设备等使用效果)三、实验效果分析:①由实验数据可知测量砝码时的灵敏度为:S=0.05V/100g=0.5mv/g②实验中应注意砝码和重物应放于同一点。
③要将些电子秤方案投入到实际生活中应将差动放大器的放大倍数调大些,让电子秤的灵敏度提高些,在重量为0时电子秤的示数也为0,每增加1g电子秤的示数最好是加1,那样更加好看,当称重为非零时应给一定的补偿让此时的计数也为0。
教师评语指导教师年月日江西师范大学物理与通信电子学院教学实验报告专业:电子信息工程2010年4月13日实验名称交流全桥的应用——电子秤指导老师姓名年级08级学号成绩一、预习部分1、实验目的2、实验基本原理3、主要仪器设备(包含必要的元器件、工具)一、实验目的:实验目的:了解交流供电的四臂应变电桥的原理和工作情况。
主要仪器设备:所需单元及部件:音频振荡器、电桥、差动放大器、移相器、相敏检波器、低通滤波器、F/V表、双平行梁、应变片、测微头、主、副电源、示波器。
二、实验原理:图4三、主要仪器设备:所需单元及部件:音频振荡器、电桥、差动放大器、移相器、相敏检波器、低通滤波器、F/V表、双平行梁、应变片、测微头、主、副电源、示波器。
二、实验操作步骤1.实验数据、表格及数据处理2.实验操作过程(可以用图表示)3.结论1.实验数据、表格及数据处理如下:Matlab 数据处理:x=20:20:100;y=[0.01,0.02,0.03,0.04,0.05];plot(x,y,'*');a=polyfit(x,y,1);xi=0:0.001:100;yi=polyval(a,xi);plot(x,y,'go','MarkerEdgeColor','k','MarkerFaceColor','r','MarkerSize',5) xlabel('质量/g','fontsize',10);ylabel('电压/V','fontsize',10);axis([0 100 0 0.05])hold onplot(xi,yi,'linewidth',1,'markersize',1)legend('原始数据点','拟合直线1')plot(x,y) 2、实验操作过程如下:①差动放大器调整为零:将差动放大(+)、(-)输入端与地短接,输出端与F/V表输入端Vi相连,开启主、副电源后调差放的调零旋钮使F/V表显示为零,再将F/V表切换开关置2V档,再细调差放调零旋钮使F/V表显示为零,然后关闭主、副电源。
一、实验目的1. 了解各类传感器的基本原理、工作特性及测量方法。
2. 掌握传感器实验仪器的操作方法,提高实验技能。
3. 分析传感器在实际应用中的优缺点,为后续设计提供理论依据。
二、实验内容本次实验主要包括以下几种传感器:电容式传感器、霍尔式传感器、电涡流式传感器、压力传感器、光纤传感器、温度传感器、光敏传感器等。
1. 电容式传感器实验(1)实验原理:电容式传感器利用电容的变化来测量物理量,其基本原理为平板电容 C 与极板间距 d 和极板面积 S 的关系式C=ε₀εrS/d。
(2)实验步骤:搭建实验电路,将传感器安装在实验台上,调整传感器与测量电路的连接,进行数据采集,分析传感器特性。
2. 霍尔式传感器实验(1)实验原理:霍尔式传感器利用霍尔效应,将磁感应强度转换为电压信号,其基本原理为霍尔电压 U=KBIL。
(2)实验步骤:搭建实验电路,将霍尔传感器安装在实验台上,调整传感器与测量电路的连接,进行数据采集,分析传感器特性。
3. 电涡流式传感器实验(1)实验原理:电涡流式传感器利用涡流效应,将金属导体中的磁通量变化转换为电信号,其基本原理为电涡流电压 U=KfB。
(2)实验步骤:搭建实验电路,将电涡流传感器安装在实验台上,调整传感器与测量电路的连接,进行数据采集,分析传感器特性。
4. 压力传感器实验(1)实验原理:压力传感器利用应变电阻效应,将力学量转换为易于测量的电压量,其基本原理为应变片电阻值的变化与应力变化成正比。
(2)实验步骤:搭建实验电路,将压力传感器安装在实验台上,调整传感器与测量电路的连接,进行数据采集,分析传感器特性。
5. 光纤传感器实验(1)实验原理:光纤传感器利用光纤的传输特性,将信息传感与信号传输合二为一,其基本原理为光纤传输的损耗与被测物理量有关。
(2)实验步骤:搭建实验电路,将光纤传感器安装在实验台上,调整传感器与测量电路的连接,进行数据采集,分析传感器特性。
6. 温度传感器实验(1)实验原理:温度传感器利用电阻或热电偶的特性,将温度变化转换为电信号,其基本原理为电阻或热电偶的电阻或电动势随温度变化。
一、实验目的1. 理解传感器的基本原理和分类。
2. 掌握传感器的应用及其在各类工程领域的实际意义。
3. 通过实验操作,验证传感器的工作性能,并分析其优缺点。
4. 学习传感器测试和数据处理的方法。
二、实验器材1. 传感器:温度传感器、压力传感器、光电传感器、霍尔传感器等。
2. 测试仪器:示波器、万用表、信号发生器、数据采集器等。
3. 实验台:传感器实验台、电路连接线、固定装置等。
三、实验内容1. 温度传感器实验(1)实验目的:验证温度传感器的响应特性,分析其线性度、灵敏度等参数。
(2)实验步骤:a. 将温度传感器固定在实验台上,连接好电路。
b. 使用信号发生器输出不同温度的信号,观察温度传感器的输出响应。
c. 记录温度传感器在不同温度下的输出电压,绘制输出电压与温度的关系曲线。
d. 分析温度传感器的线性度、灵敏度等参数。
2. 压力传感器实验(1)实验目的:验证压力传感器的响应特性,分析其非线性度、灵敏度等参数。
(2)实验步骤:a. 将压力传感器固定在实验台上,连接好电路。
b. 使用压力泵对压力传感器施加不同压力,观察压力传感器的输出响应。
c. 记录压力传感器在不同压力下的输出电压,绘制输出电压与压力的关系曲线。
d. 分析压力传感器的非线性度、灵敏度等参数。
3. 光电传感器实验(1)实验目的:验证光电传感器的响应特性,分析其灵敏度、响应时间等参数。
(2)实验步骤:a. 将光电传感器固定在实验台上,连接好电路。
b. 使用光强控制器调节光电传感器的光照强度,观察光电传感器的输出响应。
c. 记录光电传感器在不同光照强度下的输出电压,绘制输出电压与光照强度的关系曲线。
d. 分析光电传感器的灵敏度、响应时间等参数。
4. 霍尔传感器实验(1)实验目的:验证霍尔传感器的响应特性,分析其线性度、灵敏度等参数。
(2)实验步骤:a. 将霍尔传感器固定在实验台上,连接好电路。
b. 使用磁场发生器产生不同磁感应强度的磁场,观察霍尔传感器的输出响应。
自动化传感器实验报告四--直流全桥的应用——电子秤实验一、实验目的1.了解全桥电路的基本原理及其应用在电子秤中的原理;2.了解荷重传感器的工作原理及构造;3.掌握使用程序来采集、处理、显示传感器数据的基本方法;4.熟悉各种测量仪表和传感器的使用方法。
二、实验仪器与材料仪器:电压表、万用表、示波器、笔式记录仪等。
材料:直流稳压电源、全桥位移传感器、万用表测量导线、电阻等。
三、实验原理电子计重秤的工作原理是:利用承重结构产生的微小形变,经过荷重传感器转换成微小电压信号,进而转化成数字量信号进行显示、储存等处理。
1. 全桥电路的基本原理全桥电路由四个电阻组成的电路,它被用来测量小信号。
常用于压力、应力、扭矩等物理量的测量。
当桥中一个臂变化时,桥中的电阻值随之发生变化,检测出变化后,选用差动法放大这个信号。
可理解为是电路的强化作用,通过放大电路来使信号得到更好的运用。
2. 电子秤的原理电子秤是一种新型计量仪器,由荷重传感器、变换器、显示器、电源等组成。
它使用荷重传感器将重物产生的应变信号转化成弱的电信号后,再经过放大、滤波、积分等处理后转化成可视的数码显示。
电子秤以其高精度、高灵敏度、高分辨率、精准度高等优点,已取代了传统的机械计量秤,成为工业生产和科技测试中的必需品。
四、实验步骤1.按照电路原理图连接电路。
2.使用万用表测量各个电路元件的值和完整性。
3.连接示波器,打开电源。
4.根据电路原理图调节电压幅度和频率。
5.根据显示器显示的数字,计算出物体的重量。
5 操作结果与分析我们将自己重量放在电子秤上,原本应该显示70kg左右但是并没有,存在一定的误差。
同时,可以通过调整供电范围、改变采样时间和滤波等来消除噪音干扰,获得更准确的读数。
此外,需要注意的是,由于荷载传感器本身与环境温度有关,因此在长期使用过程中,需要周期性校准调整以保证其准确性。
六、实验结论1.全桥电路是一种用于测量小信号的电路,在物理量测量中应用广泛。
传感器的实验报告传感器的实验报告引言:传感器是一种能够将物理量或化学量转化为电信号的装置,广泛应用于各个领域。
本实验旨在通过对不同类型的传感器进行实验,了解其原理和应用。
实验一:温度传感器温度传感器是一种常见的传感器,用于测量环境或物体的温度。
本实验选择了热敏电阻作为温度传感器,通过测量电阻值的变化来间接测量温度。
实验中使用了一个简单的电路,将热敏电阻与电源和电阻相连接,通过测量电路中的电压来计算温度。
实验结果显示,随着温度的升高,电阻值逐渐下降,电压也相应变化。
这说明热敏电阻的电阻值与温度呈负相关关系。
实验二:压力传感器压力传感器用于测量物体受到的压力大小。
本实验选择了压电传感器作为压力传感器,通过压电效应将压力转化为电信号。
实验中,将压电传感器与一个振荡电路相连,当物体施加压力时,压电传感器会产生电荷,导致振荡电路频率的变化。
通过测量频率的变化,可以间接测量物体受到的压力。
实验结果显示,当施加压力时,频率逐渐增加,说明压电传感器的输出信号与压力呈正相关关系。
实验三:光敏传感器光敏传感器用于测量光线的强度或光照度。
本实验选择了光敏电阻作为光敏传感器,通过测量电阻值的变化来间接测量光照度。
实验中,将光敏电阻与一个电路相连,通过测量电路中的电压来计算光照度。
实验结果显示,随着光照度的增加,电阻值逐渐下降,电压也相应变化。
这说明光敏电阻的电阻值与光照度呈负相关关系。
实验四:湿度传感器湿度传感器用于测量环境中的湿度。
本实验选择了电容式湿度传感器作为湿度传感器,通过测量电容值的变化来间接测量湿度。
实验中,将电容式湿度传感器与一个电路相连,通过测量电路中的电容值来计算湿度。
实验结果显示,随着湿度的增加,电容值逐渐增加,说明电容式湿度传感器的输出信号与湿度呈正相关关系。
结论:通过本次实验,我们对不同类型的传感器进行了实验,了解了它们的原理和应用。
温度传感器、压力传感器、光敏传感器和湿度传感器分别用于测量温度、压力、光照度和湿度。
电子信息工程学系实验报告课程名称:传感器与检测技术成绩:实验项目名称:实验(四)差动变面积式电容传感器实验时间:2011.10.07指导教师(签名):班级:测控91 姓名:陈云学号:910707153实验目的:了解差动变面积式电容传感器的原理及其特性。
实验环境:示波器和CSY-910型传感器实验仪:电容传感器、电压放大器、低通滤波器、F/V表实验内容及过程:1、实验原理电容式传感器有多种形式,本仪器中差动变面积式。
传感器由两组定片和一组动片组成。
当安装于振动台上的动片上、下改变位置,与两组静片之间的重叠面积发生变化,极间电容也发生相应变化,成为差动电容。
如将上层定片与动片形成的电容定为Cxl,下层定片与动片形成的电容定为Cx2,当将Cxl和Cx2接入桥路作为相邻两臂时,桥路的输出电压与电容量的变化有关,即与振动台的位移有关。
2、旋钮初始位置差动放大器增益旋钮置于中间,F/V表置于2V档。
3、实验步骤(1)根据图接线。
(2)将F/V表打到20V,调节测微头,使输出为零。
(3)转动测微头,每次0.1mm,记下此时测微头的读数及电压表的读数,直至电容动片与上(或下)静片覆盖面积最大为止。
X(mm)V(mV)(4)退回测微头至初始位置。
并开始以相反方向旋动。
同上法,记下X(mm)及V(mv)值。
X(mm)V(mV)(5)计算系统灵敏度S=△V/△X,并作出Ⅴ-X曲线。
实验结果及分析:每次0.1mm,记下此时测微头的读数及电压表的读数:X(mm) 11.3 11.4 11.5 11.6 11.7 11.8 11.9 12.0 12.1 12.2 12.3V(mV) 0.02 0.24 0.46 0.69 0.93 1.14 1.43 1.66 1.94 2.13 2.36退回测微头至初始位置。
并开始以相反方向旋动。
同上法,记下X(mm)及V(mv)值:X(mm) 11.3 11.2 11.1 11.0 10.9 10.8 10.7 10.6 10.5 10.4 10.3V(mV) 0.02 -0.21 -0.45 -0.67 -0.91 -1.13 -1.40 -1.62 -1.91 -2.10 -2.18计算系统灵敏度S=△V/△X,并作出Ⅴ-X曲线。
传感器实习报告引言:在如今科技快速发展的时代背景下,传感器作为一种关键技术产品,在各个领域中发挥着重要的作用。
通过实习的机会,我有幸深入了解和学习传感器的原理和应用。
本文将就我的实习经历进行总结并进行一些个人的思考。
一、实习背景我所参与的实习项目是在一家知名科技公司的传感器研发部门。
这个部门专注于传感器技术的研究和产品的开发。
在实习开始之前,我对传感器的了解仅限于课本上的知识,但是实际接触和实践使我对传感器产生了更深入的认识。
二、传感器的原理和应用1. 传感器的原理传感器是一种能够将物理量转换为电信号的装置。
在不同的应用领域中,传感器的工作原理也有所不同。
例如,光传感器通过光敏电阻的变化来感知光线的强度,压力传感器通过柔性膜片的变形来感知外力的大小。
2. 传感器在生活中的应用传感器在我们的日常生活中无处不在。
我们所接触到的智能手机、智能家居、智能车辆等等,都离不开传感器的应用。
传感器可以帮助手机感知周围环境的温度、湿度等信息,并根据这些信息进行自动调节。
智能家居则可以通过传感器感知人体的存在并根据需求自动开启灯光、空调等设备。
三、实习经历在实习期间,我参与了一个传感器研发项目。
项目目标是开发一种新型的温度传感器,用于汽车行业。
作为项目成员,我的任务是参与传感器的设计和测试。
1. 传感器设计传感器的设计是一个复杂而精细的过程。
首先,我们需要确定传感器所要感知的物理量,这里是温度。
然后,根据物理原理和工艺要求,设计传感器的结构和电路。
我通过使用计算机模拟软件进行传感器的设计和优化,并与其他团队成员进行讨论和交流。
2. 传感器测试传感器设计完成后,我们需要对其性能进行测试和验证。
测试包括对传感器灵敏度、响应时间、稳定性等方面进行评估。
我采用了各种测试仪器和方法,如示波器和稳定电源等,进行了一系列的实验。
四、实习感悟通过这次实习,我不仅学到了传感器的原理和应用,还提高了自己的实践能力和团队合作能力。
在实习期间,我学会了如何运用各种工具和软件进行传感器设计和测试。
第1篇一、实验目的1. 理解传感器的基本原理和分类。
2. 掌握常见传感器的工作原理和特性。
3. 学会传感器信号的采集和处理方法。
4. 提高实验操作能力和数据分析能力。
二、实验设备与器材1. 传感器实验平台2. 数据采集卡3. 信号发生器4. 示波器5. 计算机及相应软件6. 传感器:热敏电阻、霍尔传感器、光电传感器、电容式传感器、差动变压器等三、实验内容及步骤1. 热敏电阻实验(1)目的:了解热敏电阻的工作原理和特性。
(2)步骤:1. 将热敏电阻连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。
2. 通过数据采集卡采集热敏电阻的输出信号。
3. 使用示波器观察热敏电阻输出信号的波形和幅度。
4. 分析热敏电阻输出信号与温度的关系。
2. 霍尔传感器实验(1)目的:了解霍尔传感器的工作原理和特性。
1. 将霍尔传感器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。
2. 通过数据采集卡采集霍尔传感器的输出信号。
3. 使用示波器观察霍尔传感器输出信号的波形和幅度。
4. 分析霍尔传感器输出信号与磁场强度的关系。
3. 光电传感器实验(1)目的:了解光电传感器的工作原理和特性。
(2)步骤:1. 将光电传感器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。
2. 通过数据采集卡采集光电传感器的输出信号。
3. 使用示波器观察光电传感器输出信号的波形和幅度。
4. 分析光电传感器输出信号与光照强度的关系。
4. 电容式传感器实验(1)目的:了解电容式传感器的工作原理和特性。
(2)步骤:1. 将电容式传感器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。
2. 通过数据采集卡采集电容式传感器的输出信号。
3. 使用示波器观察电容式传感器输出信号的波形和幅度。
4. 分析电容式传感器输出信号与电容变化的关系。
5. 差动变压器实验(1)目的:了解差动变压器的工作原理和特性。
1. 将差动变压器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。
实验一 箔式应变片性能一、实验目地:1、观察了解箔式应变片的结构及粘贴方式。
2、测试应变梁变形的应变输出。
3、了解实际使用的应变电桥的性能和原理。
二、实验原理:本实验说明箔式应变片在单臂直流电桥、半桥、全桥里的性能和工作情况。
应变片是最常用的测力传感元件。
当用应变片测试时,应变片要牢固地粘贴在测试体表面,当被测件受力发生形变,应变片的敏感栅随同变形,其电阻值也随之发生相应的变化。
通过测量电路,转换成电信号输出显示。
电桥电路是最常用的非电量电测电路中的一种,当电桥平衡时,桥路对臂电阻乘积相等,电桥输出为零,在桥臂四个电阻R 1、R 2、R 3、R 4中,电阻的相对变化率分别为△R 1/R 1、△R 2/R 2、△R 3/R 3、△R 4/R 4,当使用一个应变片时,R ΔR R =∑;当二个应变片组成差动状态工作,则有RR R Δ2=∑;用四个应变片组成二个差动对工作,且R 1=R 2=R 3=R 4=R ,RR R Δ4=∑。
由此可知,单臂,半桥,全桥电路的灵敏度依次增大。
根据戴维南定理可以得出测试电桥的输出电压近似等于1/4·E ·∑R ,电桥灵敏度Ku =V /△R /R ,于是对应于单臂、半桥和全桥的电压灵敏度度分别为1/4E 、1/2E 和E.。
由此可知,当E 和电阻相对变化一定时,电桥及电压灵敏度与各桥臂阻值的大小无关。
三、实验所需部件:直流稳压电源(±4V 档)、电桥、差动放大器、箔式应变片、砝码(20g )、电压表(±4v )。
四、实验步骤:1、调零 开启仪器电源,差动放大器增益至100倍(顺时针方向旋到底),“+、-”输入端用实验线对地短路。
输出端接数字电压表,用“调零”电位器调整差动放大器输出电压为零,然后拔掉实验线。
调零后电位器位置不要变化。
2、按图(1)将实验部件用实验线连接成测试桥路。
桥路中R 1、R 2、R3、和W D 为电桥中的固定电阻和直流调平衡电位器,R 为应变片(可任选上、下梁中的一片工作片)。
实验四 霍尔式传感器的静态位移特性—直流激励一、实验目的了解霍尔式传感器的原理与特性。
二、所需单元及部件霍尔片、磁路系统、电桥、差动放大器、V /F 表、直流稳压电源,测微头、振动平台。
有关旋钮的初始位置:差动放大器增益旋钮打到最小,电压表置2V 档,直流稳压电源置2V 档,主、副电源关闭。
三、实验步骤:(1)了解霍尔式传感器的结构及实验仪上的安装位置,熟悉实验面板上霍尔片的符号,霍尔片安装在实验仪的振动圃盘上,两个半圆永久磁钢固定在实验仪的顶板上,二者组合成霍尔式传感器。
(2)开启主、副电源将差动放大器调零后,增益置接近最小,使得霍尔片在磁场中位移时V /F 表读数明显变化,关闭主,副电源,根据图1接线,W 1、r 为电桥单元的直流电桥平衡网络。
(3)装好测微头,调节测微头与振动台吸合并使霍尔片置于半圆磁钢上下正中位置。
(4)开启主、副电源,调整W1使电压表指示为零。
(5)上下旋动测微头,记下电压表读数,建议每隔0.2mm 读一个数,将读数填入下表:作出V —X 曲线,指出线性范围,求出灵敏度,关闭主、副电源。
可见,本实验测出的实际上是磁场情况,它的线性越好,位移测量的线性度也越好,图1 接线图它的变化越陡,位移测量的灵敏度也越大。
(6)实验完毕,关闭主、副电源,各旋钮置初始位置。
四、实验数据及处理V—X曲线从图中可以看出:线性范围电压为,位移为用最小二乘法求得拟合直线方程:y=0.1851x -2.209灵敏度:a=—0.1851线性范围:-0.114V——0.146V五、心得体会通过实验我们更深程度的了解了霍尔传感器的特性。
对霍尔传感器的对线性度,灵敏度等概念也有了进一步的理解。
实验中灵敏度也是比较大的,线性度也比较好,说明霍尔传感器所在的磁感应强度比较理想。
在多次测量数据后,通过matlab工具进行数据处理,得出的曲线更接近霍尔传感器的固有特性。
但是我们实际运用的时候只是用三分之一的量程到三分之二量程这一段。
传感器与检测技术实验报告课程名称:传感器与检测技术实验项目:电势型传感器实验实验地点:专业班级:学号:姓名:指导教师:2013年11 月11 日实验一线性霍尔传感器位移特性实验一、实验目的:了解霍尔式传感器原理与应用。
二、基本原理:本实验采用的霍尔式位移传感器是由线性霍尔元件、永久磁钢组成,霍尔式位移传感器的工作原理和实验电路原理如图所示。
将磁场强度相同的两块永久磁钢同极性相对放置着,线性霍尔元件置于两块磁钢间的中点,其磁感应强度为0,(a)工作原理(b)实验电路原理设这个位置为位移的零点,即X=0,因磁感应强度B=0,故输出电压U H=0。
当霍尔元件沿X轴有位移时,由于B≠0,则有一电压U H输出,U H经差动放大器放大输出为V。
V与X有一一对应的特性关系。
三、需用器件与单元:主机箱中的±2V~±10V直流稳压电源、±15V直流稳压电源、电压表;霍尔传感器实验模板、霍尔传感器、测微头。
四、实验步骤:调节测微头的微分筒,使微分筒的0刻度线对准轴套的10mm 刻度线。
按示意图安装、接线,将主机箱上的电压表量程切换开关打到2V档,±2V~±10V直流稳压电源调节到±4V档。
检查接线无误后,开启主机箱电源,移动测微头的安装套,使传感器的PCB板处在两园形磁钢的中点位置时,拧紧紧固螺钉。
再调节RW1使电压表显示0。
测位移使用测微头时,当来回调节微分筒使测杆产生位移的过程中本身存在机械回程差,为消除这种机械回差可用单行程位移方法实验:顺时针调节测微头的微分筒3周,记录电压表读数作为位移起点。
以后,反方向调节测微头的微分筒,每隔△X=0.1mm从电压表上读出输出电压Vo值,将读数填入表表17 霍尔传感器(直流激励)位移实验数据根据表17数据作出V-X实验曲线,分析曲线在不同测量范围(±0.5mm、±1mm、±2mm)时的灵敏度和非线性误差。
实验完毕,关闭电源。
实验二磁电式传感器测转速实验一、实验目的:了解磁电式测量转速的原理。
二、基本原理:磁电传感器是一种将被测物理量转换成为感应电势的有源传感器。
本实验应用动磁式磁电传感器,实验原理框图如图所示。
当转动盘上嵌入6个磁钢时,转动盘每转一周磁电传感器感应电势e产生6次的变化,感应电势e通过放大、整形由频率表显示f,转速n=10f。
三、需用器件与单元:主机箱中的转速调节0~24V直流稳压电源、电压表、频频\转速表;磁电式传感器、转动源。
四、实验步骤:请按图示意安装、接线并按照上述的实验步骤做实验。
实验完毕,关闭电源。
实验三压电式传感器测振动实验一、实验目的:了解压电传感器的原理和测量振动的方法。
二、基本原理:压电式传感器是一和典型的发电型传感器,其传感元件是压电材料,它以压电材料的压电效应为转换机理实现力到电量的转换。
1、压电效应:压电材料受到外力作用时,在发生变形的同时内部产生极化现象,它表面会产生符号相反的电荷。
当外力去掉时,又重新回复到原不带电状态,当作用力的方向改变后电荷的极性也随之改变,这种现象称为压电效应。
2、压电晶片及其等效电路如图所示。
当压电晶片受到力的作用时,便有电荷聚集在两极上,一面为正电荷,一面为等量的负电荷。
这种情况和电容器十分相似,所不同的是晶片表面上的电荷会随着时间的推移逐渐漏掉。
从结构上看,它又是一个电容器。
因此通常将压电元件等效为一个电荷源与电容相并联的电路如所示。
压电传感器的输出,理论上应当是压电晶片表面上的电荷Q。
根据图可知测试中也可取等效电容Ca 上的电压值,作为压电传感器的输出。
因此,压电式传感器就有电荷和电压两种输出形式。
3、压电式加速度传感器和放大器等效电路压电传感器的输出信号很弱小,必须进行放大,压电传感器所配接的放大器有两种结构形式:一种是带电阻反馈的电压放大器;另一种是带电容反馈的电荷放大器,其输出电压与输入电荷量成正比。
电压放大器测量系统的输出电压对电缆电容C c敏感。
当电缆长度变化时,C c就变化,使得放大器输入电压e i变化,系统的电压灵敏度也将发生变化。
电荷放大器则克服了上述电压放大器的缺点。
它是一个高增益带电容反馈的运算放大器。
4、压电加速度传感器实验原理图压电加速度传感器实验原理、电荷放大器由所示。
三、需用器件与单元:主机箱±15V直流稳压电源、低频振荡器;压电传感器、压电传感器实验模板、移相器/相敏检波器/滤波器模板;振动源、双踪示波器。
四、实验步骤:按图所示将压电传感器安装在振动台面上,振动源的低频输入接主机箱中的低频振荡器,其它连线按图示意接线。
将主机箱上的低频振荡器幅度旋钮逆时针转到底,调节低频振荡器的频率在6~8Hz。
调节低频振荡器的幅度使振动台明显振动。
用示波器的两个通道[正确选择双踪示波器的“触发”方式及其它设置,同时观察低通滤波器输入端和输出端波形;在振动台正常振动时用手指敲击振动台同时观察输出波形变化。
改变低频振荡器的频率,观察输出波形变化。
实验完毕,关闭电源。
实验四Pt100铂电阻测温特性实验一、实验目的:了解Pt100热电阻—电压转换方法及Pt100热电阻测温特性与应用。
二、基本原理:利用导体电阻随温度变化的特性,可以制成热电阻,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。
三、需用器件与单元:主机箱中的智能调节器单元、电压表、转速调节0~24V 电源、±15V 直流稳压电源、±2V ~±10V 直流稳压电源;温度源、Pt100热电阻二支、温度传感器实验模板;压力传感器实验模板、421位数显万用表。
四、实验步骤:温度传感器实验模板放大器调零:按图示意接线。
将主机箱上的电压表量程切换开关打到2V 档,调节温度传感器实验模板中的RW2顺时针转到底,再调节RW3使主机箱的电压表显示为0。
关闭主机箱电源。
调节温度传感器实验模板放大器的增益K 为10倍:按图示意接线,检查接线无误后,合上主机箱电源开关,调节压力传感器实验模板上的RW2,使压力传感器实验模板中的放大器输出电压为0.020V ;再将0.020V 电压输入到温度传感器实验模板的放大器中,再调节温度传感器实验模板中的增益电位器RW2,使温度传感器实验模板放大器的输出电压为0.200V 。
关闭电源。
用万用表200欧姆档测量并记录Pt100热电阻在室温时的电阻值,三根引线中同色线为热电阻的一端,异色线为热电阻的另一端。
Pt100热电阻测量室温时的输出:撤去压力传感器实验模板。
将主机箱中的±2V ~±10V 直流稳压电源调节到±2V 档;电压表量程切换开关打到2V 档。
再按图示意接线,待电压表显示不再上升处于稳定值时记录室温时温度传感器实验模板放大器的输出电压Vo 。
关闭电源。
保留图的接线同时将实验传感器Pt100铂热电阻插入温度源中,温度源的温度控制接线按图示意接线。
将主机箱上的转速调节旋钮顺时针转到底,将调节器控制对象开关拨到Rt.Vi 位置。
检查接线无误后合上主机箱电源,再合上调节器电源开关和温度源电源开关,将温度源调节控制在40℃,待电压表显示上升到平衡点时记录数据。
温度源的温度在40℃的基础上,可按Δt=10℃增加温度设定温度源温度值,待温度源温度平衡时读取主机箱电压表的显示值并填入表30。
表30 Pt100热电阻测温实验数据表30中的Rt数据值根据Vo、Vc值计算:Rt=R3[K(R1+RW1)Vc-(R4+R1+RW1)V o]/[KVcR4+(R4+R1+RW1)V o]。
式中:K=10;R3=5000Ω;R4=5000Ω;R1+RW1=100Ω;Vc =4V;V o为测量值。
将计算值填入表30中,画出t(℃)—Rt(Ω)实验曲线并计算其非线性误差。
再根据以下附表1 的Pt100热电阻与温度t的对应表对照实验结果。
最后将调节器实验温度设置到40℃,待温度源回到40℃左右后实验结束。
关闭所有电源。
【感想】本实验我了解了线性霍尔传感器、磁电式传感器、压电式传感器和Pt100铂电阻,他们分别可以测量位移、转速、振动、温度。
霍尔传感器是根据霍尔效应制作的一种磁场传感器,霍尔电压随磁场强度的变化而变化,磁场越强,电压越高,磁场越弱,电压越低。
磁电式传感器是利用电磁感应原理,将输入运动速度变换成感应电势输出的传感器。
它不需要辅助电源,就能把被测对象的机械能转换成易于测量的电信号,是一种有源传感器。
压电式传感器基于压电效应的传感器。
是一种自发电式和机电转换式传感器。
它的优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。
缺点是某些压电材料需要防潮措施,而且输出的直流响应差。
PT100铂电阻是铂热电阻,简称为:PT100铂电阻,它的阻值会随着温度的变化而改变。
通过这次实验我了解了自己之前从没见到过的的PT100铂电阻,以及它的设计原理、应用范围、分度表、组成部分等,随着现代化技术的发展,越来越多的传感器出现在我们的生活中,有更多的传感器需要我们去学习和了解。