概率的起源与发展-课件·PPT
- 格式:ppt
- 大小:1.09 MB
- 文档页数:21
概率论的起源与发展一、 概率的起源:三四百年前在欧洲许多国家,贵族之间盛行赌博之风。
掷骰子是他们常用的一种赌博方式。
因骰子的形状为小正方体,当它被掷到桌面上时,每个面向上的可能性是相等的,即出现1点至6点中任何一个点数的可能性是相等的。
有的参赌者就想:如果同时掷两颗骰子,则点数之和为9与点数之和为10,哪种情况出现的可能性较大?17世纪中叶,法国有一位热衷于掷骰子游戏的贵族德·梅耳,发现了这样的事实:将一枚骰子连掷四次至少出现一个六点的机会比较多,而同时将两枚骰子掷24次,至少出现一次双六的机会却很少。
这是什么原因呢?后人称此为著名的德·梅耳问题。
二、 数学家们参与赌博:又有人提出了“分赌注问题”:两个人决定赌若干局,事先约定谁先赢得5局便算赢家。
如果在一个人赢3局,另一人赢4局时因故终止赌博,应如何分赌本?诸如此类的需要计算可能性大小的赌博问题提出了不少,但他们自己无法给出答案。
参赌者将他们遇到的上述问题请教当时法国数学家帕斯卡,帕斯卡接受了这些问题,他没有立即回答,而把它交给另一位法国数学家费尔马。
他们频频通信,互相交流,围绕着赌博中的数学问题开始了深入细致的研究。
后来,这些问题被来到巴黎的荷兰科学家惠更斯获悉,回荷兰后,他独立地进行研究。
帕斯卡和费尔马两人一边亲自做赌博实验,一边仔细分析计算赌博中出现的各种问题,终于完整地解决了“分赌注问题”—— 正确的答案是:赢了4局的拿这个钱的43,赢了3局的拿这个钱的41。
为什么呢?假定他们俩再赌一局,或者 A 赢,或者 B 赢。
若是 A 赢满了5局,钱应该全归他;A 如果输了,即 A 、B 各赢4局,这个钱应该对半分。
现在,A 赢、输的可能性都是21,所以,他拿的钱应该是21×1+21×21=43;当然,B 就应该得41。
他们将此题的解法向更一般的情况推广,从而建立了概率论的一个基本概念——数学期望,这是描述随机变量取值的平均水平的一个量。
概率的起源和发展引言概述:概率是数学中一个重要的概念,用于描述事件发生的可能性。
它的起源可以追溯到古代的赌博和游戏,而在数学上的发展则经历了漫长而复杂的过程。
本文将从概率的起源、古代概率理论、现代概率理论、概率在实际应用中的重要性以及未来概率的发展趋势等五个方面,详细阐述概率的起源和发展。
一、概率的起源1.1 古代赌博和游戏古代人类在娱乐活动中开始意识到事件的不确定性,并尝试用赌博和游戏来解释和预测未来事件的结果。
1.2 古代中国的卜筮古代中国的卜筮也是一种预测未来的方式,通过观察天象、卜卦等方法,人们试图揭示未来事件发生的概率。
1.3 古希腊的概率思想古希腊的哲学家开始思考事件发生的原因和规律,提出了一些关于概率的理论,如亚里士多德的偶然性理论。
二、古代概率理论2.1 法国数学家帕斯卡尔的概率理论帕斯卡尔在17世纪提出了著名的概率理论,他通过赌博问题和几何概率的研究,建立了现代概率理论的基础。
2.2 伯努利家族的贡献伯努利家族在18世纪对概率理论进行了深入研究,提出了伯努利试验和大数定律等重要概念,为概率理论的发展奠定了基础。
2.3 概率论的数学公理化20世纪初,概率论开始进行数学公理化的研究,由科尔莫哥洛夫和冯诺依曼等数学家提出了概率公理系统,使概率论成为一门严谨的数学学科。
三、现代概率理论3.1 随机变量和概率分布现代概率理论引入了随机变量和概率分布的概念,通过数学模型描述事件发生的概率,并进行概率计算和推理。
3.2 统计学和概率论的结合统计学的发展为概率论提供了实证分析的方法,通过收集和分析样本数据,推断总体的概率分布和参数。
3.3 蒙特卡洛方法的应用蒙特卡洛方法是一种基于随机模拟的计算方法,广泛应用于金融、工程、物理等领域,通过大量的随机抽样计算出事件发生的概率。
四、概率在实际应用中的重要性4.1 金融风险管理概率理论在金融领域的应用尤为重要,通过建立风险模型和计算概率分布,帮助机构评估和管理金融风险。
概率的起源和发展引言概述:概率是数学中的一个重要概念,用来描述事件发生的可能性。
它的起源可以追溯到古代,随着科学的发展,概率理论逐渐成为了一门独立的学科,并在各个领域得到了广泛的应用。
本文将从概率的起源、概率的发展以及概率在现代科学中的应用等方面进行详细阐述。
一、概率的起源1.1 古代的概率观念在古代,人们对概率的认识主要是基于经验和直觉。
例如,埃及人在进行农业生产时,会根据过去的经验来预测未来的丰收情况,这就是一种对概率的直觉认识。
1.2 概率的数学化概率的数学化始于17世纪,伽利略和帕斯卡等人对概率进行了一系列的研究。
伽利略通过实验和数学模型,提出了概率的基本原理,奠定了概率论的基础。
1.3 概率的统计学观点随着统计学的发展,人们开始将概率与统计学联系在一起。
通过对大量数据的分析和统计,人们可以更准确地估计事件发生的概率,这为概率论的发展提供了新的思路。
二、概率的发展2.1 概率论的建立概率论的建立主要归功于数学家布尔赫和庞加莱等人的努力。
他们通过引入集合论和数学逻辑的方法,建立了概率论的数学体系,使概率论得以成为一门独立的学科。
2.2 概率的公理化20世纪初,科尔莫戈洛夫等人提出了概率的公理化方法,将概率定义为满足一定公理的函数。
这一方法使概率论的基础更加坚固,并为后续的研究提供了理论基础。
2.3 概率的分支学科随着概率论的发展,浮现了许多概率的分支学科,如统计学、随机过程等。
这些学科将概率论与其他学科相结合,使概率的应用范围更加广泛。
三、概率在现代科学中的应用3.1 概率在物理学中的应用概率在物理学中有着广泛的应用,例如在量子力学中,概率用来描述微观粒子的行为。
同时,概率统计方法也被用于对实验数据进行分析和解释。
3.2 概率在生物学中的应用生物学中的许多现象和过程都具有随机性,概率理论可以用来描述和解释这些现象。
例如,遗传学中的基因突变和进化过程都可以通过概率模型进行建模和分析。
3.3 概率在金融学中的应用金融市场的波动和风险是不可预测的,概率理论可以用来对金融市场进行建模和风险评估。