b9 人教版八年级下19.2.2菱形1
- 格式:doc
- 大小:256.50 KB
- 文档页数:2
19.2.2菱形(1)时间: 姓名: 班级: 一.明确目标,预习交流【学习目标】1.在探索菱形中,理解并掌握菱形的定义及其性质,会用这些性质进行有关的论证和计算,会计算菱形的面积.2.通过运用菱形知识解决具体问题,提高分析能力和观察能力。
3.根据平行四边形与菱形的从属关系,通过画图向学生渗透集合思想。
【重、难点】重点:菱形的性质。
难点:菱形的性质及菱形知识的综合应用。
【预习作业】:1.平行四边形的性质:_____________________ 边_____________________ 平行四边形对角线:_____________________角:___________,___________2.菱形的定义:________________________________________。
3.举一些实际生活有关菱形的例子(至少写三个):_____________________________________________________________________________________4.菱形特有的性质:__________________________________。
菱形 __________________________________。
二.合作探究,生成总结探究1.试探究菱形ABCD 是否具有平行四边形ABCD 有关两组对边,两组对角,邻角,两条对角线的性质?(只写他们之间的关系不用证明)归纳:菱形的性质① 。
即 ∵ ∴ ,归纳:菱形的性质② 。
即 ∵ ∴ ,归纳:菱形的性质③ 。
即 ∵ ∴ ,归纳:菱形的性质④ 。
即 ∵ ∴ ,归纳:菱形的性质⑤ 。
即 ∵ ∴ ,探究 2.如图,将一张菱形纸对折两次,沿图中虚线剪下,再打开,就得到一个菱形。
观察得到的菱形,它是轴对称图形吗?有几条对称轴?对称轴之间有什么位置关系?你能看出图中哪些线段或角相等?归纳:菱形的性质⑥ 。
19.2 菱形1.菱形的性质1.如图,已知菱形ABCD的边长等于2,∠DAB=60°,则对角线BD的长为( C )(A)1 (B)(C)2 (D)22.如图,在菱形ABCD中,AB=5,对角线AC=6,过点A作AE⊥BC,垂足为E,则AE的长为( C )(A)4 (B)(C)(D)53.菱形的两条对角线的长分别是6和8,则这个菱形的周长是( B )(A)24 (B)20 (C)10 (D)54.如图,P是菱形ABCD对角线BD上一点,PE⊥AB于点E,PE=4 cm,则点P到BC的距离是 4 cm.5.如图,一活动菱形衣架中,菱形的边长均为16 c m,若墙上钉子间的距离AB=BC=16 cm,则∠1= 120°.6.如图,在菱形ACBD中,对角线AB,CD相交于点O,CE⊥AD于点E,若AB=16,CD=12,则菱形的面积是96 ,CE= 9.6 .第6题图7.(2018广州)如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,则点C的坐标是(-5,4) .第7题图8.已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE.证明:因为四边形ABCD是菱形,所以CB=CD,CA平分∠BCD.所以∠BCE=∠DCE.又CE为公共边,所以△BCE≌△DCE.所以∠CBE=∠CDE.因为在菱形A BCD中,AB∥CD,所以∠AFD=∠FDC,所以∠AFD=∠CBE.9.(2018广东)如图,BD是菱形ABCD的对角线,∠CBD=75°.(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,连结BF,求∠DBF的度数.解:(1)如图所示,直线EF即为所求.(2)因为四边形A BCD是菱形,∠CBD=75°,所以∠ABD=∠DBC=75°,DC∥AB,∠A=∠C.所以∠ABC=150°,∠ABC+∠C=180°.所以∠C=∠A=30°.因为EF是线段AB的垂直平分线,所以AF=FB.所以∠A=∠FBA=30°.所以∠DBF=75°-30°=45°.10.如图,在菱形ABCD中,过点D作DE⊥AB于点E,作DF⊥BC于点F,连结EF.求证:(1)△ADE≌△CDF;(2)∠BEF=∠BFE.证明:(1)因为四边形ABCD是菱形,所以AD=CD,∠A=∠C.因为DE⊥AB,DF⊥BC,所以∠AED=∠CFD=90°.所以△ADE≌△CDF.(2)因为四边形ABCD是菱形,所以AB=CB.因为△ADE≌△CDF,所以AE=CF.所以AB-AE=C B-CF.所以BE=BF.所以∠BEF=∠BFE.11.(规律探索题)如图,两个连在一起的全等菱形的边长为1米,一个微型机器人由A点开始按ABCDEFCGA的顺序沿菱形的边循环运动,当微型机器人行走了2 019米时停下,求这个微型机器人停在哪个点?并说明理由.解:这个微型机器人停在D点.理由如下:因为两个全等菱形的边长为1米,所以微型机器人由A点开始按ABCDEFCGA顺序走一圈所走的距离为8×1=8米.因为2 019÷8=252……3,所以当微型机器人走到第252圈后再走3米正好到达D点.12.(拓展探究题)如图1,有一张菱形纸片ABCD,AC=8,BD=6.(1)请沿着AC剪一刀,把它分成两部分,把剪开的两部分拼成一个平行四边形,在图2中用实数画出你所拼成的平行四边形;若沿着BD剪开,请在图3中用实线画出拼成的平行四边形;并直接写出这两个平行四边形的周长.(2)沿着一条直线剪开,拼成与上述两种都不全等的平行四边形,请在图4中用实线画出拼成的平行四边形.(注:上述所画的平行四边形都不能与原菱形全等)解:(1)因为菱形的两条对角线长分别为6,8,所以对角线的一半分别为3,4,所以菱形的边长为5,所以图1平行四边形的周长为2×(5+8)=26; 图2平行四边形的周长为2×(5+6)=22.(2)如图3所示.。
19.2.2.菱形的判定(1)一、温故知新如图,在菱形ABCD中,你能得到哪些正确的结论?二、设问导读阅读课本P114,完成下列问题:(1)写出命题“菱形的四条边都相等”的逆命题.逆命题是真命题吗?(2)动手操作114页试一试,并证明.(3)你能判断例4中四边形EFGH的形状吗?根据是什么?三、自学检测1.如图19-2-29所示,四边形ABCD是矩形,AE∥BD,DE∥AC,则四边形AODE是( )A.平行四边形但不是菱形B.矩形C.菱形 D.无法确定2、将一张矩形纸对折再对折,然后沿着虚线剪开,打开后发现它是一个菱形,根据的道理是()A.一组邻边相等的平行四边形是菱形B. 四条边相等的四边形是菱形C. 对角线互相垂直的平行四边形是菱形D. 三条边相等的四边形是菱形四、巩固训练题组一如图所示,在四边形ABCD中,AB∥CD,AB=CD=BC,四边形ABCD是菱形吗?•请说明理由.题组二1.如图19-2-30所示,AE是▱ABCD的∠DAB的平分线,且交BC于点E,EF∥AB交AD于点F 。
求证:四边形ABEF一定是菱形.2.如图19-2-33所示,在矩形ABCD中,E,F,G,H分别是边AB,CD,BC,DA的中点,则四边形EGFH是________形.3.如图,矩形ABCD的对角线相交于点O,PD∥AC,PC∥BD,PD,PC相交于点P,四边形PCOD 是菱形吗?试说明理由.题组三如图,点E,F分别是锐角∠A两边上的点,AE=AF,分别以点E,F为圆心,以AE的长为半径画弧,两弧相交于点D,连结DE,DF.(1)请你判断所画四边形的形状,并说明理由.(2)连结EF,若AE=8cm,∠A=60°,求线段EF的长. 五、拓展提升矩形ABCD中,AD=32cm,AB=24cm,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.若P从点A出发,以1cm/s的速度向D运动(不与D重合).设点P运动时间为t秒,则t= s时,以点P和Q与点A,B,C,D中的两个点为顶点的四边形是菱形.参考答案自学检测:B 巩固训练 题组一 1.C2.解:四边形ABCD 是菱形,因为四边形ABCD 中,AB ∥CD ,且AB=CD ,所以四边形ABCD 是平行四边形,又因为AB=BC ,所以YABCD 是菱形.点拨:根据已知条件,不难得出四边形ABCD 为平行四边形,又AB=BC ,即一组邻边相等,由菱形的定义可以判别该四边形为菱形. 题组二 1. 略 2. 菱形.3.解:四边形PCOD 是菱形.理由如下:因为PD∥OC,PC∥OD, •所以四边形PCOD 是平行四边形. 又因为四边形ABCD 是矩形,所以OC=OD , 所以平行四边形PCOD 是菱形. 题组三(1)菱形.理由:∵根据题意得:AE=AF=ED=DF , ∴四边形AEDF 是菱形. (2)连结EF , ∵AE=AF ,∠A=60°, ∴△EAF 是等边三角形, ∴EF=AE=8cm. 拓展提升分两种情况:①如果四边形PBQD 是菱形,则PD=BP=32-t ,∵四边形ABCD 是矩形,∴∠A=90°, 在Rt △ABP 中,由勾股定理得:AB 2+AP 2=BP 2,即242+t 2=(32-t)2,解得t=7,即运动时间为7s 时,四边形PBQD 是菱形.②如果四边形APCQ 是菱形,则AP=AQ=CQ=t.∵四边形ABCD 是矩形,∴∠ABQ=90°,在Rt △ABQ 中,由勾股定理得:AB 2+BQ 2=AQ 2,即242+(32-t)2=t 2,解得t=25,即运动时间为25s 时,四边形APCQ 是菱形. 答案:7或25。
八年级下19.2.2菱形学案
【学习目标】1使学生掌握菱形的定义;
2使学生掌握菱形的性质,并利用其性质进行菱形的相关计算.
【学习重点】菱形的性质.
【学习难点】运用菱形的性质.
【温顾知新】
1、平行四边形的性质:①;
②;
③ .
2、矩形的性质:①;
② .
3、直角三角形斜边上的中线等于.
探究:将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,再打开,你发现这是一个什么样的图形呢?
这就是另一类特殊的平行四边形,即菱形(rhombus).
4、叫做菱形.
观察上图:菱形的应用很为广泛。
现在流行一种新式的衣帽架,可以根据需要将它伸缩,形成各种形状的菱形,固定在墙上,既美观又实用.
观察右图:回答菱形是轴对称图形吗?()
有条对称轴?对称轴之间有什么位置关系?
你能看出图中哪些线段或角相等吗?
5、菱形的性质:①菱形的四条边都;
②菱形的两条对角线互相垂直,并且每一条对角线平分一组.
【课堂练习】
1、菱形的四边;两条对角线,并且.
2、四边形ABCD是菱形,O是两条对角线的交点,AB=5,AO=4,则对角线AC的长为、BD的长为.
3、菱形的两条对角线的长分别是6和8,则其周长为,面积为.
120,且平分这个内角的对角线长为8cm,则这个菱形的周长4、菱形的一个内角为
为.
5、用你认为是最简洁的方法画一个菱形.
【范例点评】
1、如图是菱形花坛ABCD ,它的边长为20m ,∠ABC =60°,沿着菱形的对角线修建了
两条小路AC 和BD ,求两条小路的长和花坛的面积(分别精确到0.01m 和0.01m 2).
2、如图,四边形ABCD 是菱形. 对角线AC =8㎝,DB =6㎝,DH ⊥AB 与H .求DH 的长.
【能力提高】 1、如图A D 是⊿ABC 的角平分线,DE ∥AC ,DF ∥AB ,求证:四边形AEDF 是菱形。
2、已知如图,菱形ABCD 中,∠ADC =120°,AC
=
(1)求BD 的长;(2)求菱形ABCD 的面积,
(3)写出A 、B 、C 、D 的坐标.
【巩固练习】
21、如图,菱形ABCD 中,BE ⊥AD ,BF ⊥CD ,E 、F 为垂足,AE=ED ,求∠EBF 的度数。
(6分)
家庭作业:课时作业本98页.
D C
A B
C C
B E A F D。