绵阳市高2013届一诊考试——理数
- 格式:doc
- 大小:1.04 MB
- 文档页数:9
绵阳市高中2021级第一次诊断性考试理科数学参考答案及评分意见一、选择题:本大题共12小题,每小题5分,共60分.BCDAC ADBBD CC二、填空题:本大题共4小题,每小题5分,共20分.13.714.15.916.-1三、解答题:本大题共6小题,共70分.17.解:(1)由a 1,a 2,a 4成等比数列,则4122a a a ⋅=,··································2分∴)6()2(1121+⋅=+a a a ,可解得21=a ,···················································································3分∴数列{a n }的前n 项和n n d n n a n S n +=⋅-⋅+⋅=212)1(;·······························5分(2)n n a n n n b b 2)2(2(21===++①,················································6分当1=n 时,221=+b b ,可得12=b ,························································7分可得1212+++=+n n n b b ②,······································································8分由②式-①式,得n n n n n b b 22212=-=-++,·············································9分∴22442222222)()()(b b b b b b b b n n n n n +-+-+-=--- 122224222+++=-- n n ·······································································11分14(14)114n --=+-413n -=.·························································································12分18.解:(1)∵38πωπ==T ,则83=ω,·······················································1分又2||1)8tan(3(πϕϕππ<=+=,f ,···························································2分∴8πϕ=,························································································4分∴883tan()(π+=x x f ;········································································5分(2)由题意,)88383tan()(πλ++=x x g ,···················································6分∵8tan(8tan )0(ππ-=-=-f ·································································7分∴)8tan(883323tan()0()4(ππλππ-=++-=,得由f g ·····································8分∴∈+-=+k k ,πππλ832783Z ,······························································9分∴0381211>∈+-=λππλ,又,Z k k ,·····················································10分∴λ的最小值为74π.··········································································12分19.解:(1)∵232()(2)(2)=22(2)(2)f x x m x m x m x mx m m =+-+--+--为奇函数,∴2(2)0(2)0m m m --=⎧⎨--=⎩,解得:m =2.···························································5分(2)当m >0时,2x 2+m >0,∴函数2()(2)(2)f x x m x m =+-+不可能有两个零点.································6分当m <0时,由()0f x =,解得:x =m -2,·································7分要使得f (x )仅有两个零点,则2m -=,··········································8分即22780m m -+=,此方程无解.故m =0,即32()24f x x x =+,·······························································9分令32()()3243h x f x x x =-=+-,则2()682(34)h x x x x x '=+=+,()0h x '>,解得:0x >或43x <-,()0h x '<解得:403x -<<,故()h x 在4()3,-∞-,(0),+∞上递增,在4(0)3,-上递减,···························10分又417(0327h -=-<,故函数()3y f x =-仅有一个零点.·························································12分20.解:(1)∵cos(C -B )sin A=cos(C -A )sin B∴(cos C cos B+sin C sin B )sin A=(cos C cos A+sin C sin A )sin B ·································2分∴cos C cos B sin A=cos C cos A sin B ·······························································3分又∵△ABC 为斜三角形,则cos C ≠0,∴cos B sin A =cos A sin B ,·········································································5分∴sin(A -B )=0,又A ,B 为△ABC 的内角,∴A=B ;···························································································6分(2)由△ABC 的面积S=2a ,∴S=12ab sin C=2a ,则b sin C=1,即1b=sin C ,··········································7分由S=12ac sin B=2a ,则c sin B=1,即1c =sin B ,··········································8分由(1)知A =B 则a=b ,∴2211c a-=sin 2B -sin 2C ,······································································9分又sin C =sin(A+B )=sin2B ,∴2211c a-=sin 2B -sin 22B=sin 2B -4cos 2B sin 2B=sin 2B -4(1-sin 2B )sin 2B ·················10分令sin 2B=t ,令f (t )=t -4(1-t )t=4t 2-3t ,又因为0<sin 2B<1,即0<t<1,∴当t=83时,f (t )取最小值,且f (t )min =916-,············································11分综上所述:2211c a -的最小值为916-.·······················································12分21.解:(1)当2a =时,()(ln 22)ln f x x x x =-+,1ln 222(1)(ln 1)()(2)ln x x x x f x x x x x-+--+'=-+=,····································2分令()0f x '>得:11e x <<;令()0f x '<得:10ex <<或1x >,·······················3分∴()f x 的单调递减区间为:1(0e ,和(1+),∞;单调递增区间为:1(1)e.·····5分(2)2e ()x f x x ax a x-+-≤等价于ln 2e (ln )(ln 1)0≥x x x x a x x ---+--(*)·········6分令()ln t g x x x ==-,则1()x g x x-'=,∴()g x 在(01),上递减,在(1+),∞上递增。
保密★启用前【考试时间: 2015年11月2日9:00~11:30】绵阳市高中2013级第一次诊断性考试理科综合物理部分第I卷(选择题共48分)选择题:本题共8小题,每小题6分。
在每小题给出的四个选项中,第l—4题只有一项符合题目要求,第5—8题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分。
1.已知一个物体在斜面上沿不同方向都做匀速直线运动。
下列说法正确的是A.物体受到的合力都为零B.物体运动过程中机械能一定守恒C.物体克服摩擦力做功都等于重力做功D.物体运动的速度大小只跟物体与斜面间的滑动摩擦力大小有关2.如图所示,一个物体在O点以初速度v开始做曲线运动,已知物体只受恒力F作用,则物体速度大小变化情况是A.先增大后减小B.先减小后增大C.不断增大D.不断减小3.甲质点做直线运动的s-t图像如图a所示,乙质点做直线运动的v-t图像如图b所示。
则A.甲质点在0-3s的位移为2mB.甲质点在0-ls内做匀速直线运动C.乙质点在0-ls内做匀速直线运动D.乙质点在1-3s内做匀速直线运动4.如图,带有竖直支柱的斜面固定在水平地面上,光滑的小球被轻质细线和轻弹簧系住静止于斜面上,弹簧处于拉伸状态。
现剪断细线,小球沿斜面向下运动的过程中A.弹簧自然长度前加速运动,之后减速运动B.弹簧自然长度前加速运动,之后先加速运动后减速运动C.加速度先增大后减小D.加速度一直减小5.摩托车通过质量不可忽略的钢丝绳拖动货物前行,下列说法中正确的是A.摩托车启动过程中,钢绳拉货物的力大于货物拉钢绳的力B.摩托车启动过程中,摩托车拉钢绳的力大于钢绳拉货物的力C.摩托车平稳(匀速)行驶过程中,摩托车拉钢绳的力等于钢绳拉货物的力D.不论摩托车处于怎样的运动状态,摩托车拉钢绳的力与钢绳拉货物的力都相等6.四颗人造卫星a、b、c、d在地球大气层外的圆形轨道上运行,其中a、c的轨道半径相同,b、d在同一个圆轨道上,b、c轨道在同一平面上。
绵阳市开元中学高2014级高三一轮复习绵阳市“一诊”考试(理工类)数学 解答题专题:三角函数与解三角形编辑:王小凤 学生姓名:(2010级,17)设向量()cos 2,1a x =,()2b x = ,x R ∈,函数,()f x a b =⋅.(I)求函数()f x 的最小正周期及对称轴方程;(II)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的值域..(2010级,20)在ABC ∆中,角,,A B C 的对边分别是,,a b c ,若sin ()sin sin .a A a b B c C =-+(I)求角C 的值:(II) 若2c =,且sin sin()3sin2C B AA +-=,求ABC ∆的面积.(2011级,16)已知函数sin 2(sin cos )()cos x x x f x x-=.(I )求函数()f x 的定义域及最大值; (II)求使()0f x ≥成立的x 的取值集合.(2011级,18)安通驾校拟围着一座山修建一条环形训练道路OASBCD ,道路的平面图如图所示(单位:km ),曲线段ASB 为函数()[]sin 0,01,,0,32y A x A x πωϕωϕ⎛⎫=+><<<∈ ⎪⎝⎭ 的图象,且最高点为()1,2S ,折线段AOD为固定线路,其中AO =4OD =,折线段BCD 为可变线路,但为保证驾驶安全,限定120BCD ︒∠=.(I )求A ,ω,ϕ的值; (II)应如何设计,才能使折线段道路BCD 最长?(2012级,16)向量()sin ,cos m x x ωω= ,()cos ,cos n x x ωω=,其中0ω>,函数()21f x m n =⋅-的最小正周期为π.(I)求ω的值;(II)求函数)(x f 在,64ππ⎡⎤⎢⎥⎣⎦上的最大值.(2012级,18)(2012级,16)在ABC ∆中,a ,b ,c 分别是内角A ,B ,C 的对边,51cos 5=∠=ABC AB ,. (I)若2=BC ,求ACB ∠sin 的值; (II) 若D 是边AC 中点,且27=BD求边AC的长.(2013级,16)已知向量(cos ,1sin ),m αα=-(cos ,sin )()n R ααα=-∈(I)若m n ⊥,求角α的值;(II)若||m n -=cos2α的值.(2013级,19)已知如图,在Rt ABC ∆中,60A ︒∠=,6AB =,点D 、E 是斜边AB 上两点. (I)当点D 是线段AB 靠近A 的一个三等分点时,求CD CA⋅的值;(II)当点D E 、在线段AB 上运动时,且30DCE ︒∠=,设ACD θ∠=,试用θ表示DCE ∆的面积S ,并求S 的取值范围.。
绵阳市高2012级第一次诊断性考试数学(理)参考解答及评分标准一、选择题:本大题共12小题,每小题5分,共60分.BBCDA DAACC BC二、填空题:本大题共4小题,每小题4分,共16分.13.1000 14.2x -y -e =0 15.23- 16.①④三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.解:由|x -a |≤4有-4≤x -a ≤4,解得a -4≤x ≤a +4,即A ={x |a -4≤x ≤a +4}. ……………………………………………………2分 由116<+x 可变形为015<+-x x ,等价于(x +1)(x -5)>0,解得x <-1或x >5, 即B ={}51>-<x x x 或. ………………………………………………………4分 (Ⅰ)由A ∩B =(]75,知a +4=7,解得a =3. ……………………………7分 (Ⅱ)∵ p 是q 的充分不必要条件,∴ a +4<-1,或a -4>5, …………………………………………………10分 解得a <-5或a >9. ………………………………………………………12分18.解:(Ⅰ)设共有n 枚硬币,根据题意得 922111==-nn C C P ,解得n =9. ……………………………………………………2分 (Ⅱ)ξ=1,2,3,4,P (ξ=1)=922918=C C ,P (ξ=2)9227162928=⋅=C C C C ,P (ξ=3)=92251427262938=⋅⋅C C C C C C , P (ξ=4)931252427262928=⋅⋅⋅=C C C C C C .…………………………………………………10分 ∴ ξ的分布列为∴ 394939291=⨯+⨯+⨯+⨯=ξE .………………………………………12分 19.解:(Ⅰ)设{a n }的公比为q ,则q >0,由已知有⎩⎨⎧⋅==+,,)(9)(164112111q a a q a q a a 可解得31=q (31-=q 已舍去),311=a . ∴ n n n a )31()31(311=⨯=-. ……………………………………………………6分 (Ⅱ)∵ 2)1(-2)1(3213213)31()31()31()31()31()31(3++++++===⋅⋅⋅⋅=n n n n n n b n , ∴ 2)1(1+-=n n b n ,即)111(2)1(2+--=+-=n n n n b n .………………………9分∴n n b b b b S ++++= 321)1113121211(2+-++-+--=n n)111(2+--=n12+-=n n. ………………………………………………………………12分 20.解:(Ⅰ)由题意得h (x )的图象经过(3,4),代入得231294-+-=m,解得m =7.∴23223)2(274)(22-+-=-+-=-+-=x x x x x x x x h ,∴x x x h x f 3)2()(+=+=. …………………………………………………7分 (Ⅱ)∵x ax x g ++=3)(,∴ 由已知有xa x ++3≥8有a ≥-x 2+8x -3,令t (x )=-x 2+8x -3,则t (x )=-(x -4)2+13,于是t (x )在(0,3)上是增函数. ∴ t (x )max =12.∴ a ≥12.……………………………………………………………………12分 21.解:(Ⅰ)证明:令x =y =0时,则由已知有)00100()0()0(⨯--=-f f f ,可解得f (0)=0.再令x =0,y ∈(-1,1),则有)010()()0(yyf y f f ⋅--=-,即f (-y )=-f (y ),∴ f (x )是(-1,1)上的奇函数.……………………………………………4分(Ⅱ)令x =a n ,y =-a n ,于是)12()()(2nnn n a a f a f a f +=--, 由已知得2f (a n )=f (a n+1),∴2)()(1=+n n a f a f , ∴ 数列{f (a n )}是以f (a 1)=1)21(-=f 为首项,2为公比的等比数列.∴.221)(11---=⋅-=n n n a f ……………………………………………………8分(III )由(II)得f (a n +1)=-2n,于nb n 21=. ∴ T n = b 1+ b 2+ b 3+…+ b n)131211(21n ++++= , )12131211(2112+++++=+n T n .∴ )121312111(2112++++++++=-+n n n n T T n n . 令).1212111(21)(++++++=n n n n k于是)3213121(21)1(++++++=+n n n n k , ∴ 0)32)(1(41)11321221(21)()1(<++-=+-+++=-+n n n n n n k n k . ∴ k (n +1)<k (n ),即k (n )在N *上单调递减,∴ k (n )max =k (1)=125)131211(2113=-++=-T T ,∴15m ≥125即m ≥425. ∵ m ∈N *,∴ m 的最小值为7.…………………………………………………………12分22.解:(Ⅰ)x x a x F ln 1)(+-=,于是)(xax x F -='. ①当a ≤0时,)(x F '≥0,∴ F (x )在(0,3)上是增函数;②当0<a <3时,x ∈(0,a )时,)(x F '≤0,∴ F (x )在(0,a )上是减函数;x ∈(a ,3)时,)(x F '≥0,∴ F (x )在(a ,3)上是增函数.③当a ≥3时,)(x F '≤0,∴ F (x )在(0,3)上是减函数.………………4分(Ⅱ)令a =1,则x x x F ln 11)(+-=,于是21)(xx x F -=', ∴ F (x )在(0,1)上是减函数,在(1,+∞)上是增函数. ∴ 在区间(0,+∞)上F (x )有F (x )min =F (1)=0. ∵)(st F ≥F (1)=0, 即st t s ln 1+-≥0,整理得st ≥t se e -⋅,即t ste ≥se ,即t t e s ≥s t e t.………………………………8分(III )由已知得)1(2)12(22+=++x g m x a f ,代入整理得414)1ln(2122+-+=x x m . 于是题意即为直线y =m 与y =414)1ln(2122+-+x x 的图象有4个不同的交点. 令414)1ln(21)(22+-+=x x x h , 则)1(2)1)(1()(2++-='x x x x x h .可绘出()的大致图象如右. 由图象可知当m ∈(41,2ln 21)时满足有四个不同的交点.∴存在实数)2ln 2141(, m 时满足条件. ………………………………………………………………………………14分。
保密★启用前【考试时间: 2015年11月2日9:00~11:30】绵阳市高中2013级第一次诊断性考试理科综合物理部分第I卷(选择题共48分)选择题:本题共8小题,每小题6分。
在每小题给出的四个选项中,第l—4题只有一项符合题目要求,第5—8题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分。
1.已知一个物体在斜面上沿不同方向都做匀速直线运动。
下列说法正确的是A.物体受到的合力都为零B.物体运动过程中机械能一定守恒C.物体克服摩擦力做功都等于重力做功D.物体运动的速度大小只跟物体与斜面间的滑动摩擦力大小有关2.如图所示,一个物体在O点以初速度v开始做曲线运动,已知物体只受恒力F作用,则物体速度大小变化情况是A.先增大后减小B.先减小后增大 C.不断增大D.不断减小3.甲质点做直线运动的s-t图像如图a所示,乙质点做直线运动的v-t图像如图b所示。
则A.甲质点在0-3s的位移为2mB.甲质点在0-ls内做匀速直线运动C.乙质点在0-ls内做匀速直线运动D.乙质点在1-3s内做匀速直线运动4.如图,带有竖直支柱的斜面固定在水平地面上,光滑的小球被轻质细线和轻弹簧系住静止于斜面上,弹簧处于拉伸状态。
现剪断细线,小球沿斜面向下运动的过程中A.弹簧自然长度前加速运动,之后减速运动B.弹簧自然长度前加速运动,之后先加速运动后减速运动C.加速度先增大后减小D.加速度一直减小5.摩托车通过质量不可忽略的钢丝绳拖动货物前行,下列说法中正确的是A.摩托车启动过程中,钢绳拉货物的力大于货物拉钢绳的力B.摩托车启动过程中,摩托车拉钢绳的力大于钢绳拉货物的力C.摩托车平稳(匀速)行驶过程中,摩托车拉钢绳的力等于钢绳拉货物的力D.不论摩托车处于怎样的运动状态,摩托车拉钢绳的力与钢绳拉货物的力都相等6.四颗人造卫星a、b、c、d在地球大气层外的圆形轨道上运行,其中a、c的轨道半径相同,b、d在同一个圆轨道上,b、c轨道在同一平面上。
绵阳市高2012级第一次诊断性考试数学(理)参考解答及评分标准一、选择题:本大题共12小题,每小题5分,共60分.BBCDA DAACC BC二、填空题:本大题共4小题,每小题4分,共16分.13.1000 14.2x -y -e =0 15.23- 16.①④三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.解:由|x -a |≤4有-4≤x -a ≤4,解得a -4≤x ≤a +4,即A ={x |a -4≤x ≤a +4}. ……………………………………………………2分 由116<+x 可变形为015<+-x x ,等价于(x +1)(x -5)>0,解得x <-1或x >5, 即B ={}51>-<x x x 或. ………………………………………………………4分 (Ⅰ)由A ∩B =(]75,知a +4=7,解得a =3. ……………………………7分 (Ⅱ)∵ p 是q 的充分不必要条件,∴ a +4<-1,或a -4>5, …………………………………………………10分 解得a <-5或a >9. ………………………………………………………12分18.解:(Ⅰ)设共有n 枚硬币,根据题意得 922111==-nn C C P ,解得n =9. ……………………………………………………2分 (Ⅱ)ξ=1,2,3,4,P (ξ=1)=922918=C C ,P (ξ=2)9227162928=⋅=C C C C ,P (ξ=3)=92251427262938=⋅⋅C C C C C C , P (ξ=4)931252427262928=⋅⋅⋅=C C C C C C .…………………………………………………10分 ∴ ξ的分布列为∴ 394939291=⨯+⨯+⨯+⨯=ξE .………………………………………12分 19.解:(Ⅰ)设{a n }的公比为q ,则q >0,由已知有⎩⎨⎧⋅==+,,)(9)(164112111q a a q a q a a 可解得31=q (31-=q 已舍去),311=a . ∴ n n n a )31()31(311=⨯=-. ……………………………………………………6分 (Ⅱ)∵ 2)1(-2)1(3213213)31()31()31()31()31()31(3++++++===⋅⋅⋅⋅=n n n n n n b n , ∴ 2)1(1+-=n n b n ,即)111(2)1(2+--=+-=n n n n b n .………………………9分∴n n b b b b S ++++= 321)1113121211(2+-++-+--=n n)111(2+--=n12+-=n n. ………………………………………………………………12分 20.解:(Ⅰ)由题意得h (x )的图象经过(3,4),代入得231294-+-=m,解得m =7.∴23223)2(274)(22-+-=-+-=-+-=x x x x x x x x h ,∴x x x h x f 3)2()(+=+=. …………………………………………………7分 (Ⅱ)∵x ax x g ++=3)(,∴ 由已知有xa x ++3≥8有a ≥-x 2+8x -3,令t (x )=-x 2+8x -3,则t (x )=-(x -4)2+13,于是t (x )在(0,3)上是增函数. ∴ t (x )max =12.∴ a ≥12.……………………………………………………………………12分 21.解:(Ⅰ)证明:令x =y =0时,则由已知有)00100()0()0(⨯--=-f f f ,可解得f (0)=0.再令x =0,y ∈(-1,1),则有)010()()0(yyf y f f ⋅--=-,即f (-y )=-f (y ),∴ f (x )是(-1,1)上的奇函数.……………………………………………4分(Ⅱ)令x =a n ,y =-a n ,于是)12()()(2nnn n a a f a f a f +=--, 由已知得2f (a n )=f (a n+1),∴2)()(1=+n n a f a f , ∴ 数列{f (a n )}是以f (a 1)=1)21(-=f 为首项,2为公比的等比数列.∴.221)(11---=⋅-=n n n a f ……………………………………………………8分(III )由(II)得f (a n +1)=-2n,于nb n 21=. ∴ T n = b 1+ b 2+ b 3+…+ b n)131211(21n ++++= , )12131211(2112+++++=+n T n .∴ )121312111(2112++++++++=-+n n n n T T n n . 令).1212111(21)(++++++=n n n n k于是)3213121(21)1(++++++=+n n n n k , ∴ 0)32)(1(41)11321221(21)()1(<++-=+-+++=-+n n n n n n k n k . ∴ k (n +1)<k (n ),即k (n )在N *上单调递减,∴ k (n )max =k (1)=125)131211(2113=-++=-T T ,∴15m ≥125即m ≥425. ∵ m ∈N *,∴ m 的最小值为7.…………………………………………………………12分22.解:(Ⅰ)x x a x F ln 1)(+-=,于是)(xax x F -='. ①当a ≤0时,)(x F '≥0,∴ F (x )在(0,3)上是增函数;②当0<a <3时,x ∈(0,a )时,)(x F '≤0,∴ F (x )在(0,a )上是减函数;x ∈(a ,3)时,)(x F '≥0,∴ F (x )在(a ,3)上是增函数.③当a ≥3时,)(x F '≤0,∴ F (x )在(0,3)上是减函数.………………4分(Ⅱ)令a =1,则x x x F ln 11)(+-=,于是21)(xx x F -=', ∴ F (x )在(0,1)上是减函数,在(1,+∞)上是增函数. ∴ 在区间(0,+∞)上F (x )有F (x )min =F (1)=0. ∵)(st F ≥F (1)=0, 即st t s ln 1+-≥0,整理得st ≥t se e -⋅,即t ste ≥se ,即t t e s ≥s t e t.………………………………8分(III )由已知得)1(2)12(22+=++x g m x a f ,代入整理得414)1ln(2122+-+=x x m . 于是题意即为直线y =m 与y =414)1ln(2122+-+x x 的图象有4个不同的交点. 令414)1ln(21)(22+-+=x x x h , 则)1(2)1)(1()(2++-='x x x x x h .可绘出()的大致图象如右. 由图象可知当m ∈(41,2ln 21)时满足有四个不同的交点.∴存在实数)2ln 2141(, m 时满足条件. ………………………………………………………………………………14分。
2013年四川省绵阳市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•绵阳一模)设集合A={2,3,4},B={0,1,2},则A∩B等于()A.{0} B.{0,1,2,3,4} C.{2} D.∅考点:交集及其运算.专题:阅读型.分析:集合A与集合B都是含有三个元素的集合,且有一个公共元素2,所以A∩B可求.解答:解:因为集合A={2,3,4},B={0,1,2},所以A∩B={2}.故选C.点评:本题考查了交集及其运算,两个集合的交集是有两个集合的公共元素组成的集合,是基础题.2.(5分)(2013•绵阳一模)命题P:“∀x∈R,cosx≥1”,则¬p是()A.∃x∈R,cos≥1B.∀x∈R,cos<1 C.∃x∈R,cosx<1 D.∀x∈R,cosx>1 考点:特称命题;命题的否定.专题:计算题.分析:利用全称命题:∀x∈M,p(x);的否定是特称命题∃x∈M,p(x)直接得到结果.解答:解:因为全称命题:∀x∈M,p(x);的否定是特称命题∃x∈M,p(x).所以命题P:“∀x∈R,cosx≥1”,则¬p是∃x∈R,cosx<1.故选C.点评:本题考查命题的否定,全称命题:∀x∈M,p(x);与特称命题∃x∈M,p(x)互为命题的否定.3.(5分)(2013•绵阳一模)已知数列{a n}为等差数列,且a6+a8=,则tan(a5+a9)的值为()A.B.﹣C.±D.﹣考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:由等差数列的性质可得,a5+a9=a6+a8=,然后求解正切函数值即可解答:解:由等差数列的性质可得,a5+a9=a6+a8=,∴tan(a5+a9)=tan=故选B点评:本题主要考查了等差数列的性质及特殊角的正切函数值的求解,属于基础试题4.(5分)(2009•湖南)如图,D,E,F分别是△ABC的边AB,BC,CA的中点,则()A.++=0 B.﹣+=0 C.+﹣=0 D.﹣﹣=0考点:向量加减混合运算及其几何意义.分析:模相等、方向相同的向量为相等向量,得出图中的相等向量,再由向量加法法则得选项.解答:解:由图可知=,==在△DBE中,++=0,即++=0.故选项为A.点评:考查向量相等的定义及向量加法的三角形法则.5.(5分)(2013•绵阳一模)己知f(x)=xsinx,则f′(π)=()A.O B.﹣1 C.πD.﹣π考点:导数的乘法与除法法则.专题:导数的概念及应用.分析:先对函数f(x)求导,进而可求出f′(π)的值.解答:解:∵f′(x)=sinx+xcosx,∴f′(π)=sinπ+πcosπ=﹣π.故选D.点评:本题考查导数的值,正确求导是解决问题的关键.6.(5分)(2013•绵阳一模)函数f(x)=e x﹣x﹣2的零点所在的区间为()A.(﹣1,0)B.(1,2)C.(0,1)D.(2,3)考点:函数零点的判定定理.专题:计算题.分析:将选项中各区间两端点值代入f(x),满足f(a)•f(b)<0(a,b为区间两端点)的为答案.解答:解:因为f(1)=e﹣3<0,f(2)=e2﹣e﹣2>0,所以零点在区间(1,2)上,故选:B.点评:本题考查了函数零点的概念与零点定理的应用,属于容易题.函数零点附近函数值的符号相反,这类选择题通常采用代入排除的方法求解.7.(5分)(2013•绵阳一模)设,则()A.c<b<a B.c<a<b C.a<b<c D.b<a<c考点:根式与分数指数幂的互化及其化简运算.专题:计算题.分析:利用幂函数的性质比较两个正数a,b的大小,然后推出a,b,c的大小即可.解答:解:因为y=是增函数,所以所以c<a<b故选B点评:本题考查根式与分数指数幂的互化及其化简运算,考查计算推理能力,是基础题.8.(5分)(2013•绵阳一模)已知函数f(x)=Asin(ωx+φ)(A>0,w>0,|φ|<),其导数f′(x)的部分图象如下图所示,则函数f(x)的解析式为:()A .f (x )=sin (2x+) B .f (x )=2in (2x+) C .f (x )=sin (2x ﹣) D .f (x )=2in (2x ﹣)考点: 由y=Asin (ωx+φ)的部分图象确定其解析式. 专题: 计算题. 分析: 通过导函数的图象求出Aω=2,T ,利用周期公式求出ω,通过函数图象经过的特殊点,求出φ,得到函数的解析式. 解答:解:由函数的图象可得Aω=2,T=4×=π,所以ω=2,A=1, 由导函数的图象,可知函数的图象经过(﹣),所以0=sin (﹣φ),所以φ=, 所以函数的解析式为:f (x )=sin (2x+).故选A . 点评: 本题是中档题,考查三角函数以及导函数的图象的应用,考查学生的视图能力、分析问题解决问题的能力,计算能力. 9.(5分)(2013•绵阳一模)已知定义在R 上的奇函数f (x )是(﹣∞,0]上的增函数,且f (1)=2,f (﹣2)=﹣4,设P={x|f (x+t )﹣4<0},Q={x|f (x )<﹣2}.若“x∈P”是“x∈Q”的充分不必要条件,则实数t 的取值范围是( )( ) A . t ≤﹣1 B . t >﹣1 C . t ≥3 D . t >3 考点: 必要条件、充分条件与充要条件的判断. 专题: 计算题. 分析: 根据定义在R 上的奇函数f (x )是(﹣∞,0]上的增函数,且f (1)=2,f (﹣2)=﹣4,可以画出f (x )的图象,然后再求出P 和Q 集合,根据“x∈P”是“x∈Q”的充分不必要条件可得P ⊆Q ,从而求出t 的范围;解答:解:∵定义在R上的奇函数f(x)是(﹣∞,0]上的增函数,且f(1)=2,f(﹣2)=﹣4,可得f(﹣1)=﹣2,f(2)=4,画出f(x)的图象:∵P={x|f(x+t)﹣4<0},Q={x|f(x)<﹣2},解得P={x|x<2﹣t},Q={x|x<﹣1},∵“x∈P”是“x∈Q”的充分不必要条件,∴P⊆Q,∴2﹣t<﹣1,解得t>3,当t=3,可得P=Q,不满足“x∈P”是“x∈Q”的充分不必要条件,∴t>3,故选D;点评:此题主要考查奇函数的定义及其应用,考查的知识点比较全面,利用了数形结合的方法,是一道中档题;10.(5分)(2009•四川)某企业生产甲、乙两种产品.已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13吨、B原料不超过18吨,那么该企业可获得最大利润是()A.12万元B.20万元C.25万元D.27万元考点:简单线性规划的应用.专题:应用题;压轴题.分析:先设该企业生产甲产品为x吨,乙产品为y吨,列出约束条件,再根据约束条件画出可行域,设z=5x+3y,再利用z的几何意义求最值,只需求出直线z=5x+3y过可行域内的点时,从而得到z值即可.解答:解:设该企业生产甲产品为x吨,乙产品为y吨,则该企业可获得利润为z=5x+3y,且联立解得由图可知,最优解为P(3,4),∴z的最大值为z=5×3+3×4=27(万元).故选D.点评:在解决线性规划的应用题时,其步骤为:①分析题目中相关量的关系,列出不等式组,即约束条件⇒②由约束条件画出可行域⇒③分析目标函数Z与直线截距之间的关系⇒④使用平移直线法求出最优解⇒⑤还原到现实问题中.11.(5分)(2013•绵阳一模)已知偶函数f(x)在区间[0,+∞)上满足f′(x)>0,则满足f(x2﹣2x)<f(x)的X的取值范围是()A.(1,3)B.(﹣∞,﹣3)∪(3,+∞)C.(﹣3,3)D.(﹣3,1)考点:利用导数研究函数的单调性;奇偶性与单调性的综合.专题:函数的性质及应用;导数的概念及应用.分析:根据导数符号可判断函数的单调性,再利用条件偶函数可把f(x2﹣2x)<f(x)转化为x2﹣2x与x间不等式,从而得到x的取值范围.解答:解:因为函数f(x)为偶函数,所以f(x2﹣2x)<f(x)等价于f(|x2﹣2x|)<f (|x|).又函数f(x)在区间[0,+∞)上满足f′(x)>0,所以函数f(x)在区间[0,+∞)上单调递增.所以|x2﹣2x|<|x|,两边平方并化简得x2(x﹣1)(x﹣3)<0,解得1<x<3.故选A.点评:本题为函数奇偶性、单调性及导数的综合题,考查了相关的基础知识及分析问题、解决问题的能力.解决本题的关键是去掉符号“f”,转化为自变量间的不等关系.12.(5分)(2013•绵阳一模)已知定义在R上的函数f(x)满足f(1)=1,f(1﹣x)=1﹣f(x),2f(x)=f(4x),且当0≤x1<x2≤1时,f(x1)≤f(x2),则f()等于()A.B.C.D.考点:函数的值.专题:计算题.分析:先求出f(),然后根据条件求出f,,最后根据函数的单调性,以及两边夹的性质可求出所求.解答:解:∵f(1)=1,f(1﹣x)=1﹣f(x)令x=得f()+f()=1即f()=∵2f(x)=f(4x)∴f(x)=f(4x)在f(x)=f(4x)中,令x=可得f()==在f(1﹣x)+f(x)=1中,令x=可得f()+f()=1即f()=同理可求f()=,f()=1﹣f()==,f()=1﹣f()==,f()=1﹣f()===,f()=1﹣=∵当0≤x1≤x2≤1时,f(x1)≤f(x2),∴==∴f=故选B点评:本题主要考查了抽象函数及其应用,考查分析问题和解决问题的能力,属于中档题二、填空题:本大题共4小题,每小题4分,共16分.13.(4分)(2013•绵阳一模)已知∥,则x= ﹣4 .考点:平行向量与共线向量.分析:用两向量共线坐标形式的充要条件公式:坐标交叉相乘相等.解答:解:∵,∴2×(﹣6)=3x∴x=﹣4故答案为﹣4点评:考查两向量共线坐标形式的充要条件公式.14.(4分)(2013•绵阳一模)已知偶函数f(x)=(n∈Z)在(0,+∞)上是增函数,则n= 2 .考点:奇偶性与单调性的综合.专题:函数的性质及应用.分析:结合幂函数在(0,+∞)上的单调性与指数的关系,我们可以求出n的取值范围为1,2,3,结合幂函数的奇偶性讨论后,可得答案.解答:解:若幂函数f(x)=(n∈Z)在(0,+∞)上是增函数,则>0,即4n﹣n2>0,又∵n∈Z∴n∈{1,2,3}又∵n=1,或n=3时=,此时幂函数f(x)为非奇非偶函数n=2时=2,幂函数f(x)=x2为偶函数满足要求故答案为:2点评:本题考查的知识点是幂函数的奇偶性和单调性及幂函数解析式的求法,幂函数是新课标的新增内容,本题是求幂函数解析式的经典例题,从单调性入手进行解答是解答本题的关键.15.(4分)(2013•绵阳一模)已知{a n}是递增数列,且对于任意的n∈N*,a n=n2+λn恒成立,则实数λ的取值范围是(﹣3,+∞).考点:数列与函数的综合.专计算题.题:分析:由对于任意的n∈N*,a n=n2+λn恒成立,知a n+1﹣a n=(n+1)2+λ(n+1)﹣n2﹣λn=2n+1+λ,由{a n}是递增数列,知a n+1﹣a n>a2﹣a1=3+λ>0,由此能求出实数λ的取值范围.解答:解:∵对于任意的n∈N*,a n=n2+λn恒成立,a n+1﹣a n=(n+1)2+λ(n+1)﹣n2﹣λn=2n+1+λ,∵{a n}是递增数列,∴a n+1﹣a n>0,又a n+1﹣a n=(n+1)2+λ(n+1)﹣n2﹣λn=2n+1+λ∴当n=1时,a n+1﹣a n最小,∴a n+1﹣a n>a2﹣a1=3+λ>0,∴λ>﹣3.故答案为:(﹣3,+∞).点评:本题考查实数的取值范围的求法,具体涉及到数列的性质,解题时要认真审题,注意函数思想的灵活运用,是基础题.16.(4分)(2013•绵阳一模)设所有可表示为两整数的平方差的整数组成集合M.给出下列命题:①所有奇数都属于M.②若偶数2k属于M,则k∈M.③若a∈M,b∈M,则ab∈M.④把所有不属于M的正整数从小到大依次排成一个数列,则它的前n项和S n∈M.其中正确命题的序号是①③.(写出所有正确命题的序号)考点:命题的真假判断与应用.分析:根据已知中集合M的定义,根据集合元素与集合关系的判断,我们分别推证①③正确,举反例推翻②④可得答案.解答:解:∵所有可表示为两整数的平方差的整数组成集合M.设奇数2k+1 (k∈Z)则:2k+1=(k+1)2﹣k2,故①所有奇数都属于M正确;由12=42﹣22得,12∈M,但6∉M,故②若偶数2k属于M,则k∈M错误;∵a∈M,b∈M,设a=m2﹣n2,b=p2﹣q2,则ab=(m2﹣n2)(p2﹣q2)=(mp)2+(nq)2﹣(mq)2﹣(pn)2=(mp+nq)2﹣(mq+np)2∈M,故③正确;当n=1时,S n即为第一个不属于M的正整数,此时S n∉M,故④错误;故答案为:①③点评:本题考查的知识点是命题的真假判断与应用,其中熟练掌握集合M的元素的特征是解答的关键.三、解答题:本大题共6小题,共74分.解答应写出文说明、证明过程或演算步骤. 17.(12分)(2013•绵阳一模)设向量=(cos2x,1),=(1,sin2x),x∈R,函数f (x)=•.(I )求函数f(x)的最小正周期及对称轴方程;(II)当x∈[0,]时,求函数f(x)的值域.考点:三角函数中的恒等变换应用;数量积的坐标表达式;复合三角函数的单调性.专题:计算题;三角函数的求值.分析:(Ⅰ)通过向量的数量积,利用两角和的正弦函数,化简函数为一个角的一个三角函数的形式,即可求出函数f(x)的最小正周期及对称轴方程.(Ⅱ)通过x的范围求出2x+的范围,利用正弦函数的值域,求解函数的值域即可.解答:解:(Ⅰ)f (x)=•=(cos2x,1)•(1,sin2x)=sin2x+cos2x=2 sin(2x+),…(6分)∴最小正周期T=,令2x+=k,k∈Z,解得x=,k∈Z,即f (x)的对称轴方程为x=,k∈Z.…(8分)(Ⅱ)当x∈[0,]时,即0≤x≤,可得≤2x+≤,∴当2x+=,即x=时,f (x)取得最大值f ()=2;当2x+=,即x=时,f (x)取得最小值f ()=﹣1.即f (x)的值域为[﹣1,2].…(12分)点评:本题以向量为依托,考查三角函数的两角和的正弦函数的应用,函数的周期,值域的求法,考查计算能力.18.(12分)(2013•绵阳一模)已知数列{a n}是等比数列且a3=,a6=2.(I)求数列{a n}的通项公式;(II)若数列{a n}满足b n=3log2a n,且数列{b n}的前“项和为T n,问当n为何值时,T n取最小值,并求出该最小值.考点:数列的求和;等比数列的通项公式.专题:等差数列与等比数列.分析:(I)由已知中数列{a n}是等比数列且a3=,a6=2.求出数列的公比,易得数列的通项(II)根据(I)及b n=3log2a n,可得数列{b n}的通项公式,进而结合二次函数的性质,及n∈N+,可求出当n为何值时,T n取最小值.解答:解:(Ⅰ)设公比为q,由已知a6=2,a3=,得a1q5=2,a1q2=,两式相除得q3=8,解得q=2,a1=,∴a n=×2n﹣1=2n﹣5(Ⅱ)b n=3log2a n=3log2(2n﹣5)=3n﹣15,∴T n=,又∵n∈N+当n=4或5时,T n取得最小值,最小值为﹣30点评:本题考查的知识点是数列求和,等比数列的通项公式,其中分别求出数列{a n}和{b n}的通项公式是解答的关键.19.(12分)(2013•绵阳一模)在△ABC中,角A,B,C的对边分别是a,b,c若asinA=(a ﹣b)sinB+csinC.(I )求角C的值;(II)若△ABC的面积为,求a,b的值.考点:解三角形.专题:计算题;解三角形.分析:(Ⅰ)把已知结合正弦定理整理可得a2+b2﹣c2=ab,然后利用余弦定理CosC=可求cosC,结合C 的范围可求C(Ⅱ)由三角形的面积公式可得,结合c=2,及由(Ⅰ)a2+b2﹣4=ab,可求a+b,联立方程可求a,b解答:解:(Ⅰ)∵asinA=(a﹣b)sinB+csinC,由正弦定理,得a2=(a﹣b)b+c2,即a2+b2﹣c2=ab.①由余弦定理得CosC==,结合0<C<π,得C=.…(6分)(Ⅱ)∵△ABC的面积为,即,化简得ab=4,①又c=2,由(Ⅰ)知,a2+b2﹣4=ab,∴(a+b)2=3ab+4=16,得a+b=4,②由①②得a=b=2.…(12分)点评:本题主要考查了三角形的正弦定理、余弦定理及三角形的面积公式的综合应用,属于知识的综合应用20.(12分)(2013•绵阳一模)己知二次函数y=f(x)的图象过点(1,﹣4),且不等式f (x)<0的解集是(O,5).(I )求函数f(x)的解析式;(II)设g(x)=x3﹣(4k﹣10)x+5,若函数h(x)=2f(x)+g(x)在[﹣4,﹣2]上单调递增,在[﹣2,0]上单调递减,求y=h(x)在[﹣3,1]上的最大值和最小值..考点:二次函数的性质;二次函数在闭区间上的最值.专题:函数的性质及应用.分析:(1)根据函数零点,方程根与不等式解集端点之间的关系,结合二次函数y=f(x)的图象过点(1,﹣4),可求出函数f(x)的解析式;(II)由(I)可求出函数h(x)的解析式(含参数k),进而由函数极大值点为﹣2,求出k值,结合导数法求最值的步骤,可得答案.解答:解:(Ⅰ)由已知y=f (x)是二次函数,且f (x)<0的解集是(0,5),可得f (x)=0的两根为0,5,于是设二次函数f (x)=ax(x﹣5),代入点(1,﹣4),得﹣4=a×1×(1﹣5),解得a=1,∴f (x)=x(x﹣5).…(4分)(Ⅱ)h(x)=2f (x)+g(x)=2x(x﹣5)+x3﹣(4k﹣10)x+5=x3+2x2﹣4kx+5,于是h′(x)=3x2+4x﹣4k,∵h(x)在[﹣4,﹣2]上单调递增,在[﹣2,0]上单调递减,∴x=﹣2是h(x)的极大值点,∴h′(2)=3×(﹣2)2+4×(﹣2)﹣4k=0,解得k=1.…(6分)∴h(x)=x3+2x2﹣4x+5,进而得h′(x)=3x2+4x﹣4.令h′(x)=3x2+4x﹣4=0,得x=﹣2,或x=.由下表:x (﹣3,﹣2)﹣2(﹣2,)(,1)h′(x) + 0 ﹣0 +h(x)↗极大↘极小↗可知:h(﹣2)=(﹣2)3+2×(﹣2)2﹣4×(﹣2)+5=13,h(1)=13+2×12﹣4×1+5=4,h(﹣3)=(﹣3)3+2×(﹣3)2﹣4×(﹣3)+5=8,h()=()3+2×()2﹣4×+5=,∴h(x)的最大值为13,最小值为.…(12分)点评:本题考查的知识点是二次函数的性质,函数零点,方程根与不等式解集端点的关系,导数法求函数的极值与最值,其中求出函数h(x)的解析式是解答的关键.21.(12分)(2013•绵阳一模)设数列{a n}的前n项和为S n,且(t﹣1)S n=2ta n﹣t﹣1(其中t为常数,t>0,且t≠1).(I)求证:数列{a n}为等比数列;(II)若数列{a n}的公比q=f(t),数列{b n}满足b1=a1,bn+1=f(b n),求数列{}的通项公式;(III)设t=,对(II)中的数列{a n},在数列{a n}的任意相邻两项a k与a k+1之间插入k个(k∈N*)后,得到一个新的数列:a1,,a2,,,a3,,,,a4…,记此数列为{c n}.求数列{c n}的前50项之和.考点:数列递推式;等比关系的确定;数列的求和.专题:综合题;等差数列与等比数列.分析:(Ⅰ)利用数列递推式,再写一式,两式相减,即可证得数列{a n}是以1为首项,为公比的等比数列;(Ⅱ)确定数列{}是以1为首项,1为公差的等差数列,可求数列{}的通项公式;(III)确定数列{c n}为:1,﹣1,,2,2,,﹣3,﹣3,﹣3,,…,再分组求和,即可求得数列{c n}的前50项之和.解答:(Ⅰ)证明:由题设知(t﹣1)S1=2ta1﹣t﹣1,解得a1=1,由(t﹣1)S n=2ta n﹣t﹣1,得(t﹣1)S n+1=2ta n+1﹣t﹣1,两式相减得(t﹣1)a n+1=2ta n+1﹣2ta n,∴(常数).∴数列{a n}是以1为首项,为公比的等比数列.…(4分)(Ⅱ)解:∵q=f (t)=,b1=a1=1,b n+1= f (b n)=,∴=+1,∴数列{}是以1为首项,1为公差的等差数列,∴.…(8分)(III)解:当t=时,由(I)知a n=,于是数列{c n}为:1,﹣1,,2,2,,﹣3,﹣3,﹣3,,…设数列{a n}的第k项是数列{c n}的第m k项,即a k=,当k≥2时,m k=k+[1+2+3+…+(k﹣1)]=,∴m9=﹣45.设S n表示数列{c n}的前n项和,则S45=[1+++…+]+[﹣1+(﹣1)2×2×2+(﹣1)3×3×3+…+(﹣1)8×8×8].∵1+++…+==2﹣,﹣1+(﹣1)2×2×2+(﹣1)3×3×3+…+(﹣1)8×8×8=﹣1+22﹣32+42﹣52+62﹣72+82 =(2+1)(2﹣1)+(4+3)(4﹣3)+(6+5)(6﹣5)+(8+7)(8﹣7)=3+7+11+15=36.∴S45=2﹣+36=38﹣.∴S50=S45+(c46+c47+c48+c49+c50)=38﹣+5×(﹣1)9×9=﹣7.即数列{c n}的前50项之和为﹣7.…(12分)点评:本题考查等比数列与等差数列的证明,考查数列的通项与求和,考查学生的计算能力,属于中档题.22.(14分)(2013•绵阳一模)已知函数f(x)=lnx﹣ax+1在x=2处的切线斜率为﹣.(I)求实数a的值及函数f(x)的单调区间;(II)设g(x)=kx+1,对∀x∈(0,+∞),f(x)≤g(x)恒成立,求实数k的取值范围;(III)设b n=,证明:b1+b2+…+b n<1+ln2(n∈N*,n≥2).考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.专题:综合题;导数的综合应用.分析:(Ⅰ)求导数,利用函数f(x)=lnx﹣ax+1在x=2处的切线斜率为﹣,可确定a的值,利用导数的正负,可得函数f(x)的单调区间;(Ⅱ)∀x∈(0,+∞),f (x)≤g(x),即lnx﹣(k+1)x≤0恒成立,构造函数h(x)=lnx﹣(k+1)x,利用h(x)max≤0,即可求得k的取值范围;(Ⅲ)先证明当n≥2时,有ln(n+1)<n,再利用放缩法,裂项法,即可证得结论.解答:(Ⅰ)解:由已知:(x>0),∵函数f(x)=lnx﹣ax+1在x=2处的切线斜率为﹣.∴,∴a=1.∴,当x∈(0,1)时,f′(x)>0,f (x)为增函数,当x∈(1,+∞)时,f′(x)<0,f (x)为减函数,∴f (x)的单调递增区间为(0,1),单调递减区间为(1,+∞).…(5分)(Ⅱ)解:∀x∈(0,+∞),f (x)≤g(x),即lnx﹣(k+1)x≤0恒成立,设h(x)=lnx﹣(k+1)x,有.①当k+1≤0,即k≤﹣1时,h′(x)>0,此时h(1)=ln1﹣(k+1)≥0与h(x)≤0矛盾.②当k+1>0,即k>﹣1时,令h′(x)=0,解得,∴,h′(x)>0,h(x)为增函数,,h′(x)<0,h(x)为减函数,∴h(x)max=h()=ln﹣1≤0,即ln(k+1)≥﹣1,解得k≥.综合k>﹣1,知k≥.∴综上所述,k的取值范围为[,+∞).…(10分)(Ⅲ)证明:由(Ⅰ)知f (x)在(0,1)上是增函数,在(1,+∞)上是减函数,∴f (x)≤f (1)=0,∴lnx≤x﹣1.当n=1时,b1=ln(1+1)=ln2,当n≥2时,有ln(n+1)<n,∵b n=<=<=,∴b1+b2+…+b n<b1+()+…+()=ln2+(1﹣)<1+ln2.…(14分)点评:本题考查导数知识的运用,考查函数的单调性,考查恒成立问题,考查不等式的证明,考查学生分析解决问题的能力,属于中档题.。
四川省绵阳市中考数学一诊试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选择中,只有一项符合题目要求)1.下列各数中,最小的实数是()A.B.﹣1C.0D.2.下列计算正确的是()A.a+a=a2B.(2a)3=6a3C.a3×a3=2a3D.a3÷a=a23.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()A.B.C.D.4.为了响应学校“书香校园”建设,阳光班的同学们积极捐书,其中宏志学习小组的同学捐书册数分别是:5,7,x,3,4,6.已知他们平均每人捐5本,则这组数据的众数、中位数和方差分别是()A.5,5,B.5,5,10C.6,5.5,D.5,5,5.在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A、B、C上,他们在玩抢凳子的游戏,要在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放的最恰当的位置是△ABC 的()A.三条高的交点B.重心C.内心D.外心6.如图,在平面直角坐标系中,已知点A(﹣3,6)、B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点B的对应点B′的坐标是()A.(﹣3,﹣1)B.(﹣1,2)C.(﹣9,1)或(9,﹣1)D.(﹣3,﹣1)或(3,1)7.如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是()A.圆形铁片的半径是4cm B.四边形AOBC为正方形C.弧AB的长度为4πcm D.扇形OAB的面积是4πcm28.要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为()A.288°B.144°C.216°D.120°9.已知方程组的解x,y满足x+2y≥0,则m的取值范围是()A.m≥B.≤m≤1C.m≤﹣1D.m≥﹣110.如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为()A.40海里B.60海里C.20海里D.40海里11.如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A.5B.4C.D.12.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个二、填空题:(本大题共6个小题,每小题3分,共18分.)13.使函数y=+(2x﹣1)0有意义的x的取值范围是.14.某病毒的直径是0.000 068毫米,这个数据用科学记数法表示为毫米.15.若实数m、n满足|m﹣2|+=0,且m,n恰好是等腰△ABC的两条边的边长,则△ABC的周长是.16.一个布袋内只装有一个红球和2个黄球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黄球的概率是.17.设S1=1++,S2=1++,S3=1++,…,S n=1++,设S=++…+,则S=(用含n的代数式表示,其中n为正整数).18.如图,矩形ABCD中,AD=5,AB=8,点E为DC上一个动点,把△ADE沿AE折叠,若点D的对应点D′,连接D′B,以下结论中:①D′B的最小值为3;②当DE=时,△ABD′是等腰三角形;③当DE=2是,△ABD′是直角三角形;④△ABD′不可能是等腰直角三角形;其中正确的有.(填上你认为正确结论的序号)三、解答题:(本大题共7个小题,共86分.解答应写出文字说明、证明过程或演算步骤)19.(16分)(1)2sin30°﹣(π﹣)0﹣|﹣1|+()﹣1(2)先化简,再求值:÷,其中x=﹣220.(11分)某校为了预测本校九年级男生毕业体育测试达标情况,随机抽取该年级部分男生进行了一次测试(满分50分,成绩均记为整数分),并按测试成绩m(单位:分)分成四类:A类(45<m≤50),B类(40<m≤45),C类(35<m≤40),D类(m≤35)绘制出如图所示的两幅不完整的统计图,请根据图中信息解答下列问题:(1)求本次抽取的样本容量和扇形统计图中A类所对的圆心角的度数;(2)若该校九年级男生有500名,D类为测试成绩不达标,请估计该校九年级男生毕业体育测试成绩能达标的有多少名?21.(11分)如图,反比例函数y=(x>0)过点A(3,4),直线AC与x轴交于点C(6,0),过点C 作x轴的垂线BC交反比例函数图象于点B.(1)求k的值与B点的坐标;(2)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,试写出符合条件的所有D点的坐标.22.(11分)对于实数m、n,我们定义一种运算“※”为:m※n=mn+m+n.(1)化简:(a+b)※(a﹣b).(2)解关于x的方程:x※(1※x)=3.23.(11分)我市公交总公司为节约资源同时惠及民生,拟对一些乘客数量较少的路线投放“微型”公交车.该公司计划购买10台“微型”公交车,现有A、B两种型号,已知购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.(1)问购买一台A型车和一台B型车分别需要多少万元?(2)经了解,每台A型车每年节省2.4万元,每台B型车每年节省2万元,若购买这批公交车每年至少节省22.4万,则购买这批公交车至少需要多少万元?24.(12分)如图,AB是半圆O的直径,D为BC的中点,延长OD交弧BC于点E,点F为OD的延长线上,CF切⊙于C.(1)求证:∠F=∠B.(2)若DE=1,∠ABC=30°.求cos∠DAB的值.25.(14分)如图,直线y=﹣x+3与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A、B两点,与x轴的另一个交点为C.(1)求抛物线的解析式;(2)点P是第一象限抛物线上的点,连接OP交直线AB于点Q.设点P的横坐标为m,PQ与OQ 的比值为y,求y与m的函数关系式,并求出PQ与OQ的比值的最大值;(3)点D是抛物线对称轴上的一动点,连接OD、CD,设△ODC外接圆的圆心为M,当sin∠ODC 的值最大时,求点M的坐标.四川省绵阳市中考数学一诊试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选择中,只有一项符合题目要求)1.【分析】对于正数、负数、0的比较应该很简单,关键在于对两个负数的比较,所以比较﹣与﹣1的大小成了本题的关键.【解答】解:∵与0一定大于负数,所以考查﹣与﹣1的大小.∵|﹣|=,|﹣1|=1,则<1∴﹣>﹣1∴以上各数中,最小的数是﹣1.故选:B.【点评】本题考查的是有理数的大小比较,关键是正确的对两个负数利用绝对值进行比较.2.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=2a,故A错误;(B)原式=8a3,故B错误;(C)原式=a6,故C错误;故选:D.【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.3.【分析】找到从左面看所得到的图形即可.【解答】解:从左面可看到一个长方形和上面一个长方形.故选:A.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.【分析】根据平均数,可得x的值,根据众数的定义、中位数的定义、方差的定义,可得答案.【解答】解:由5,7,x,3,4,6.已知他们平均每人捐5本,得x=5.众数是5,中位数是5,方差=,故选:D.【点评】本题考查了方差,利用方差的公式计算是解题关键.5.【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.【解答】解:∵三角形的三条垂直平分线的交点到中间的凳子的距离相等,∴凳子应放在△ABC的三条垂直平分线的交点最适当.故选:D.【点评】本题主要考查了线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养.想到要使凳子到三个人的距离相等是正确解答本题的关键.6.【分析】利用以原点为位似中心,相似比为k,位似图形对应点的坐标的比等于k或﹣k,把B点的横纵坐标分别乘以或﹣即可得到点B′的坐标.【解答】解:∵以原点O为位似中心,相似比为,把△ABO缩小,∴点B(﹣9,3)的对应点B′的坐标是(﹣3,﹣1)或(3,1).故选:D.【点评】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.7.【分析】由BC,AC分别是⊙O的切线,B,A为切点,得到OA⊥CA,OB⊥BC,又∠C=90°,OA=OB,推出四边形AOBC是正方形,得到OA=AC=4,故A,B正确;根据扇形的弧长、面积的计算公式求出结果即可进行判断.【解答】解:由题意得:BC,AC分别是⊙O的切线,B,A为切点,∴OA⊥CA,OB⊥BC,又∵∠C=90°,OA=OB,∴四边形AOBC是正方形,∴OA=AC=4,故A,B正确;∴的长度为:=2π,故C错误;S==4π,故D正确.扇形OAB故选:C.【点评】本题考查了切线的性质,正方形的判定和性质,扇形的弧长、面积的计算,熟记计算公式是解题的关键.8.【分析】根据底面圆的半径与母线长的比设出二者,然后利用底面圆的周长等于弧长列式计算即可.【解答】解:∵底面圆的半径与母线长的比是4:5,∴设底面圆的半径为4x,则母线长是5x,设圆心角为n°,则2π×4x=,解得:n=288,故选:A.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.9.【分析】把两个方程相减后×得出x+2y的值,再代入不等式解答即可.【解答】解:两个方程相减得:2x+4y=﹣1﹣m,整理可得:x+2y=﹣,把x+2y=﹣代入x+2y≥0中,可得:﹣≥0,解得:m≤﹣1,故选:C.【点评】本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.10.【分析】首先证明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解决问题;【解答】解:在Rt△PAB中,∵∠APB=30°,∴PB=2AB,由题意BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2PA,∵PA=AB•tan60°,∴PC=2×20×=40(海里),故选:D.【点评】本题考查解直角三角形的应用﹣方向角问题,解题的关键是证明PB=BC,推出∠C=30°.11.【分析】由△DQF∽△FQE,推出===,由此求出EQ、FQ即可解决问题.【解答】解:如图,在等腰直角三角形△DEF中,∠EDF=90°,DE=DF,∠1=∠2=∠3,∵∠1+∠QEF=∠3+∠DFQ=45°,∴∠QEF=∠DFQ,∵∠2=∠3,∴△DQF∽△FQE,∴===,∵DQ=1,∴FQ=,EQ=2,∴EQ+FQ=2+,故选:D.【点评】本题考查等腰直角三角形的性质、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.12.【分析】从抛物线与x轴最多一个交点及b>a>0,可以推断抛物线最小值最小为0,对称轴在y 轴左侧,并得到b2﹣4ac≤0,从而得到①②为正确;由x=﹣1及x=﹣2时y都大于或等于零可以得到③④正确.【解答】解:∵b>a>0∴﹣<0,所以①正确;∵抛物线与x轴最多有一个交点,∴b2﹣4ac≤0,∴关于x的方程ax2+bx+c+2=0中,△=b2﹣4a(c+2)=b2﹣4ac﹣8a<0,所以②正确;∵a>0及抛物线与x轴最多有一个交点,∴x取任何值时,y≥0∴当x=﹣1时,a﹣b+c≥0;所以③正确;当x=﹣2时,4a﹣2b+c≥0a+b+c≥3b﹣3aa+b+c≥3(b﹣a)≥3所以④正确.故选:D.【点评】本题考查了二次函数的解析式与图象的关系,解答此题的关键是要明确a的符号决定了抛物线开口方向;a、b的符号决定对称轴的位置;抛物线与x轴的交点个数,决定了b2﹣4ac的符号.二、填空题:(本大题共6个小题,每小题3分,共18分.)13.【分析】根据被开方数是非负数且分母不能为零,可得答案.【解答】解:由题意,得,解得x>﹣3且.故答案为:x>﹣3且.【点评】本题考查了函数自变量的取值范围,利用被开方数是非负数且分母不能为零得出不等式是解题关键.14.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 068=6.8×10﹣5.故答案为:6.8×10﹣5.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15.【分析】由已知等式,结合非负数的性质求m、n的值,再根据m、n分别作为等腰三角形的腰,分类求解.【解答】解:∵|m﹣2|+=0,∴m﹣2=0,n﹣4=0,解得m=2,n=4,当m=2作腰时,三边为2,2,4,不符合三边关系定理;当n=4作腰时,三边为2,4,4,符合三边关系定理,周长为:2+4+4=10.故答案为:10.【点评】本题考查了等腰三角形的性质,非负数的性质.关键是根据非负数的性质求m、n的值,再根据m或n作为腰,分类求解.16.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是黄球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出的球都是黄球的有4种情况,∴两次摸出的球都是黄球的概率是,故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.17.【分析】根据已知等式得出一般性规律,表示出S n,代入表示出,代入S中计算即可得到结果.【解答】解:根据题意得:S1=1++=1+1+=,S2=1++=1++=,S3=1++=1++=,…,S n=1++==,==1+=1+﹣,则S=++…+=1+1﹣+1+﹣+…+1+﹣=n+1﹣=.故答案为:.【点评】此题考查了实数的运算,弄清题中的规律是解本题的关键.18.【分析】解:当D′落在线段AB上时,D′B的值最小,此时D′B=AB﹣AD=3,得出①正确;过D′作MN⊥AB交AB于点N,交CD于点M,设AN=x,则EM=x﹣2.5,证出∠ED′M=∠D′AN,因此△EMD′∽△D′NA,得出对应边成比例=,求出x=4,得出AN=BN,因此AD′=D′B,得出②正确;当DE=2时,假设△ABD′是直角三角形,则E、D′、B在一条直线上,作EF⊥AB于点F,由勾股定理求出D′B、EB,得出③不正确;当AD′=D′B时,由勾股定理的逆定理得出△ABD′不是直角三角形,当△ABD′是直角三角形时,由勾股定理求出D′B,得出AD′≠D′B,因此△ABD′不可能是等腰直角三角形,得出④正确.【解答】解:当D′落在线段AB上时,D′B的值最小,如图1所示:此时D′B=AB﹣AD=8﹣5=3,∴①正确;过D′作MN⊥AB交AB于点N,交CD于点M,如图2所示:设AN=x,则EM=x﹣2.5,∵∠AD′N=∠DAD′,∠ED′M=180°﹣∠AD′E﹣∠AD′N=180°﹣90°﹣∠AD′N=90°﹣∠AD′N,∴∠ED′M=90°﹣∠DAD′,∵∠D′AN=90°﹣∠DAD′,∴∠ED′M=∠D′AN,∵MN⊥AB,∴∠EMD′=∠AND′,∴△EMD′∽△D′NA,∴=,即=,解得:x=4,∴AN=BN,∴AD′=D′B,即△ABD′是等腰三角形,∴②正确;当DE=2时,假设△ABD′是直角三角形,则E、D′、B在一条直线上,作EF⊥AB于点F,如图3所示:D′B===,EB===,∵2+≠,∴③不正确;当AD′=D′B时,52+52≠82,∴△ABD′不是直角三角形,当△ABD′是直角三角形时,D′B===,∴AD′≠D′B,∴△ABD′不可能是等腰直角三角形,∴④正确;故答案为:①②④.【点评】本题考查了矩形的性质、翻折变换的性质、勾股定理、等腰三角形的判定、勾股定理的逆定理、等腰直角三角形的判定等知识;本题综合性强,有一定难度,熟练掌握矩形的性质和翻折变换的性质是解决问题的关键.三、解答题:(本大题共7个小题,共86分.解答应写出文字说明、证明过程或演算步骤)19.【分析】(1)根据实数的运算法则即可求出答案.(2)根据分式的运算法则即可求出答案.【解答】解:(1)原式=2×﹣1+﹣1+2=+1;(2)原式=×==,当x=﹣2时,原式==2﹣1;【点评】本题考查分式的化简求值,解题的关键是熟练实数的运算法则以及分式的运算法则,本题属于基础题型.20.【分析】(1)用A类别人数除以其所占百分比可得样本容量,再用360°乘以A类别百分比可得其所对圆心角度数;(2)用总人数乘以样本中达标人数所占百分比可得.【解答】解:(1)本次抽取的样本容量为10÷20%=50,扇形统计图中A类所对的圆心角的度数为360°×20%=72°;(2)估计该校九年级男生毕业体育测试成绩能达标的有500×(1﹣)=470名.【点评】本题考查条形统计图、扇形统计图、用本估计总体,解题的关键是明确题意,利用数形结合的思想解答.21.【分析】(1)将A点的坐标代入反比例函数y=求得k的值,然后将x=6代入反比例函数解析式求得相应的y的值,即得点B的坐标;(2)使得以A、B、C、D为顶点的四边形为平行四边形,如图所示,找出满足题意D的坐标即可.【解答】解:(1)把点A(3,4)代入y=(x>0),得k=xy=3×4=12,故该反比例函数解析式为:y=.∵点C(6,0),BC⊥x轴,∴把x=6代入反比例函数y=,得y==2.则B(6,2).综上所述,k的值是12,B点的坐标是(6,2).(2)①如图,当四边形ABCD为平行四边形时,AD∥BC且AD=BC.∵A(3,4)、B(6,2)、C(6,0),∴点D的横坐标为3,y A﹣y D=y B﹣y C即4﹣y D=2﹣0,故y D=2.所以D(3,2).②如图,当四边形ACBD′为平行四边形时,AD′∥CB且AD′=CB.∵A(3,4)、B(6,2)、C(6,0),=6.∴点D的横坐标为3,y D′﹣y A=y B﹣y C即y D﹣4=2﹣0,故y D′所以D′(3,6).③如图,当四边形ACD″B为平行四边形时,AC=BD″且AC∥BD″.∵A(3,4)、B(6,2)、C(6,0),∴x D ″﹣x B =x C ﹣x A 即x D ″﹣6=6﹣3,故x D ″=9.y D ″﹣y B =y C ﹣y A 即y D ″﹣2=0﹣4,故y D ″=﹣2.所以D ″(9,﹣2).综上所述,符合条件的点D 的坐标是:(3,2)或(3,6)或(9,﹣2).【点评】此题考查了反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,平行四边形的判定与性质,解答(2)题时,采用了“数形结合”和“分类讨论”的数学思想.22.【分析】(1)根据公式列式计算可得;(2)根据新定义计算左边可得关于x 的一元二次方程,解之可得.【解答】解:(1)∵m ※n =mn +m +n ,∴(a +b )※(a ﹣b )=(a +b )(a ﹣b )+a +b +a ﹣b =a 2﹣b 2+2a ;(2)∵x ※(1※x )=3,∴2x 2+4x +1=3,∴x 1=﹣1+,x 2=﹣1﹣.【点评】本题主要考查解一元二次方程和整式的运算,解题的关键是掌握新定义及解一元二次方程的能力.23.【分析】(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)根据题意可以得到y 与x 的函数关系式,然后求出x 的取值范围,即可解答本题.【解答】解:(1)设购买一台A 型车和一台B 型车分别需要a 万元、b 万元,,得,答:购买一台A 型车和一台B 型车分别需要120万元、100万元;(2)设A 型车购买x 台,则B 型车购买(10﹣x )台,需要y 元,y =120x +100(10﹣x )=20x +1000,∵2.4x +2(10﹣x )≥22.4,∴x ≥6,∴当x =6时,y 取得最小值,此时y =1120,答:购买这批公交车至少需要1120万元.【点评】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.24.【分析】(1)连接OC,根据等腰三角形的性质得到∠OCB=∠B,根据垂径定理得到OF⊥BC,根据切线的性质得到OC⊥CF,根据余角的性质得到∠F=∠BCO,于是得到结论;(2)设⊙O的半径为r,解直角三角形求得OD=OB=r,进而解得r=2,过D作DH⊥AB于H,根据三角形函数求得DH=,OH=,根据勾股定理得到AD=,于是得到结论.【解答】解:(1)连接OC,∵D是BC的中点,OC=OB,∴OD⊥BC,∴∠BCO+∠COD=90°∵FC是⊙O的切线,∴OC⊥CF,∴∠F+∠COF=90°,∴∠F=∠BCO,∵OC=OB,∴∠OCB=∠B,∴∠B=∠F;(2)设⊙O的半径为r,∵OD⊥BC,且∠ABC=30°,∴OD=OB=r,∵DE=1,且OE=OD+DE,∴r=1+r,解得r=2,过D作DH⊥AB于H,在Rt△ODH中∠DOH=60°,OD=1,∴DH=,OH=,在Rt△DAH中,∵AH=AO+OH=,∴AD==,∴cos∠DAB===.【点评】本题考查了切线的判定和性质,垂径定理,勾股定理,三角函数的定义,正确的作出辅助线是解题的关键.25.【分析】(1)根据直线解析式求得点A、B的坐标,将两点的坐标代入抛物线解析式求解可得;(2)过点P作y轴的平行线交AB于点E,据此知△PEQ∽△OBQ,根据对应边成比例得y=PE,由P(m,﹣m2+m+3)、E(m,﹣m+3)得PE=﹣m2+m,结合y=PE可得函数解析式,利用二次函数性质得其最大值;(3)设CO的垂直平分线与CO交于点N,知点M在CO的垂直平分线上,连接OM、CM、DM,根据∠ODC=∠CMO=∠OMN、MC=MO=MD知sin∠ODC=sin∠OMN==,当MD 取最小值时,sin∠ODC最大,据此进一步求解可得.【解答】解:(1)在y=﹣x+3种,令y=0得x=4,令x=0得y=3,∴点A(4,0)、B(0,3),把A(4,0)、B(0,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线解析式为y=﹣x2+x+3;(2)如图1,过点P作y轴的平行线交AB于点E,则△PEQ∽△OBQ,∴=,∵=y、OB=3,∴y=PE,∵P(m,﹣m2+m+3)、E(m,﹣m+3),则PE=(﹣m2+m+3)﹣(﹣m+3)=﹣m2+m,∴y=(﹣m2+m)=﹣m2+m=﹣(m﹣2)2+,∵0<m<4,∴当m=2时,y=,最大值∴PQ与OQ的比值的最大值为;(3)由抛物线y=﹣x2+x+3易求C(﹣2,0),对称轴为直线x=1,∵△ODC的外心为点M,∴点M在CO的垂直平分线上,设CO的垂直平分线与CO交于点N,连接OM、CM、DM,则∠ODC=∠CMO=∠OMN、MC=MO=MD,∴sin∠ODC=sin∠OMN==,又MO=MD,∴当MD取最小值时,sin∠ODC最大,此时⊙M与直线x=1相切,MD=2,MN==,∴点M(﹣1,﹣),根据对称性,另一点(﹣1,)也符合题意;综上所述,点M的坐标为(﹣1,)或(﹣1,﹣).【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及相似三角形的判定与性质、三角形的外心、圆的有关性质等知识点.。
绵阳市高2012级第一次诊断性考试数学(理)参考解答及评分标准一、选择题:本大题共12小题,每小题5分,共60分.BBCDA DAACC BC二、填空题:本大题共4小题,每小题4分,共16分.13.1000 14.2x -y -e =0 15.23- 16.①④三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.解:由|x -a |≤4有-4≤x -a ≤4,解得a -4≤x ≤a +4,即A ={x |a -4≤x ≤a +4}. ……………………………………………………2分 由116<+x 可变形为015<+-x x ,等价于(x +1)(x -5)>0,解得x <-1或x >5, 即B ={}51>-<x x x 或. ………………………………………………………4分 (Ⅰ)由A ∩B =(]75,知a +4=7,解得a =3. ……………………………7分 (Ⅱ)∵ p 是q 的充分不必要条件,∴ a +4<-1,或a -4>5, …………………………………………………10分 解得a <-5或a >9. ………………………………………………………12分18.解:(Ⅰ)设共有n 枚硬币,根据题意得 922111==-nn C C P ,解得n =9. ……………………………………………………2分 (Ⅱ)ξ=1,2,3,4,P (ξ=1)=922918=C C ,P (ξ=2)9227162928=⋅=C C C C ,P (ξ=3)=92251427262938=⋅⋅C C C C C C , P (ξ=4)931252427262928=⋅⋅⋅=C C C C C C .…………………………………………………10分 ∴ ξ的分布列为∴ 394939291=⨯+⨯+⨯+⨯=ξE .………………………………………12分 19.解:(Ⅰ)设{a n }的公比为q ,则q >0,由已知有⎩⎨⎧⋅==+,,)(9)(164112111q a a q a q a a 可解得31=q (31-=q 已舍去),311=a . ∴ n n n a )31()31(311=⨯=-. ……………………………………………………6分 (Ⅱ)∵ 2)1(-2)1(3213213)31()31()31()31()31()31(3++++++===⋅⋅⋅⋅=n n n n n n b n , ∴ 2)1(1+-=n n b n ,即)111(2)1(2+--=+-=n n n n b n .………………………9分∴n n b b b b S ++++= 321)1113121211(2+-++-+--=n n)111(2+--=n12+-=n n. ………………………………………………………………12分 20.解:(Ⅰ)由题意得h (x )的图象经过(3,4),代入得231294-+-=m,解得m =7.∴23223)2(274)(22-+-=-+-=-+-=x x x x x x x x h ,∴x x x h x f 3)2()(+=+=. …………………………………………………7分 (Ⅱ)∵x ax x g ++=3)(,∴ 由已知有xa x ++3≥8有a ≥-x 2+8x -3,令t (x )=-x 2+8x -3,则t (x )=-(x -4)2+13,于是t (x )在(0,3)上是增函数. ∴ t (x )max =12.∴ a ≥12.……………………………………………………………………12分 21.解:(Ⅰ)证明:令x =y =0时,则由已知有)00100()0()0(⨯--=-f f f ,可解得f (0)=0.再令x =0,y ∈(-1,1),则有)010()()0(yyf y f f ⋅--=-,即f (-y )=-f (y ),∴ f (x )是(-1,1)上的奇函数.……………………………………………4分(Ⅱ)令x =a n ,y =-a n ,于是)12()()(2nnn n a a f a f a f +=--, 由已知得2f (a n )=f (a n+1),∴2)()(1=+n n a f a f , ∴ 数列{f (a n )}是以f (a 1)=1)21(-=f 为首项,2为公比的等比数列.∴.221)(11---=⋅-=n n n a f ……………………………………………………8分(III )由(II)得f (a n +1)=-2n,于nb n 21=. ∴ T n = b 1+ b 2+ b 3+…+ b n)131211(21n ++++= , )12131211(2112+++++=+n T n .∴ )121312111(2112++++++++=-+n n n n T T n n . 令).1212111(21)(++++++=n n n n k于是)3213121(21)1(++++++=+n n n n k , ∴ 0)32)(1(41)11321221(21)()1(<++-=+-+++=-+n n n n n n k n k . ∴ k (n +1)<k (n ),即k (n )在N *上单调递减,∴ k (n )max =k (1)=125)131211(2113=-++=-T T ,∴15m ≥125即m ≥425. ∵ m ∈N *,∴ m 的最小值为7.…………………………………………………………12分22.解:(Ⅰ)x x a x F ln 1)(+-=,于是)(xax x F -='. ①当a ≤0时,)(x F '≥0,∴ F (x )在(0,3)上是增函数;②当0<a <3时,x ∈(0,a )时,)(x F '≤0,∴ F (x )在(0,a )上是减函数;x ∈(a ,3)时,)(x F '≥0,∴ F (x )在(a ,3)上是增函数.③当a ≥3时,)(x F '≤0,∴ F (x )在(0,3)上是减函数.………………4分(Ⅱ)令a =1,则x x x F ln 11)(+-=,于是21)(xx x F -=', ∴ F (x )在(0,1)上是减函数,在(1,+∞)上是增函数. ∴ 在区间(0,+∞)上F (x )有F (x )min =F (1)=0. ∵)(st F ≥F (1)=0, 即st t s ln 1+-≥0,整理得st ≥t se e -⋅,即t ste ≥se ,即t t e s ≥s t e t.………………………………8分(III )由已知得)1(2)12(22+=++x g m x a f ,代入整理得414)1ln(2122+-+=x x m . 于是题意即为直线y =m 与y =414)1ln(2122+-+x x 的图象有4个不同的交点. 令414)1ln(21)(22+-+=x x x h , 则)1(2)1)(1()(2++-='x x x x x h .可绘出()的大致图象如右.由图象可知当m ∈(41,2ln 21)时满足有四个不同的交点.∴存在实数)2ln 2141(, m 时满足条件. ………………………………………………………………………………14分。
绵阳市高2013级第一次诊断性考试数学(理)参考解答及评分标准一、选择题:本大题共12小题,每小题5分,共60分.BCBCC AADDB AB二、填空题:本大题共4小题,每小题4分,共16分.13.-414.215.450233πππ⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦,, 16.①③ 三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.解:(Ⅰ)f (x )=a ·b =(cos2x ,1)·(1,x )=x+ cos2x =2 sin(2x+6π), ……………………………………………6分∴ 最小正周期22T ππ==, 令2x+6π=2k ππ+,k ∈Z ,解得x=26k ππ+,k ∈Z , 即f (x )的对称轴方程为x=26k ππ+,k ∈Z .…………………………………8分 (Ⅱ)当x ∈[0,2π]时,即0≤x ≤2π,可得6π≤2x+6π≤76π,∴ 当2x+6π=2π,即x=6π时,f (x )取得最大值f (6π)=2;当2x+6π=76π,即x=2π时,f (x )取得最小值f (2π)=-1.即f (x ) 的值域为[-1,2].……………………………………………………12分 18.解:(Ⅰ)由S 3+S 5=58,得3a 1+3d +5a 1+10d=8a 1+13d =58, ①∵ a 1,a 3,a 7成等比数列,a 32=a 1a 7, 即(a 1+2d )2=a 1(a 1+6d ),整理得a 1=2d , 代入①得d =2, a 1=4,∴ a n =2n+2. …………………………………………………………………6分 (Ⅱ)由(Ⅰ)知a 8=18,b 5·b 6+b 4·b 7=2b 5·b 6=18,解得b 5·b 6 =9. ∵ T 10= log 3b 1 +log 3b 2+ log 3b 3+…+ log 3b 10=log 3(b 1·b 10) + log 3(b 2·b 9) +…+ log 3(b 5·b 6)=5log 3(b 5·b 6) =5log 39=10. ……………………………………………………………………12分19.解:(Ⅰ)由已知y = f (x )是二次函数,且f (x )<0的解集是(0,5),可得f (x )=0的两根为0,5, 于是设二次函数f (x )=ax (x -5),代入点(1,-4),得-4=a×1×(1-5),解得a =1,∴ f (x )=x (x -5). ………………………………………………………………4分 (Ⅱ)h (x )=2f (x )+g (x )=2x (x -5)+x 3-(4k -10)x +5=x 3+2x 2-4kx +5, 于是2()344h x x x k '=+-,∵ h (x )在[-4,-2]上单调递增,在[-2,0]上单调递减, ∴ x =-2是h (x )的极大值点,∴ 2(2)3(2)4(2)40h k '-=⨯-+⨯--=,解得k=1. …………………………6分 ∴ h (x )=x 3+2x 2-4x +5,进而得2()344h x x x '=+-. 令22()3443(2)()03h x x x x x '=+-=+-=,得12223x x =-=,. 由下表:可知:h (-2)=(-2)3+2×(-2)2-4×(-2)+5=13,h (1)=13+2×12 -4×1+5=4, h (-3)=(-3)3+2×(-3)2-4×(-3)+5=8,h (23)=(23)3+2×(23)2-4×23+5=9527, ∴ h (x )的最大值为13,最小值为9527.……………………………………12分 20.解:(Ⅰ)∵a sin A =(a -b )sin B +c sin C ,结合0C π<<,得3C =. …………………………………………………6分(Ⅱ)由 C =π-(A +B ),得sin C =sin(B +A )=sin B cos A +cos B sin A , ∵ sin C +sin(B -A )=3sin2A ,∴ sin B cos A +cos B sin A +sin B cos A -cos B sin A =6sin A cos A ,整理得sin B cos A =3sin A cos A . ………………………………………………8分 若cos A =0,即A =2π时,△ABC 是直角三角形,且B =6π,于是b =c tan B =2tan6π=,∴ S △ABC =12bc=. ……………………10分 若cos A ≠0,则sin B =3sin A ,由正弦定理得b =3a .②联立①②,结合c =2,解得a=b= ∴ S △ABC =12ab sin C =12=.综上,△ABC的面积为或.………………………………………12分 21.解:(Ⅰ)当t=1时,2a n -2=0,得a n =1,于是数列{a n }为首项和公比均为1的等比数列. ……………………………1分 当t ≠1时,由题设知(t -1)S 1=2ta 1-t -1,解得a 1=1, 由(t -1)S n =2ta n -t -1,得(t -1)S n +1=2ta n +1-t -1, 两式相减得(t -1)a n +1=2ta n +1-2ta n , , ∴121n n a ta t +=+(常数). ∴ 数列{a n }是以1为首项,21tt +为公比的等比数列.………………………4分 (Ⅱ)∵ q = f (t )=21tt +,b 1=a 1=1,b n +1=21f (b n )= 1n n b b +,∴11111n n n nb b b b ++==+, ∴ 数列1n b ⎧⎫⎨⎬⎩⎭是以1为首项,1为公差的等差数列,于是1nn b =, ∴ 1n b n=.………………………………………………………………………8分 (III )当t =13时,由(I )知a n =11()2n -,于是数列{c n }为:1,-1,12,2,2,21()2,-3,-3,-3,31()2,…设数列{a n }的第k 项是数列{c n }的第m k 项,即a k =k m c ,当k ≥2时,m k =k +[1+2+3+…+(k -1)]=(1)2k k +, ∴ m 62=626319532⨯=,m 63=636420162⨯=. 设S n 表示数列{c n }的前n 项和,则S 2016=[1+12+21()2+…+621()2]+[-1+(-1)2×2×2+(-1)3×3×3+…+(-1)62×62×62] 显然 1+12+21()2+…+621()2=636211()1221212-=--, ∵ (2n )2-(2n -1)2=4n -1,∴ -1+(-1)2×2×2+(-1)3×3×3+…+(-1)62×62×62=-1+22-32+42-52+62-…-612+622=(2+1)(2-1)+(4+3)(4-3)+(6+5)(6-5)+…+(62+61)(62-61) =3+7+11+…+123 =31(3123)2⨯+=1953. ∴ S 2016=62122-+1953=1955-6212. ∴ S 2012=S 2016-(c 2016+c 2015+c 2014+c 2013)=1955-6212-(6212+62+62+62) =1769-6112.即数列{c n }的前2012项之和为1769-6112.…………………………………12分 22.解:(Ⅰ)由已知:1()f x a x'=-, ∴由题知11(2)22f a '=-=-,解得a =1. 于是11()1xf x x x-'=-=,当x ∈(0,1)时,()0f x '>,f (x )为增函数, 当x ∈(1,+∞)时,()0f x '<,f (x )为减函数,即f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞). ……5分 (Ⅱ)由(Ⅰ)∀x 1∈(0,+∞),f (x 1) ≤f (1)=0,即f (x 1)的最大值为0, 由题知:对∀x 1∈(0,+∞),∃x 2∈(-∞,0)使得f (x 1)≤g (x 2)成立, 只须f (x )ma x ≤g (x )ma x .∵ 22()x kx k g x x ++=2k x k x =++2k x k x ⎛⎫=--++ ⎪-⎝⎭≤2k -, ∴ 只须k k 22+-≥0,解得k ≥1.………………………………………10分(Ⅲ)要证明2222ln 2ln 3ln 21234(1)n n n n n --+++<+ (n ∈N*,n ≥2).只须证22222ln 22ln 32ln 21232(1)n n n n n --+++<+ , 只须证2222222ln 2ln 3ln 21232(1)n n n n n --+++<+ .由(Ⅰ)当()1x ∈+∞,时,()0f x '<,f (x )为减函数, f (x )=ln x -x +1≤0,即ln x ≤x -1, ∴ 当n ≥2时,22ln 1n n <-,22222ln 11111111(1)1n n n n n n n n n -<=-<-=-+++, 222222ln 2ln 3ln 23n n +++ <111221⎛⎫-++ ⎪+⎝⎭111331⎛⎫-++ ⎪+⎝⎭1111n n ⎛⎫⋅⋅⋅+-+ ⎪+⎝⎭211211212(1)n n n n n --=--+=++,∴ 2222ln 2ln3ln 21234(1)n n n n n --+++<+ .………………………………………14分。