2018届全国高三考前密卷(四)数学文科卷
- 格式:doc
- 大小:855.94 KB
- 文档页数:14
绝密 ★ 启用前2018年普通高等学校招生全国统一考试仿真卷文科数学(四)本试题卷共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合2{|}M x x x =∈=R ,{}1,0,1N =-,则M N = ( )A .{}0B .{}1C .{}0,1D .{}1,0,1-2.设i 1i 1z +=-,()21f x x x =-+,则()f z =( )A .B .i -C .1i -+D .1i--3.已知()()22log 111sin13x x f x xx ⎧--<<⎪=⎨π⎪⎩≥,则312f f ⎛⎫+= ⎪⎝⎭( )A .52B .52-C .32-D .12-4.已知等差数列{}n a 的前项和为n S ,且96=πS ,则5tan a =()ABC.D.5.执行如图所示的程序框图,如果输入的100t =,则输出的n =()A .5B .6C .7D .86.已知函数()sin(2)(02)ϕϕπ=+≤<f x x 的图象向右平移3π个单位长度后,得到函数()cos2=g x x 的图象,则下列是函数()=y f x 的图象的对称轴方程的为( )A .6π=x B .12π=x C .3π=x D .0=x 7.图一是美丽的“勾股树”,它是一个直角三角形分别以它的每一边向外作正方形而得到.图二是第1代“勾股树”,重复图二的作法,得到图三为第2代“勾股树”,以此类推,已知最大的正方形面积为1,则第代“勾股树”所有正方形的个数与面积的和分别为( )A .21;n n -B .21;1n n -+C .121;n n +-D .121;1n n +-+8.已知点P 在圆C :224240x y x y +--+=上运动,则点P 到直线:250x y --=的距离的最小值是( )A .BC1D1-9.已知偶函数()f x 在[)0,+∞单调递减,若()20f -=,则满足()10xf x ->的的取值范围是()A .()(),10,3-∞-B .()()1,03,-+∞C .()(),11,3-∞- D .()()1,01,3- 10.已知点()4,0A ,()0,4B ,点(),P x y 的坐标,y 满足0034120+⎧⎪⎪-⎨⎩≥≥≤x y x y ,则AP BP ⋅ 的最小值为( )A .254B .0C .19625-D .-811.某几何体的直观图如图所示,AB 是O 的直径,BC 垂直O 所在的平面,且10AB BC ==,Q 为O 上从A 出发绕圆心逆时针方向运动的一动点.若设弧AQ的长为,CQ 的长度为关于的函数()f x ,则()y f x =的图像大致为()A.B.C.D.12.双曲线22221x ya b-=(0,0)a b>>的左、右焦点分别为1F,2F,过1F作倾斜角为60︒的直线与y轴和双曲线的右支分别交于A,B两点,若点A平分线段1F B,则该双曲线的离心率是()A B.2+C.2D1+第Ⅱ卷本卷包括必考题和选考题两部分。
绝密★ 启用前2018年普通高等学校招生全国统一考试仿真卷文科数学(四)本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.[2018·丹东期末]设集合{}2|M x x x =∈=R ,{}1,0,1N =-,则M N = ( )A .{}0B .{}1C .{}0,1D .{}1,0,1-【答案】C【解析】由题意{}0,1M =,∴{}0,1M N = .故选C . 2.[2018·南阳一中]设i 1i 1z +=-,()21f x x x =-+,则()f z =( ) A .i B .i - C .1i -+ D .1i --【答案】A班级姓名准考证号 考场号 座位号此卷只装订不密封【解析】()21f x x x =-+ ,()()()()i 11i i 12ii i 1i 11i 2z +--+-====-----,()()()()2i i i 1i f z f ∴=-=---+=,故选A .3.[2018·郴州一中]已知()()22log 111sin 13x x f x xx ⎧--<<⎪=⎨π⎪⎩≥,则312f f ⎛⎫+= ⎪⎝⎭⎝⎭( )A .52B .52-C .32-D .12-【答案】B【解析】()()22log 111sin13x x f x xx ⎧--<<⎪=⎨π⎪⎩≥,223131sin log 1232f f ⎡⎤π⎛⎫⎛⎫⎢⎥∴+=⨯+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦2115sin 5log 26422π⎛⎫⎛⎫=π++=--=- ⎪ ⎪⎝⎭⎝⎭.故选B .4.[2018·衡水金卷]已知等差数列{}n a 的前n 项和为n S ,且96=πS ,则5tan a =( ) ABC.D.【答案】C【解析】由等差数列的性质可得:()19959692+=π==a a S a ,∴523π=a,则52tan tan3π==a C . 5.[2018·承德期末]执行如图所示的程序框图,如果输入的100t =,则输出的n =( )A .5B .6C .7D .8【答案】A【解析】2+5+14+41+122100S =>,故输出5n =.6.[2018·漳州调研]已知函数()sin(2)(02)ϕϕπ=+≤<f x x 的图象向右平移3π个单位长度后,得到函数()cos2=g x x 的图象,则下列是函数()=y f x 的图象的对称轴方程的为( ) A .6π=x B .12π=x C .3π=x D .0=x【答案】A【解析】函数()cos2=g x x 的图象的对称轴方程为()2π=∈Z k x k ,故函数()=y f x 的图象的对称轴方程为()23ππ=-∈Z k x k ,当1=k 时,6π=x ,故选A . 7.[2018·云南联考]图一是美丽的“勾股树”,它是一个直角三角形分别以它的每一边向外作正方形而得到.图二是第1代“勾股树”,重复图二的作法,得到图三为第2代“勾股树”,以此类推,已知最大的正方形面积为1,则第n 代“勾股树”所有正方形的个数与面积的和分别为( )A .21;n n -B .21;1n n -+C .121;n n +-D .121;1n n +-+开始输入t输出n 结束k ≤t否是0,2,0S a n ===S S a=+31,1a a n n =-=+【答案】D【解析】当1n =时,正方形的个数有0122+个;当2n =时,正方形的个数有012222++个; ,则0121222221nn n S +=++++=- 个,最大的正方形面积为1,当1n =时,由勾股定理知正方形面积的和为2,以此类推,所有正方形面积的和为1n +,故选D .8.[2018·防城港模拟]已知点P 在圆C :224240x y x y +--+=上运动,则点P 到直线l :250x y --=的距离的最小值是( ) A .4 BC1 D1【答案】D【解析】圆C :224240x y x y +--+=化为()()22211x y -+-=,圆心()2,1C 半径为1,=,则圆上一点P 到直线l :250x y --=1.选D .9.[2018·唐山期末]已知偶函数()f x 在[)0,+∞单调递减,若()20f -=,则满足()10xf x ->的x 的取值范围是( ) A .()(),10,3-∞- B .()()1,03,-+∞ C .()(),11,3-∞- D .()()1,01,3-【答案】A【解析】∵偶函数()f x 在[)0,+∞单调递减,且()20f -=, ∴函数()f x 在(),0-∞单调递增,且()20f =.结合图象可得不等式()10xf x ->等价于()010>->⎧⎨⎩x f x 或()010<-<⎧⎨⎩x f x ,即013>-<⎨<⎧⎩x x 或01<<-⎧⎨⎩x x ,解得03x <<或1x <-. 故x 的取值范围为()(),10,3-∞- .选A .10.[2018·重庆期末]已知点()4,0A ,()0,4B ,点(),P x y 的坐标x ,y 满足0034120+⎧⎪⎪-⎨⎩≥≥≤x y x y ,则AP BP ⋅ 的最小值为( ) A .254B .0C .19625-D .-8【答案】C【解析】由题意可得:()()()()2244228AP BP x x y y x y ⋅=-+-=-+-- ,()()2222x y -+-即为点(),P x y 与点()22,的距离的平方,结合图形知,最小值即为点()22,到直线的距离的平方25d ==,故最小值为221968525⎛⎫-=- ⎪⎝⎭.本题选择C 选项.11.[2018·海南期末]某几何体的直观图如图所示,AB 是O 的直径,BC 垂直O 所在的平面,且10AB BC ==,Q 为O 上从A 出发绕圆心逆时针方向运动的一动点.若设弧AQ的长为x ,CQ 的长度为关于x 的函数()f x ,则()y f x =的图像大致为( )A .B .C .D .【答案】A【解析】如图所示,设AOQ θ∠=,则弧长AQ x = ,线段()CQ f x =,5xθ=,作OH BQ ⊥于H 当Q 在半圆弧AQB 上运动时,1()2QOH θ∠=π-,2sin2cos 22BQ OQ OQ θθπ-=⨯=⨯,CQ ===即()f x =5=πx 时,即运动到B 点时y 有最小值10,只有A 选项适合,又由对称性知选A ,故选A .12.[2018·石家庄毕业]双曲线22221x y a b-=(0,0)a b >>的左、右焦点分别为1F ,2F ,过1F 作倾斜角为60︒的直线与y 轴和双曲线的右支分别交于A ,B 两点,若点A 平分线段1F B ,则该双曲线的离心率是( )A B .2C .2D 1【答案】B【解析】双曲线22221x y a b -=(0,0)a b >>的左焦点F 为(),0c -,直线l 的方程为)y x c =+,令0x =,则y =,即()A ,因为A 平分线段1FB ,根据中点坐标公式可得()B c ,代入双曲线方程可得2222121c c a b-=,由于()1c e e a =>,则2221211e e e -=-,化简可得421410e e -+=,解得27e =±1e >,解得2e =B .第Ⅱ卷本卷包括必考题和选考题两部分。
绝密 ★ 启用前普通高等学校招生全国统一考试仿真卷文科数学(四)本试题卷共22页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.[2018·丹东期末]设集合{}2|M x x x =∈=R ,{}1,0,1N =-,则M N =( )A .{}0B .{}1C .{}0,1D .{}1,0,1-2.[2018·南阳一中]设i 1i 1z +=-,()21f x x x =-+,则()f z =( ) A .iB .i -C .1i -+D .1i --3.[2018·郴州一中]已知()()22log 111sin13x x f x x x ⎧--<<⎪=⎨π⎪⎩≥,则312f f ⎛⎫+= ⎪⎝⎭( ) A .52 B .52- C .32- D .12-4.[2018·衡水金卷]已知等差数列{}n a 的前n 项和为n S ,且96=πS ,则5tan a =( )ABC. D.5.[2018·承德期末]执行如图所示的程序框图,如果输入的100t =,则输出的n =( )开始输入t输出n 结束k ≤t否是0,2,0S a n ===S S a=+31,1a a n n =-=+A .5B .6C .7D .86.[2018·漳州调研]已知函数()sin(2)(02)ϕϕπ=+≤<f x x 的图象向右平移3π个单位长度后,得到函数()cos2=g x x 的图象,则下列是函数()=y f x 的图象的对称轴方程的为( ) A .6π=x B .12π=x C .3π=x D .0=x7.[2018·云南联考]图一是美丽的“勾股树”,它是一个直角三角形分别以它的每一边向外作正方形而得到.图二是第1代“勾股树”,重复图二的作法,得到图三为第2代“勾股树”,以此类推,已知最大的正方形面积为1,则第n 代“勾股树”所有正方形的个数与面积的和分别为( )A .21;n n -B .21;1n n -+C .121;n n +-D .121;1n n +-+8.[2018·防城港模拟]已知点P 在圆C :224240x y x y +--+=上运动,则点P 到直线l :250x y --=的距离的最小值是( ) A .4B C 1D .1-9.[2018·唐山期末]已知偶函数()f x 在[)0,+∞单调递减,若()20f -=,则满足班级 姓名 准考证号考场号 座位号此卷只装订不密封()10xf x ->的x 的取值范围是( ) A .()(),10,3-∞- B .()()1,03,-+∞ C .()(),11,3-∞-D .()()1,01,3-10.[2018·重庆期末]已知点()4,0A ,()0,4B ,点(),P x y 的坐标x ,y 满足0034120+⎧⎪⎪-⎨⎩≥≥≤x y x y ,则AP BP ⋅的最小值为( ) A .254B .0C .19625-D .-811.[2018·海南期末]某几何体的直观图如图所示,AB 是O 的直径,BC 垂直O 所在的平面,且10AB BC ==,Q 为O 上从A 出发绕圆心逆时针方向运动的一动点.若设弧AQ 的长为x ,CQ 的长度为关于x 的函数()f x ,则()y f x =的图像大致为( )A.B .C.D.12.[2018·石家庄毕业]双曲线22221x y a b-=(0,0)a b >>的左、右焦点分别为1F ,2F ,过1F 作倾斜角为60︒的直线与y 轴和双曲线的右支分别交于A ,B 两点,若点A 平分线段1F B ,则该双曲线的离心率是( ) AB.2+C .2 D.1+第Ⅱ卷本卷包括必考题和选考题两部分。
普通高等学校2018年招生全国统一考试临考冲刺卷(四)文科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足()1i 2i z -=+,则z 的共轭复数在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】D 【解析】()1i 2i z -=+,()()()()1i 1i 2+i 1i z ∴-+=+,213i z =+,13i 22z =+,13i 22z =-,z 的共轭复数在复平面内对应点坐标为13,22⎛⎫- ⎪⎝⎭,z 的共轭复数在复平面内对应的点在第四象限,故选D . 2.设集合{}2=36M x x <,{}2,4,6,8N =,则M N =( )A .{}24,B .{}46,C .{}26,D .{}246,,【答案】A【解析】()6,6M =-,故{}2,4MN =.3.下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是( )A .12B .13C .41-πD .42-π【答案】C【解析】令圆的半径为1,则()22'41S P S π-π-===-ππ,故选C . 4.函数()cos sin x f x x x =-,33,00,22x ππ⎡⎫⎛⎤∈-⎪ ⎢⎥⎣⎭⎝⎦的图象大致是( )A .B .C .D .【答案】C【解析】由()()f x f x -=-可得函数()f x 为奇函数,图像关于原点对称,可排除A ,B ,∵0,2x π⎛⎫∈ ⎪⎝⎭时,()0f x >,故选C .5.如图所示是一个几何体的三视图,则这个几何体外接球的体积为( )A .323π B .643π C .32π D【答案】D【解析】由已知中的三视图可得,该几何体是一个以正视图为底面的四棱锥,故该四棱锥的外接球,与以俯视图为底面,以4为高的直三棱柱的外接球相同. 由底面底边长为4,高为2,故底面为等腰直角三角形, 可得底面三角形外接圆的半径为2r =, 由棱柱高为4,可得22OO =,故外接球半径为R ==故外接球的体积为(3433V =π⨯=π.选D . 6.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后入称之为三角形的欧拉线.已知ABC △的顶点()2,0A ,()0,4B ,AC BC =,则ABC △的欧拉线方程为( ) A .230x y +-= B .230x y -+= C .230x y --= D .230x y -+=【答案】D【解析】线段AB 的中点为M (1,2),k AB =﹣2, ∴线段AB 的垂直平分线为:y ﹣2=12(x ﹣1),即x ﹣2y +3=0. ∵AC =BC ,∴△ABC 的外心、重心、垂心都位于线段AB 的垂直平分线上, 因此△ABC 的欧拉线的方程为:x ﹣2y +3=0.故选:D . 7.执行如图所示的程序框图,则输出S 的值为( )A .4097B .9217C .9729D .20481【答案】B【解析】阅读流程图可知,该流程图的功能是计算:0129122232102S =⨯+⨯+⨯++⨯, 则123102122232102S =⨯+⨯+⨯++⨯,以上两式作差可得:10191012012222210210212S --=++++-⨯=-⨯-,则:109219217S =⨯+=.本题选择B 选项.8.已知函数()()sin (0,)2f x x ωϕωϕπ=+><的最小正周期为6π,且其图象向右平移23π个单位后得到函数()sin g x x ω=的图象,则ϕ等于( )A .49πB .29πC .6πD .3π【答案】B【解析】由最小正周期公式可得:26ωπ=π,13ω∴=,函数的解析式为:()1sin 3f x x ϕ⎛⎫=+ ⎪⎝⎭,将函数图像向右平移23π个单位后得到的函数图像为:()12121sin sin sin 33393g x x x x ϕϕ⎡⎤ππ⎛⎫⎛⎫=-+=-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 据此可得:229k ϕπ-=π,()229k k ϕπ∴=π+∈Z , 令0k =可得29ϕπ=.本题选择B 选项.9.已知实数ln22a =,ln33b =,ln55c =,则,,a b c 的大小关系是( ) A .a b c << B .c a b << C .c b a << D .b a c <<【答案】B【解析】∵ln3ln22ln33ln2ln9ln803266b a ---=-==>,∴b a >; 又ln2ln55ln22ln5ln32ln250251010a c ---=-==>,∴a c >, ∴b ac >>,即c a b <<.选B .10.如图所示,在正方体1111ABCD A BC D -中,,E F 分别为1111,B C C D 的中点,点P 是底面1111A B C D 内一点,且AP ∥平面EFDB ,则1tan APA ∠的最大值是( )A .B .1CD .【答案】D【解析】由题意可得,点P 位于过点A 且与平面EFDB 平行的平面上, 如图所示,取1111,A D A B 的中点,G H ,连结,,,GH AH AG GE ,由正方形的性质可知:EF GH ∥,由ABEG 为平行四边形可知AG BE ∥, 由面面平行的判定定理可得:平面AGH ∥平面BEFD , 据此可得,点P 位于直线GH 上,如图所示,由1AA ⊥平面1111A B C D 可得11AA A P ⊥, 则111tan AA APA A P∠=,当1tan APA ∠有最大值时,1A P 取得最小值, 即点P 是GH 的中点时满足题意,结合正方体的性质可得此时1tan APA ∠的值是D 选项.11.经过双曲线2222:1(0,0)x y M a b a b -=>>的左焦点作倾斜角为60︒的直线l ,若l 交双曲线M 的左支于,A B ,则双曲线M 离心率的取值范围是( )A .()2,+∞B .()1,2C .(D .)+∞【答案】B【解析】由题意,b a <22223bc a a =-<,所以2c a<,即离心率的范围是()1,2,故选B .12.设函数()3e 3x a f x x x x⎛⎫=+-- ⎪⎝⎭,若不等式()0f x ≤有正实数解,则实数a 的最小值为( ) A .3 B .2 C .2e D .e【答案】D【解析】原问题等价于()2e 33x a x x -+≥,令()()2e 33x g x x x =-+,则()min a g x ⎡⎤⎣⎦≥,而()()2'e x g x x x =-,由()'0g x >可得:()(),01,x ∈-∞+∞,由()'0g x <可得:()0,1x ∈,据此可知,函数()g x 在区间()0,+∞上的最小值为()1e g =,综上可得:实数a 的最小值为e .本题选择D 选项.第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.已知向量()12,a k =,()1,14b k =-,若a b ⊥,则实数k =__________. 【答案】6-【解析】由题意,()121140k k -+=,则6k =-. 14.ABC △的内角,,A B C 的对边分别为,,a b c ,已知)c o s c o s ,60a C c Ab B -==︒,则A 的大小为__________. 【答案】75︒【解析】由)cos cos a C c A b-=,根据正弦定理得)sin cos sin cos sin A C C A B -=,即()s i n A C -=,()1sin 2A C -=,1306A C -=π=︒,又180120A C B ︒-=︒+=,2150A ∴=︒,75A =︒,故答案为75︒.15.已知直线:l (0)x my n n =+>过点()5A,若可行域0 0x my nx y +⎧⎪⎨⎪⎩≤≥≥的外接圆直径为20,则n =_____.【答案】【解析】由题意知可行域为图中△OAB 及其内部,解得(),0,B n AB =,又tan AOB ∠=,则∠AOB =30°,由正弦定理得2sin 20sin3010AB R AOB =∠=⨯︒=,解得n =.故答案为:16. “求方程34155x x ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭ 的解”有如下解题思路:设()3455x xf x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,则()f x 在R 上单调递减,且()21f =,所以原方程有唯一解2x =.类比上述解题思路,不等式()()63222x x x x -+>+-的解集是__________. 【答案】()(),12,-∞-⋃+∞【解析】不等式x 6﹣(x +2)>(x +2)3﹣x 2变形为, x 6+x 2>(x +2)3+(x +2); 令u =x 2,v =x+2,则x 6+x 2>(x +2)3+(x+2)⇔u 3+u >v 3+v ; 考查函数f (x )=x 3+x ,知f (x )在R 上为增函数, ∴f (u )>f (v ),∴u >v ;不等式x 6+x 2>(x +2)3+(x +2)可化为x 2>x +2,解得x <﹣1或x >2; ∴不等式的解集为:(﹣∞,﹣1)∪(2,+∞). 故答案为:(﹣∞,﹣1)∪(2,+∞).三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答.(一)必考题:60分,每个试题12分.17.已知数列{}n a 的前n 项和2n S n pn =+,且2a ,5a ,10a 成等比数列. (1)求数列{}n a 的通项公式;(2)若151n n n b a a +=+⋅,求数列{}n b 的前n 项和n T .【答案】(1)25n a n =+;(2)214541449n n nT n +=+.【解析】(1)当2n ≥时,121n n n a S S n p -=-=-+,当1n =时,111a S p ==+,也满足21n a n p =-+,故21n a n p =-+, ∵2510,,a a a 成等比数列,∴()()()23199p p p ++=+, ∴6p =.∴25n a n =+. (2)由(1)可得()()155511111252722527n n n b a a n n n n +⎛⎫=+=+=+- ⎪⋅++++⎝⎭,∴2511111151454279911252714491449n n n nT n n n n n n +⎛⎫=+-+-+⋯+-=+= ⎪++++⎝⎭. 18.某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示),由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的. (1)根据频率分布直方图计算图中各小长方形的宽度;(2)试估计该公司投入4万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:由表中的数据显示,x 与y 之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出y 关于x 的回归直线方程.参考公式:1221 ˆˆˆni i i ni i x y nxy b x nx a y bx ==⎧-=-=⎪-⎪⎨⎪⎪⎩∑∑【答案】(1)2;(2)5;(3)答案见解析. 【解析】(1)设各小长方形的宽度为m .由频率分布直方图中各小长方形的面积总和为1,可知()0.080.10.140.120.040.02m +++++⋅0.51m ==,解得2m =.故图中各小长方形的宽度为2.(2)由(1)知各小组依次是[)0,2,[)2,4,[)4,6,[)6,8,[)8,10,[]10,12,其中点分别为1,3,5,7,9,11对应的频率分别为0.16,0.20,0.28,0.24,0.08,0.04故可估计平均值为10.1630.250.28⨯+⨯+⨯+70.2490.08110.045⨯+⨯+⨯=. (3)由(2)可知空白栏中填5. 由题意可知1234535x ++++==,232573.85y ++++==,51i ii x y=∑1223324557=⨯+⨯+⨯+⨯+⨯69=,522232211234555i i x ==++++=∑,根据公式,可求得26953 3.85553ˆb -⨯⨯=-⨯12 1.210==, 3.8 1.230ˆ.2a =-⨯=. 所以所求的回归直线方程为 1.20.2y x =+.19.如图所示,正四棱椎P ABCD -中,底面ABCD 的边长为2,侧棱长为E 为PD 的中点.(1)求证:PB ∥平面AEC ; (2)若F 为PA 上的一点,且3PFFA=,求三棱椎A BDF -的体积.【答案】(1)见解析;(2)6. 【解析】(1)设BD 交AC 于O ,连接OE ,则在BDP △中,,O E 分别为,BD PD 的中点,∴OE PB ∥,又OE ⊂平面AEC ,PB ⊄平面AEC , ∴PB ∥平面AEC .(2)易知PO =PO ⊥平面ABCD ,∴111112234324A BDF F ABD ABD V V S PO --⎛⎫==⨯⨯=⨯⨯⨯⨯= ⎪⎝⎭△.20.椭圆()2222:10x y C a b a b+=>>的右焦点是(),0F c ,(),0A a ,()0,B b ,点P 是平行四边形FAPB 的一个顶点,PF x ⊥轴.(1)求椭圆C 的离心率;(2)过F 作直线l 交椭圆C 于,M N 两点,PM PN ⊥,求直线l 的斜率.【答案】(1)12;(2)0k =或k =- 【解析】(1)∵四边形FAPB 是平行四边形,∴BP FA =且BP FA ∥, 又∵PF ⊥ x 轴,∴BP OF =,∴2a c =,则12e =.(2)由(1)得2a c =,∴b =,∴椭圆方程为2222143x y c c+=,设直线():l y k x c =-,代入椭圆方程,得:()2222223484120k x k cx k c c +-+-=,设()11,M x y ,()22,N x y ,则2122834k c x x k +=+,22212241234k c c x x k -⋅=+, 由于()11y k x c =-,()22y k x c =-,∴122634kcy y k -+=+,22122934k c y y k -⋅=+,根据题意得()P c ,且0PM PN ⋅=,代入点坐标得:()()221212121230x x c x x c y y y y c -+++++=,即2222222222224128930343434k c c k c k c c c k k k --+-+=+++,化简得20k +=,解得0k =或k =- 21.已知函数()()()ln f x x x ax a =-∈R .(1)若1a =,求函数()f x 的图像在点()()1,1f 处的切线方程;(2)若函数()f x 有两个极值点1x ,2x ,且12x x <,求证:()212f x >-.【答案】(1) 0x y += (2)见解析【解析】(1)由已知条件,()()ln f x x x x =-,当1x =时,()1f x =-,()ln 12f x x x +'=-,当1x =时,()1f x '=-,所以所求切线方程为0x y +=(2)由已知条件可得()ln 12f x x ax +'=-有两个相异实根1x ,2x , 令()()'f x h x =,则()1'2h x a x=-, 1)若0a ≤,则()'0h x >,()h x 单调递增,()'f x 不可能有两根;2)若0a >, 令()'0h x =得12x a =,可知()h x 在10,2a ⎛⎫ ⎪⎝⎭上单调递增,在1,2a ⎛⎫+∞ ⎪⎝⎭上单调递减, 令1'02f a ⎛⎫> ⎪⎝⎭解得102a <<,由11e 2a <有120e e a f ⎛⎫=-< ⎪⎝⎭', 由2112a a >有2122ln 10f a a a ⎛⎫=-'+-< ⎪⎝⎭, 从而102a <<时函数()f x 有两个极值点, 当x 变化时,()f x ',()f x 的变化情况如下表因为()1120f a =->',所以121x x <<,()f x 在区间[]21,x 上单调递增,()()2112f x f a ∴>=->-.另解:由已知可得()ln 12f x x ax +'=-,则1ln 2x a x +=,令()1ln xg x x+=, 则()2ln 'xg x x -=,可知函数()g x 在()0,1单调递增,在()1,+∞单调递减, 若()'f x 有两个根,则可得121x x <<, 当()21,x x ∈时,1ln 2,xa x+> ()ln 120f x x ax =+->', 所以()f x 在区间[]21,x 上单调递增,所以()()2112f x f a >=->-.(二)选考题(共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分)22.在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l的参数方程为12 (2x t t y =-⎪=⎧⎪⎨⎪⎪⎩为参数),曲线C 的极坐标方程为4cos ρθ=;(1)求直线l 的直角坐标方程和曲线C 的直角坐标方程; (2)若直线l 与曲线C 交点分别为,A B ,点()1,0P ,求11PA PB+的值. 【答案】(1):10l x y +-=,曲线22:40C x y x +-=;(2)3. 【解析】(1):10l x y +-=,曲线22:40C x y x +-=;(2)将12x y t ⎧⎪==⎨-⎪⎪⎪⎩(t 为参数)代入曲线C的方程,得23=0t -,12t t ∴-=,121211t t PA PB t t -∴+==. 23.已知函数()2121f x x x =-++. (1)求函数()f x 的最小值m ; (2)若正实数,a b满足11a b +=,求证:2212m a b+≥. 【答案】(1)2;(2)见解析.【解析】(1)()()212121212x x x x -++--+=≥当且仅当1122x -≤≤时,等式成立.(2)2221211112a b a b ⎛⎫⎛⎫⎛⎫+⋅++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭≥则22122a b +≥,当且仅当2b a =时取,等号成立.。
2018年普通高等学校招生全国统一考试高三数学仿真卷 文(四)本试题卷共14页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.[2018·丹东期末]设集合{}2|M x x x =∈=R ,{}1,0,1N =-,则MN =( )A .{}0B .{}1C .{}0,1D .{}1,0,1-【答案】C【解析】由题意{}0,1M =,∴{}0,1M N =.故选C .2.[2018·南阳一中]设i 1i 1z +=-,()21f x x x =-+,则()f z =( ) A .i B .i -C .1i -+D .1i --【答案】A 【解析】()21f x x x =-+,()()()()i 11i i 12ii i 1i 11i 2z +--+-====-----,()()()()2i i i 1i f z f ∴=-=---+=,故选A .3.[2018·郴州一中]已知()()22log 111sin13x x f x xx ⎧--<<⎪=⎨π⎪⎩≥,则312f f ⎛⎫+=⎪⎝⎭⎝⎭( ) A .52B .52-C .32-D .12-【答案】B【解析】()()22log 111sin13x x f x xx ⎧--<<⎪=⎨π⎪⎩≥,223131sin log 1232f f ⎡⎤π⎛⎫⎛⎫⎢⎥∴+=⨯+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦2115sin 5log 26422π⎛⎫⎛⎫=π++=--=- ⎪ ⎪⎝⎭⎝⎭.故选B .4.[2018·衡水金卷]已知等差数列{}n a 的前n 项和为n S ,且96=πS ,则5tan a =( )ABC.D.-【答案】C【解析】由等差数列的性质可得:()19959692+=π==a a S a ,∴523π=a,则52tan tan3π==a C . 5.[2018·承德期末]执行如图所示的程序框图,如果输入的100t =,则输出的n =( )开始输入t输出n 结束k ≤t否是0,2,0S a n ===S S a=+31,1a a n n =-=+A .5B .6C .7D .8【答案】A【解析】2+5+14+41+122100S =>,故输出5n =.6.[2018·漳州调研]已知函数()sin(2)(02)ϕϕπ=+≤<f x x 的图象向右平移3π个单位长度后,得到函数()cos2=g x x 的图象,则下列是函数()=y f x 的图象的对称轴方程的为( ) A .6π=x B .12π=x C .3π=x D .0=x【答案】A【解析】函数()cos2=g x x 的图象的对称轴方程为()2π=∈Z k x k ,故函数()=y f x 的图象的对称轴方程为()23ππ=-∈Z k x k ,当1=k 时,6π=x ,故选A . 7.[2018·云南联考]图一是美丽的“勾股树”,它是一个直角三角形分别以它的每一边向外作正方形而得到.图二是第1代“勾股树”,重复图二的作法,得到图三为第2代“勾股树”,以此类推,已知最大的正方形面积为1,则第n 代“勾股树”所有正方形的个数与面积的和分别为( )A .21;nn - B .21;1nn -+C .121;n n +- D .121;1n n +-+【答案】D【解析】当1n =时,正方形的个数有0122+个;当2n =时,正方形的个数有012222++个;,则0121222221n n n S +=++++=-个,最大的正方形面积为1,当1n =时,由勾股定理知正方形面积的和为2,以此类推,所有正方形面积的和为1n +,故选D .8.[2018·防城港模拟]已知点P 在圆C :224240x y x y +--+=上运动,则点P 到直线l :250x y --=的距离的最小值是( )A .4BC 1D 1【答案】D【解析】圆C :224240x y x y +--+=化为()()22211x y -+-=,圆心()2,1C 半径为1,=,则圆上一点P 到直线l :250x y --=的距离的最1.选D .9.[2018·唐山期末]已知偶函数()f x 在[)0,+∞单调递减,若()20f -=,则满足()10xf x ->的x 的取值范围是( )A .()(),10,3-∞-B .()()1,03,-+∞C .()(),11,3-∞-D .()()1,01,3-【答案】A【解析】∵偶函数()f x 在[)0,+∞单调递减,且()20f -=, ∴函数()f x 在(),0-∞单调递增,且()20f =. 结合图象可得不等式()10xf x ->等价于()010>->⎧⎨⎩x f x 或()010<-<⎧⎨⎩x f x ,即013>-<⎨<⎧⎩x x 或01<<-⎧⎨⎩x x ,解得03x <<或1x <-.故x 的取值范围为()(),10,3-∞-.选A .10.[2018·重庆期末]已知点()4,0A ,()0,4B ,点(),P x y 的坐标x ,y 满足0034120+⎧⎪⎪-⎨⎩≥≥≤x y x y ,则AP BP ⋅的最小值为( ) A .254B .0C .19625-D .-8【答案】C【解析】由题意可得:()()()()2244228AP BP x x y y x y ⋅=-+-=-+--,()()2222x y -+-即为点(),P x y 与点()22,的距离的平方,结合图形知,最小值即为点()22,到直线的距离的平方25d ==,故最小值为221968525⎛⎫-=-⎪⎝⎭.本题选择C 选项.11.[2018·海南期末]某几何体的直观图如图所示,AB 是O 的直径,BC 垂直O 所在的平面,且10AB BC ==,Q 为O 上从A 出发绕圆心逆时针方向运动的一动点.若设弧AQ 的长为x ,CQ 的长度为关于x 的函数()f x ,则()y f x =的图像大致为( )A .B .C .D .【答案】A【解析】如图所示,设AOQ θ∠=,则弧长AQ x =,线段()CQ f x =,5xθ=, 作OH BQ ⊥于H 当Q 在半圆弧AQB 上运动时,1()2QOH θ∠=π-,2sin2cos 22BQ OQ OQ θθπ-=⨯=⨯,CQ ===即()f x =由余弦函数的性质知当5=πx 时,即运动到B 点时y 有最小值10, 只有A 选项适合,又由对称性知选A ,故选A .12.[2018·石家庄毕业]双曲线22221x y a b-=(0,0)a b >>的左、右焦点分别为1F ,2F ,过1F 作倾斜角为60︒的直线与y 轴和双曲线的右支分别交于A ,B 两点,若点A 平分线段1F B ,则该双曲线的离心率是( )A B .2+C .2D 1【答案】B【解析】双曲线22221x y a b-=(0,0)a b >>的左焦点F 为(),0c -,直线l 的方程为)y x c =+,令0x =,则y =,即()A ,因为A 平分线段1FB ,根据中点坐标公式可得()B c ,代入双曲线方程可得2222121c c a b-=,由于()1c e e a =>,则2221211e e e -=-,化简可得421410e e -+=,解得27e =±1e >,解得2e =故选B .第Ⅱ卷本卷包括必考题和选考题两部分。
绝密 ★ 启用前2018年普通高等学校招生全国统一考试仿真卷文科数学(四)本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.[2018·丹东期末]设集合2{|}M x x x =∈=R ,{}1,0,1N =-,则M N =( )A .{}0B .{}1C .{}0,1D .{}1,0,1-2.[2018·南阳一中]设i 1i 1z +=-,()21f x x x =-+,则()f z =( ) A .iB .i -C .1i -+D .1i --3.[2018·郴州一中]已知()()22log 111sin13x x f x xx ⎧--<<⎪=⎨π⎪⎩≥,则312f f ⎛⎫+= ⎪⎝⎭⎝⎭( )A .52B .52-C .32-D .12-4.[2018·衡水金卷]已知等差数列{}n a 的前n 项和为n S ,且96=πS ,则5tan a =( ) A.BC.D.5.[2018·承德期末]执行如图所示的程序框图,如果输入的100t =,则输出的n =( )开始输入t输出n 结束k ≤t否是0,2,0S a n ===S S a=+31,1a a n n =-=+A .5B .6C .7D .86.[2018·漳州调研]已知函数()sin(2)(02)ϕϕπ=+≤<f x x 的图象向右平移3π个单位长度后,得到函数()cos2=g x x 的图象,则下列是函数()=y f x 的图象的对称轴方程的为( ) A .6π=x B .12π=x C .3π=x D .0=x 7.[2018·云南联考]图一是美丽的“勾股树”,它是一个直角三角形分别以它的每一边向外作正方形而得到.图二是第1代“勾股树”,重复图二的作法,得到图三为第2代“勾股树”,以此类推,已知最大的正方形面积为1,则第n 代“勾股树”所有正方形的个数与面积的和分别为( )A .21;n n -B .21;1n n -+C .121;n n +-D .121;1n n +-+8.[2018·防城港模拟]已知点P 在圆C :224240x y x y +--+=上运动,则点P 到直线l :250x y --=的距离的最小值是( ) A .4BC1D19.[2018·唐山期末]已知偶函数()f x 在[)0,+∞单调递减,若()20f -=,则满足()10xf x ->的x 的取值范围是( ) A .()(),10,3-∞- B .()()1,03,-+∞ C .()(),11,3-∞-D .()()1,01,3-10.[2018·重庆期末]已知点()4,0A ,()0,4B ,点(),P x y 的坐标x ,y 满足0034120+⎧⎪⎪-⎨⎩≥≥≤x y x y ,则AP BP ⋅的最小值为( ) A .254B .0C .19625-D .-811.[2018·海南期末]某几何体的直观图如图所示,AB 是O 的直径,BC 垂直O 所在的平面,且10AB BC ==,Q 为O 上从A 出发绕圆心逆时针方向运动的一动点.若设弧AQ 的长为x ,CQ 的长度为关于x 的函数()f x ,则()y f x =的图像大致为( )A . B.C .D .12.[2018·石家庄毕业]双曲线22221x y a b-=(0,0)a b >>的左、右焦点分别为1F ,2F ,过1F 作倾斜角为60︒的直线与y 轴和双曲线的右支分别交于A ,B 两点,若点A 平分线段1F B ,则该双曲线的离心率是( )A .B .2+C .2D 1第Ⅱ卷本卷包括必考题和选考题两部分。
绝密 ★ 启用前2018年普通高等学校招生全国统一考试仿真卷文科数学(四)本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.[2018·丹东期末]设集合2{|}M x x x =∈=R ,{}1,0,1N =-,则M N =( )A .{}0B .{}1C .{}0,1D .{}1,0,1-2.[2018·南阳一中]设i 1i 1z +=-,()21f x x x =-+,则()f z =( ) A .iB .i -C .1i -+D .1i --3.[2018·郴州一中]已知()()22log 111sin 13x x f x xx ⎧--<<⎪=⎨π⎪⎩≥,则312f f ⎛⎫+= ⎪⎝⎭⎝⎭( ) A .52B .52-C .32-D .12-4.[2018·衡水金卷]已知等差数列{}n a 的前n 项和为n S ,且96=πS ,则5tan a =( )班级 姓名 准考证号 考场号 座位号A.3B.C.D.3-5.[2018·承德期末]执行如图所示的程序框图,如果输入的100t =,则输出的n =( )开始输入t输出n 结束k ≤t否是0,2,0S a n ===S S a=+31,1a a n n =-=+A .5B .6C .7D .86.[2018·漳州调研]已知函数()sin(2)(02)ϕϕπ=+≤<f x x 的图象向右平移3π个单位长度后,得到函数()cos 2=g x x 的图象,则下列是函数()=y f x 的图象的对称轴方程的为( ) A .6π=x B .12π=x C .3π=x D .=x 7.[2018·云南联考]图一是美丽的“勾股树”,它是一个直角三角形分别以它的每一边向外作正方形而得到.图二是第1代“勾股树”,重复图二的作法,得到图三为第2代“勾股树”,以此类推,已知最大的正方形面积为1,则第n 代“勾股树”所有正方形的个数与面积的和分别为( )A .21;n n -B .21;1n n -+C .121;n n +-D .121;1n n +-+8.[2018·防城港模拟]已知点P 在圆C :224240x y x y +--+=上运动,则点P 到直线l :250x y --=的距离的最小值是( )A .4 B.C1 D19.[2018·唐山期末]已知偶函数()f x 在[)0,+∞单调递减,若()20f -=,则满足()10xf x ->的x 的取值范围是( ) A .()(),10,3-∞- B .()()1,03,-+∞ C .()(),11,3-∞-D .()()1,01,3-10.[2018·重庆期末]已知点()4,0A ,()0,4B ,点(),P x y 的坐标x ,y 满足0034120+⎧⎪⎪-⎨⎩≥≥≤x y x y ,则AP BP ⋅的最小值为( ) A .254B .0C .19625-D .-811.[2018·海南期末]某几何体的直观图如图所示,AB 是O 的直径,BC 垂直O 所在的平面,且10AB BC ==,Q 为O 上从A 出发绕圆心逆时针方向运动的一动点.若设弧AQ 的长为x ,CQ 的长度为关于x 的函数()f x ,则()y f x =的图像大致为( )A . B.C .D .12.[2018·石家庄毕业]双曲线22221x y a b -=(0,0)a b >>的左、右焦点分别为1F ,2F ,过1F 作倾斜角为60︒的直线与y 轴和双曲线的右支分别交于A ,B 两点,若点A 平分线段1F B ,则该双曲线的离心率是( )A B .2C .2D 1第Ⅱ卷本卷包括必考题和选考题两部分。
2018届全国高考考前押题卷(四)数学试卷(文科)本试题卷共14页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合M={x|(x+2)(x﹣1)<0},N={x|x+1<0},则M∩N=()A.(﹣1,1)B.(﹣2,1)C.(﹣2,﹣1)D.(1,2)2.已知复数z=1﹣i,则=()A.2 B.﹣2 C.2i D.﹣2i3.设x∈R,向量=(x,1),=(1,﹣2),且⊥,则|+|=()A.B. C.2 D.104.已知函数f(x)=,则f(2+log32)的值为()A.﹣B.C.D.﹣545.“sinα=”是“cos2α=”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件6.已知圆C1:(x+1)2+(y﹣1)2=1,圆C2与圆C1关于直线x﹣y﹣1=0对称,则圆C2的方程为()A.(x+2)2+(y﹣2)2=1 B.(x﹣2)2+(y+2)2=1 C.(x+2)2+(y+2)2=1 D.(x﹣2)2+(y﹣2)2=17.已知双曲线,抛物线y2=2px(p>0),若抛物线的焦点到双曲线的渐近线的距离为3,则p=()A.B.5 C.D.108.吴敬《九章算法比类大全》中描述:远望巍巍塔七层,红灯向下成培增,共灯三百八十一,请问塔顶几盏灯?()A.5 B.4 C.3 D.29.如图是某算法的程序框图,则程序运行后输出的结果是()A.2 B.3 C.4 D.510.在区间[0,1]上任意取两个实数a,b,则函数在区间[﹣1,1]上有且仅有一个零点的概率为()A.B.C.D.11.某三棱锥的三视图如图所示,该三棱锥的表面积是()A.28+6B.30+6C.56+12D.60+1212.已知函数f(x)=cosxsin2x,下列结论中错误的是()A.y=f(x)的图象关于(π,0)中心对称B.y=f(x)的图象关于x=对称C.f(x)的最大值为D.f(x)既是奇函数,又是周期函数二、填空题:(本大题共4小题,每小题5分,共20分.请将答案填写在答题卷的横线上.)13.在等差数列{a n}中,若a1+a5+a9=,则tan(a4+a6)=.14.若实数x,y满足不等式组,则x2+y2的最小值为.15.在△ABC中,已知AB=3,BC=2,D在AB 上,=,若•=3,则AC的长是.16.已知f(x),g(x)分别是定义在R上的奇函数和偶函数,且f(x)+g(x)=()x.若存在x0∈[,1],使得等式af(x0)+g(2x0)=0成立,则实数a的取值范围是.三、解答题(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.向量,,已知,且有函数y=f(x).(1)求函数y=f(x)的周期;(2)已知锐角△ABC的三个内角分别为A,B,C,若有,边BC=,sinB=,求AC的长及△ABC的面积.18.某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(I)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值;(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;(Ⅲ)求续保人本年度的平均保费估计值.19.如图,AA1、BB1为圆柱OO1的母线(母线与底面垂直),BC是底面圆O的直径,D、E分别是AA1、CB1的中点,DE⊥平面CBB1.(1)证明:AC⊥平面AA1B1B;(2)证明:DE∥平面ABC;(3)求四棱锥C﹣ABB1A1与圆柱OO1的体积比.20.如图,在平面直角坐标系xOy中,椭圆C: +=1(a>b>0)的左、右焦点分别为F1,F2,P为椭圆上一点(在x轴上方),连结PF1并延长交椭圆于另一点Q,设=λ.(1)若点P的坐标为(1,),且△PQF2的周长为8,求椭圆C的方程;(2)若PF2垂直于x轴,且椭圆C的离心率e∈[,],求实数λ的取值范围.21.已知函数f(x)=lnx﹣,g(x)=f(x)+ax﹣6lnx,其中a∈R.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若g(x)在其定义域内为增函数,求正实数a的取值范围;(Ⅲ)设函数h(x)=x2﹣mx+4,当a=2时,若∃x1∈(0,1),∀x2∈[1,2],总有g(x1)≥h(x2)成立,求实数m的取值范围.四、选修4-4:坐标系与参数方程22.已知曲线C的极坐标方程为ρ=2cosθ,直线l的极坐标方程为ρ sin(θ+)=m.(I)求曲线C与直线l的直角坐标方程;(II)若直线l与曲线C有且只有一个公共点,求实数m的值.五、选修4-5:不等式选讲23.设函数f(x)=|x﹣a|+3x,其中a>0.(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.2018届全国高考考前押题卷(四)数学试卷(文科)参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合M={x|(x+2)(x﹣1)<0},N={x|x+1<0},则M∩N=()A.(﹣1,1)B.(﹣2,1)C.(﹣2,﹣1)D.(1,2)【考点】1E:交集及其运算.【分析】由题意M={x|(x+2)(x﹣1)<0},N={x|x+1<0},解出M和N,然后根据交集的定义和运算法则进行计算.【解答】解:∵集合M={x|(x+2)(x﹣1)<0},∴M={x|﹣2<x<1},∵N={x|x+1<0},∴N={x|x<﹣1},∴M∩N={x|﹣2<x<﹣1}故选C.2.已知复数z=1﹣i,则=()A.2 B.﹣2 C.2i D.﹣2i【考点】A7:复数代数形式的混合运算.【分析】把复数z代入化简,复数的分子化简即可.【解答】解:将z=1﹣i代入得,故选A.3.设x∈R,向量=(x,1),=(1,﹣2),且⊥,则|+|=()A.B. C.2 D.10【考点】9P:平面向量数量积的坐标表示、模、夹角.【分析】通过向量的垂直,求出向量,推出,然后求出模.【解答】解:因为x∈R,向量=(x,1),=(1,﹣2),且⊥,所以x﹣2=0,所以=(2,1),所以=(3,﹣1),所以|+|=,故选B.4.已知函数f(x)=,则f(2+log32)的值为()A.﹣B.C.D.﹣54【考点】4H:对数的运算性质;3T:函数的值.【分析】先确定2+log32的范围,从而确定f(2+log32)的值【解答】解:∵2+log31<2+log32<2+log33,即2<2+log32<3∴f(2+log32)=f(2+log32+1)=f(3+log32)又3<3+log32<4∴f(3+log32)====∴f(2+log32)=故选B5.“sinα=”是“cos2α=”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【考点】GT:二倍角的余弦.【分析】利用二倍角的余弦函数公式化简cos2α=,得到sinα的值等于两个值,得到“sinα=”是“”的充分不必要条件即可.【解答】解:由可得1﹣2sin2α=,即sin2α=,∴sinα=±,故是成立的充分不必要条件,故选A.6.已知圆C1:(x+1)2+(y﹣1)2=1,圆C2与圆C1关于直线x﹣y﹣1=0对称,则圆C2的方程为()A.(x+2)2+(y﹣2)2=1 B.(x﹣2)2+(y+2)2=1 C.(x+2)2+(y+2)2=1 D.(x﹣2)2+(y﹣2)2=1【考点】J6:关于点、直线对称的圆的方程.【分析】求出圆C1:(x+1)2+(y﹣1)2=1的圆心坐标,关于直线x﹣y﹣1=0对称的圆心坐标求出,即可得到圆C2的方程.【解答】解:圆C1:(x+1)2+(y﹣1)2=1的圆心坐标(﹣1,1),关于直线x﹣y﹣1=0对称的圆心坐标为(2,﹣2)所求的圆C2的方程为:(x﹣2)2+(y+2)2=1故选B7.已知双曲线,抛物线y2=2px(p>0),若抛物线的焦点到双曲线的渐近线的距离为3,则p=()A.B.5 C.D.10【考点】KC:双曲线的简单性质.【分析】根据双曲线的方程,解出它的渐近线方程为3x±4y=0.抛物线的焦点坐标为F(,0)且F到3x±4y=0的距离为3,由点到直线的距离公式建立关于p的方程,解之即可得到p的值.【解答】解:∵双曲线方程为,∴令,得双曲线的渐近线为y=x,即3x±4y=0∵抛物线y2=2px(p>0)的焦点坐标为F(,0)∴F到渐近线的距离为d==3,解之得p=10(舍负)故选:D8.吴敬《九章算法比类大全》中描述:远望巍巍塔七层,红灯向下成培增,共灯三百八十一,请问塔顶几盏灯?()A.5 B.4 C.3 D.2【考点】88:等比数列的通项公式.【分析】利用等比数列的求和公式即可得出.【解答】解:设塔顶a1盏灯,则=381,解得a1=3.故选:C.9.如图是某算法的程序框图,则程序运行后输出的结果是()A.2 B.3 C.4 D.5【考点】EF:程序框图.【分析】根据程序框图进行模拟运行即可.【解答】解:第一次循环,sin>sin0,即1>0成立,a=1,T=1,k=2,k<6成立,第二次循环,sinπ>sin,即0>1不成立,a=0,T=1,k=3,k<6成立,第三次循环,sin>sinπ,即﹣1>0不成立,a=0,T=1,k=4,k<6成立,第四次循环,sin2π>sin,即0>﹣1成立,a=1,T=1+1=2,k=5,k<6成立,第五次循环,sin>sin2π,即1>0成立,a=1,T=2+1=3,k=6,k<6不成立,输出T=3,故选:B10.在区间[0,1]上任意取两个实数a,b,则函数在区间[﹣1,1]上有且仅有一个零点的概率为()A.B.C.D.【考点】CF:几何概型.【分析】由题意知本题是一个几何概型,根据所给的条件很容易做出试验发生包含的事件对应的面积,而满足条件的事件是函数f(x)=x3+ax﹣b在区间[﹣1,1]上有且仅有一个零点,求出导函数,看出函数是一个增函数,有零点等价于在自变量区间的两个端点处函数值符号相反,得到条件,做出面积,根据几何概型概率公式得到结果.【解答】解:由题意知本题是一个几何概型,∵a∈[0,1],∴f'(x)=1.5x2+a≥0,∴f(x)是增函数若在[﹣1,1]有且仅有一个零点,则f(﹣1)•f(1)≤0∴(﹣0.5﹣a﹣b)(0.5+a﹣b)≤0,即(0.5+a+b)(0.5+a﹣b)≥0 a看作自变量x,b看作函数y,由线性规划内容知全部事件的面积为1×1=1,满足条件的面积为∴概率为=,故选C .11.某三棱锥的三视图如图所示,该三棱锥的表面积是( )A .28+6B .30+6C .56+12D .60+12【考点】L!:由三视图求面积、体积.【分析】通过三视图复原的几何体的形状,利用三视图的数据求出几何体的表面积即可.【解答】解:三视图复原的几何体是底面为直角边长为4和5的三角形, 一个侧面垂直底面的等腰三角形,高为4,底边长为5,如图,所以S 底==10,S 后=,S 右==10,S 左==6.几何体的表面积为:S=S 底+S 后+S 右+S 左=30+6.故选:B .12.已知函数f(x)=cosxsin2x,下列结论中错误的是()A.y=f(x)的图象关于(π,0)中心对称B.y=f(x)的图象关于x=对称C.f(x)的最大值为D.f(x)既是奇函数,又是周期函数【考点】6E:利用导数求闭区间上函数的最值;GG:同角三角函数间的基本关系;GS:二倍角的正弦;H2:正弦函数的图象.【分析】A、用中心对称的充要条件,直接验证f(2π﹣x)+f(x)=0是否成立即可判断其正误;B、用轴对称的条件直接验证f(π﹣x)=f(x)成立与否即可判断其正误;C、可将函数解析式换为f(x)=2sinx﹣2sin3x,再换元为y=2t﹣2t3,t∈[﹣1,1],利用导数求出函数在区间上的最值即可判断正误;D、可利用奇函数的定义与周期函数的定义直接证明.【解答】解:A、因为f(2π﹣x)+f(x)=cos(2π﹣x)sin2(2π﹣x)+cosxsin2x=﹣cosxsin2x+cosxsin2x=0,故y=f(x)的图象关于(π,0)中心对称,A正确;B、因为f(π﹣x)=cos(π﹣x)sin2(π﹣x)=cosxsin2x=f(x),故y=f(x)的图象关于x=对称,故B正确;C、f(x)=cosxsin2x=2sinxcos2x=2sinx(1﹣sin2x)=2sinx﹣2sin3x,令t=sinx∈[﹣1,1],则y=2t﹣2t3,t∈[﹣1,1],则y′=2﹣6t2,令y′>0解得,故y=2t﹣2t3,在[]上增,在[]与[]上减,又y(﹣1)=0,y()=,故函数的最大值为,故C错误;D、因为f(﹣x)+f(x)=﹣cosxsin2x+cosxsin2x=0,故是奇函数,又f(x+2π)=cos (2π+x)sin2(2π+x)=cosxsin2x,故2π是函数的周期,所以函数即是奇函数,又是周期函数,故D正确.由于该题选择错误的,故选:C.二、填空题:(本大题共4小题,每小题5分,共20分.请将答案填写在答题卷的横线上.)13.在等差数列{a n}中,若a1+a5+a9=,则tan(a4+a6)=.【考点】8F:等差数列的性质.【分析】由等差数列的性质可知,a1+a5+a9=3a5,可求a5,然后代入tan(a4+a6)=tan2a5可求【解答】解:由等差数列的性质可知,a1+a5+a9=3a5=,∴a5=则tan(a4+a6)=tan2a5==故答案为:14.若实数x,y满足不等式组,则x2+y2的最小值为5.【考点】7C:简单线性规划.【分析】先根据条件画出可行域,z=x2+y2,再利用几何意义求最值,只需求出可行域内的点到原点距离的最值,从而得到z最值即可.【解答】解:先根据约束条件画出可行域,z=x2+y2,表示可行域内点到原点距离的平方,当在点A(1,2)时,z最小,最小值为12+22=5,故答案为5.15.在△ABC中,已知AB=3,BC=2,D在AB上,=,若•=3,则AC的长是.【考点】9R:平面向量数量积的运算.【分析】用表示出,根据•=3列方程计算出cosB,再使用余弦定理计算AC.【解答】解:∵=,∴,=﹣,∴=﹣•(﹣)=﹣=4﹣=3,∴=,∴3×2×cosB=,∴cosB=.在△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB•BCcosB=10.∴AC=.故答案为:.16.已知f(x),g(x)分别是定义在R上的奇函数和偶函数,且f(x)+g(x)=()x.若存在x0∈[,1],使得等式af(x0)+g(2x0)=0成立,则实数a的取值范围是[2,] .【考点】3L:函数奇偶性的性质.【分析】先根据函数奇偶性定义,解出奇函数f(x)和偶函数g(x)的表达式,将等式af(x)+g(2x)=0,令t=2x﹣2﹣x,则t>0,通过变形可得a=t+,讨论出右边在x∈[,1]的最大值,可以得出实数a的取值范围.【解答】解:∵f(x)为定义在R上的奇函数,g(x)为定义在R上的偶函数∴f(﹣x)=﹣f(x),g(﹣x)=g(x)又∵由f(x)+g(x)=2﹣x,结合f(﹣x)+g(﹣x)=﹣f(x)+g(x)=2x,∴f(x)=﹣(2x﹣2﹣x),g(x)=2x+2﹣x)等式af(x)+g(2x)=0,化简为﹣(2x﹣2﹣x)+(22x+2﹣2x)=0∵≤x≤1,∴≤2x﹣2﹣x≤令t=2x﹣2﹣x,则t>0,因此将上面等式整理,得:a=t+∵≤t≤∴2≤t+≤∵存在x0∈[,1],使得等式af(x0)+g(2x0)=0成立,∴a∈[2,].故答案为[2,].三、解答题(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.向量,,已知,且有函数y=f(x).(1)求函数y=f(x)的周期;(2)已知锐角△ABC的三个内角分别为A,B,C,若有,边BC=,sinB=,求AC的长及△ABC的面积.【考点】HR:余弦定理;HP:正弦定理.【分析】(1)由平面向量共线的性质,两角和的正弦函数公式可求,利用正弦函数的周期公式即可计算得解.(2)由,可得,结合△ABC是锐角三角形,可求,由正弦定理可得AC,利用余弦定理可求AB,进而根据三角形面积公式即可计算得解.【解答】解:(1)由,可得:,即,所以,函数f(x)的周期为T==2π.(2)由,可得:,即.∵△ABC是锐角三角形,∴可得:,∵由正弦定理:及条件,,可得:,又∵BC2=AB2+AC2﹣2AB•AC•cosA,即,解得:AB=3,∴△ABC的面积.18.某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(I)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值;(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;(Ⅲ)求续保人本年度的平均保费估计值.【考点】BF :随机抽样和样本估计总体的实际应用.【分析】(I )求出A 为事件:“一续保人本年度的保费不高于基本保费”的人数.总事件人数,即可求P (A )的估计值;(Ⅱ)求出B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”的人数.然后求P (B )的估计值;(Ⅲ)利用人数与保费乘积的和除以总续保人数,可得本年度的平均保费估计值.【解答】解:(I )记A 为事件:“一续保人本年度的保费不高于基本保费”.事件A 的人数为:60+50=110,该险种的200名续保,P (A )的估计值为:=;(Ⅱ)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.事件B 的人数为:30+30=60,P (B )的估计值为:=;(Ⅲ)续保人本年度的平均保费估计值为==1.1925a .19.如图,AA 1、BB 1为圆柱OO 1的母线(母线与底面垂直),BC 是底面圆O 的直径,D 、E 分别是AA 1、CB 1的中点,DE ⊥平面CBB 1. (1)证明:AC ⊥平面AA 1B 1B ; (2)证明:DE ∥平面ABC ;(3)求四棱锥C ﹣ABB 1A 1与圆柱OO 1的体积比.【考点】LW :直线与平面垂直的判定;LS :直线与平面平行的判定.【分析】(1)由已知条件推导出CA ⊥AB ,AA 1⊥平面ABC ,由此能证明CA ⊥平面AA1B1B.(2)连接EO、OA,得到EO∥BB1,且EO=,由此能求出四边形AOED是平行四边形,由此能证明DE∥平面ABC.(3)连接CA.由题知DE⊥平面CBB1,由DE∥OA,知CA为四棱锥C﹣ABB1A1的高,由此能求出四棱锥C﹣ABB1A1与圆柱OO1的体积比.【解答】(1)证明:∵BC是底面圆O的直径,∴CA⊥AB.又AA1是圆柱的母线,∴AA1⊥平面ABC,∴AA1⊥CA,又AA1∩AB=A,∴CA⊥平面AA1B1B.…(2)如图,连接EO、OA,∵E,O分别为CB1、BC的中点,∴EO是△BB1C的中位线,∴EO∥BB1,且EO=.又DA∥BB1,AA1=BB1,故DA==EO,∴DA∥EO,且DA=EO,∴四边形AOED是平行四边形,即DE∥OA,又DE不包含平面ABC,OA⊂平面ABC,∴DE∥平面ABC.…(3)如图,连接CA.由题知DE⊥平面CBB1,且由(2)知DE∥OA,∴AO⊥平面CBB1,∴AO⊥BC,∴AC=AB=.由(1)知CA为四棱锥C﹣ABB1A1的高.设圆柱高为h,底面半径为r,则,==,∴==.…20.如图,在平面直角坐标系xOy中,椭圆C: +=1(a>b>0)的左、右焦点分别为F1,F2,P为椭圆上一点(在x轴上方),连结PF1并延长交椭圆于另一点Q,设=λ.(1)若点P的坐标为(1,),且△PQF2的周长为8,求椭圆C的方程;(2)若PF2垂直于x轴,且椭圆C的离心率e∈[,],求实数λ的取值范围.【考点】K4:椭圆的简单性质.【分析】(1)由F1,F2为椭圆C的两焦点,且P,Q为椭圆上的点,利用椭圆的定义可得△PQF2的周长为4a.由点P的坐标为(1,),可得+=1,解出即可得出.(2)利用向量坐标运算性质、点与椭圆的位置关系即可得出.【解答】解:(1)∵F1,F2为椭圆C的两焦点,且P,Q为椭圆上的点,∴PF1+PF2=QF1+QF2=2a,从而△PQF2的周长为4a.由题意,得4a=8,解得a=2.∵点P的坐标为(1,),∴+=1,解得b2=3.∴椭圆C 的方程为+=1.(2)∵PF 2⊥x 轴,且P 在x 轴上方,故设P (c ,y 0),y 0>0.设Q (x 1,y 1).∵P 在椭圆上,∴ +=1,解得y 0=,即P (c ,).∵F 1(﹣c ,0),∴=(﹣2c ,﹣),=(x 1+c ,y 1).由=λ,得﹣2c=λ(x 1+c ),﹣=λy 1,解得x 1=﹣c ,y 1=﹣,∴Q (﹣c ,﹣).∵点Q 在椭圆上,∴()2e 2+=1,即(λ+2)2e 2+(1﹣e 2)=λ2,(λ2+4λ+3)e 2=λ2﹣1,∵λ+1≠0,∴(λ+3)e 2=λ﹣1,从而λ==﹣3.∵e ∈[,],∴≤e 2≤,即≤λ≤5.∴λ的取值范围为[,5].21.已知函数f (x )=lnx ﹣,g (x )=f (x )+ax ﹣6lnx ,其中a ∈R . (Ⅰ)讨论f (x )的单调性;(Ⅱ)若g (x )在其定义域内为增函数,求正实数a 的取值范围;(Ⅲ)设函数h (x )=x 2﹣mx +4,当a=2时,若∃x 1∈(0,1),∀x 2∈[1,2],总有g (x 1)≥h (x 2)成立,求实数m 的取值范围.【考点】6E :利用导数求闭区间上函数的最值;3R :函数恒成立问题;6B :利用导数研究函数的单调性.【分析】(Ⅰ)f (x )的定义域为(0,+∞),且,当a ≥0时,f′(x )>0,f (x )在(x ,+∞)上单调递增;当a >0时,由f′(x )>0,得x >﹣a ;由f′(x )<0,得x <﹣a .由此能够判断f (x )的单调性.(Ⅱ)由g (x )=ax ﹣,定义域为(0,+∞),知﹣=,因为g(x)在其定义域内为增函数,所以∀x∈(0,+∞),g′(x)≥0,由此能够求出正实数a的取值范围.(Ⅲ)当a=2时,g(x)=2x﹣,,由g′(x)=0,得x=或x=2.当时,g′(x)≥0当x时,g′(x)<0.所以在(0,1)上,,由此能求出实数m的取值范围.【解答】解:(Ⅰ)f(x)的定义域为(0,+∞),且,①当a≥0时,f′(x)>0,f(x)在(x,+∞)上单调递增;②当a<0时,由f′(x)>0,得x>﹣a;由f′(x)<0,得x<﹣a;故f(x)在(0,﹣a)上单调递减,在(﹣a,+∞)上单调递增.(Ⅱ)g(x)=ax﹣,g(x)的定义域为(0,+∞),﹣=,因为g(x)在其定义域内为增函数,所以∀x∈(0,+∞),g′(x)≥0,∴ax2﹣5x+a≥0,∴a(x2+1)≥5x,即,∴.∵,当且仅当x=1时取等号,所以a.(Ⅲ)当a=2时,g(x)=2x﹣,,由g′(x)=0,得x=或x=2.当时,g′(x)≥0;当x时,g′(x)<0.所以在(0,1)上,,而“∃x1∈(0,1),∀x2∈[1,2],总有g(x1)≥h(x2)成立”等价于“g(x)在(0,1)上的最大值不小于h(x)在[1,2]上的最大值”而h(x)在[1,2]上的最大值为max{h(1),h(2)},所以有,∴,∴,解得m≥8﹣5ln2,所以实数m的取值范围是[8﹣5ln2,+∞).四、选修4-4:坐标系与参数方程22.已知曲线C的极坐标方程为ρ=2cosθ,直线l的极坐标方程为ρ sin(θ+)=m.(I)求曲线C与直线l的直角坐标方程;(II)若直线l与曲线C有且只有一个公共点,求实数m的值.【考点】Q4:简单曲线的极坐标方程.【分析】(Ⅰ)曲线C的极坐标方程转化为ρ2=2ρcosθ,由此能求出曲线C的直角坐标方程,直线l的极坐标方程转化为ρcosθ+ρsinθ=m,由此能求出直线l 的直角坐标方程.(Ⅱ)由直线l与曲线C有且只有一个公共点,利用圆心到直线的距离等于半径,能求出实数m的值.【解答】解:(Ⅰ)∵曲线C的极坐标方程为ρ=2cosθ,∴ρ2=2ρcosθ,化为直角坐标方程为x2+y2=2x,即(x﹣1)2+y2=1.直线l的极坐标方程是ρ sin(θ+)=m,即ρcosθ+ρsinθ=m,化为直角坐标方程为x+y﹣2m=0.(Ⅱ)∵直线l与曲线C有且只有一个公共点,∴圆心(1,0)到直线l的距离等于圆半径r=1,∴=1,解得m=﹣或m=.∴所求实数m的值为﹣或.五、选修4-5:不等式选讲23.设函数f(x)=|x﹣a|+3x,其中a>0.(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.【考点】R5:绝对值不等式的解法.【分析】(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.直接求出不等式f(x)≥3x+2的解集即可.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0分x≥a和x≤a推出等价不等式组,分别求解,然后求出a的值.【解答】解:(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.由此可得x≥3或x≤﹣1.故不等式f(x)≥3x+2的解集为{x|x≥3或x≤﹣1}.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0此不等式化为不等式组或即或因为a>0,所以不等式组的解集为{x|x}由题设可得﹣=﹣1,故a=2。
2018年普通高等学校招生全国统一考试文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若集合,,则()A. B. C. D.【答案】C【解析】【分析】集合A为区间,集合B为部分整数构成的集合,所以其交集中元素为整数,将集合B中元素代入集合A的表达式分别验证即可.【详解】分别将集合B中元素代入集合A的表达式中,经判断只有0、1、2成立,所以集合A与集合B的交集为. 故选C.【点睛】本题考查集合的表示与集合间的关系,明确概念与计算方法,必要时可借助数轴解题.2. 已知复数(为虚数单位),则的共轭复数()A. B. C. D.【答案】D【解析】,=,选D.3. 函数的图象如图所示,为了得到的图象,则只需将的图象()A. 向右平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向左平移个单位长度【答案】D【解析】由函数f(x)=Asin(ωx+φ)(其中A>0,|φ|<)的图象可得A=1,=﹣,求得ω=2.再根据五点法作图可得2×+φ=π,求得φ=,故f(x)=sin(2x+)=sin2(x+).故把f(x)的图象向右平移个单位长度,可得g(x)=sin2x的图象,故选:A.4. 已知圆锥的高为,底面圆的半径为,它的顶点和底面的圆周都在同一个球的球面上,则该球的表面积为()A. B. C. D.【答案】B【解析】设球的半径为R,则∵圆锥的高h=5,底面圆的半径r=,∴R2=(R﹣h)2+r2,即R2=(R﹣5)2+5,解得:R=3,故该球的表面积S=4πR2=36π,故选:B5. 抛物线的焦点为,点,若线段的中点在抛物线上,则()A. B. C. D.【答案】D【解析】【分析】由抛物线性质表示焦点F的坐标,再表示A、F的中点B的坐标,将其代入抛物线方程,即可求出参数p,所以B、F的坐标即可求出,由两点间距离公式求出线段长.【详解】点F的坐标为,所以A、F中点B的坐标为,因为B在抛物线上,所以将B的坐标代入抛物线方程可得:,解得:或(舍),则点F坐标为,点B的坐标为,由两点间距离公式可得.故选D.【点睛】本题考查抛物线的基本性质,要求熟练掌握抛物线中焦点的坐标,求焦半径时,可以由焦半径公式求,也可以用两点间的距离求取,注意p的符号.6. 直线与圆相交于,两点,若,则的取值范围是()A. B. C. D.【答案】B【解析】圆心为,半径为,圆心到直线的距离,故,解得. 点睛:本题主要考查直线和圆的位置关系,考查直线与圆相交所得弦长的求法,考查一元二次不等式的解法.直线方程含有参数,圆的圆心和半径是确定的,先求出圆心到直线的距离,代入弦长公式,可求得弦长的表达式,在根据弦长的范围求解得的取值范围.7. 某几何体由圆柱挖掉半个球和一个圆锥所得,三视图中的正视图和侧视图如图所示,求该几何体的表面积()A. B. C. D.【答案】B【解析】【分析】根据题意可该图形的表面积应包含圆柱的侧面积、圆锥的侧面积、球的表面积一半,共三部分,分别根据相应的面积公式即可求出结果.【详解】该图形的表面积为圆柱的侧面积、圆锥的侧面积、球的表面积一半,则其面积分别为:圆柱侧面积:,圆锥侧面积:圆锥的母线长为:,面积,半个球面的面积:,所以表面积为.故选B.【点睛】本题主要考查表面积的计算,通过三视图确定表面积的,注意熟练掌握面积公式,还原时注意部分面已经不存在,不要多求面积.8. 中央电视台第一套节目午间新闻的播出时间是每天中午到,在某星期天中午的午间新闻中将随机安排播出时长分钟的有关电信诈骗的新闻报道.若小张于当天打开电视,则他能收看到这条新闻的完整报道的概率是()A. B. C. D.【答案】D【解析】【分析】求出小张能可看到新闻报道的时间段长度m,再求出在中午时间段可能播出的时间段长度n,由几何概型公式,即为所求.【详解】新闻报道中午时间段可能开始的时间为,时长30分钟,小张可能看到新闻报道的开始时间为,共5分钟,所以概率为.故选D.【点睛】本题考查几何概型的时间长度类型,考查运算求解能力,着重对题意的理解,若不理解题意,很容易造成错解.9. 秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数学九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入,的值分别为,.则输出的值为()A. B. C. D.【答案】D【解析】执行程序框图:输入,是,是,;,是,;,是,;,否,输出.故选D.10. 若函数(…是自然对数的底数)在的定义域上单调递增,则称函数具有性质,下列函数中具有性质的是()A. B. C. D.【答案】A【解析】对于A,令,,则在R上单调递增,故具有M性质,故选A.【名师点睛】(1)确定函数单调区间的步骤:①确定函数f(x)的定义域;②求f′(x);③解不等式f′(x)>0,解集在定义域内的部分为单调递增区间;④解不等式f′(x)<0,解集在定义域内的部分为单调递减区间.(2)根据函数单调性确定参数范围的方法:①利用集合间的包含关系处理:y=f(x)在(a,b)上单调,则区间(a,b)是相应单调区间的子集.②转化为不等式的恒成立问题,即转化为“若函数单调递增,则f′(x)≥0;若函数单调递减,则f′(x)≤0”来求解.11. 函数的最小值为()A. B. C. D.【答案】A【解析】【分析】利用二倍角公式及诱导公式,将函数化简为关于的复合二次函数,通过配方,结合定义域求出最值.【详解】,配方:,由自变量取值范围可知,所以当时,函数取得最小值.故选A.【点睛】本题主要考查三角函数的化简与最值问题,一般最值问题分为两类,一种为化为关于三角函数的复合二次函数类型,通过配方等方式求最值,另一种为化为的形式,通过结合三角函数图像等方法求最值. 12. 已知函数,若函数与图象的交点为,,…,,则()A. B. C. D.【答案】B【解析】【分析】两个函数均为奇函数向上平移一个单位所得的函数,根据奇函数的对称性可知平移前的和为0,向上平移一个单位为纵坐标均增加1,横坐标不变,所以由奇函数的性质即可得出结果.【详解】两个函数分别是由两个奇函数与向上平移一个单位得到,因为奇函数关于原点中心对称,所以两函数交点也关于原点中心对称,由此可知:两个奇函数中,由于函数向上平移了一个单位,所以纵坐标均增加了1,所以结果为m.故选B.【点睛】本题考查奇函数的性质以及函数的平移变换,当题目考查最大值与最小值之和或考查某两个函数的交点坐标之和时,要注意函数奇偶性的使用,多数是考查奇函数的中心对称性质,对此类问题保持警惕.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 设向量,是两个不共线的向量,若与共线,则实数__________.【答案】【解析】【分析】由两向量共线性质定理,列式令系数相等,解方程组,即可求出结果.【详解】由向量共线可得:,所以:,解得【点睛】本题考查向量的共线定理,向量共线包含两个方向,一个是坐标的性质,一个是线性关系,本题根据线性关系列式即可.14. 设,满足约束条件,则目标函数的最小值是__________.【答案】【解析】【分析】在平面直角坐标系中画出可行域,将目标函数化为直线方程的形式,通过平移求截距取最大值时的最优解即可. 【详解】由约束条件画出可行域,如下图:将目标函数化为直线斜截式:,因为z的系数为正数,则此直线过可行域内一点与y轴交点最低时,此时z 取最小值,联立直线方程:解得,代入目标函数可得.【点睛】本题考查常规的线性规划问题,注意一定要确认好可行域,避免直接选择封闭区域,在分析目标函数时,注意y、z的符号问题,分清同号和异号对求最值的影响,避免出错.15. 已知满足,若,,则__________.【答案】【解析】【分析】由正弦定理和三角形内角的余弦关系求出边BC、AC的关系,结合已知条件求出两边的边长,由两个边长和其夹角根据余弦定理,求出另一边长.【详解】由正弦定理可得,因为,所以,则由已知条件可知:,又已知,解得:,,由余弦定理解得.【点睛】本题主要考查解三角形,常用的定理与公式有正弦定理、余弦定理、面积公式、两角和与第三个角的正余弦关系。
2018届全国高三考前密卷(四)数学(文科)试卷本试题卷共10页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】A【解析】,所以,选A.2. 已知为虚数单位,,若为纯虚数,则复数的模等于()A. B. C. D.【答案】C【解析】试题分析:当时,,故.考点:复数概念及其运算.【易错点晴】在复数的四则运算上,经常由于疏忽而导致计算结果出错.除了加减乘除运算外,有时要结合共轭复数的特征性质和复数模的相关知识,综合起来加以分析.在复数的四则运算中,只对加法和乘法法则给出规定,而把减法、除法定义为加法、乘法的逆运算.复数代数形式的运算类似多项式的运算,加法类似合并同类项;复数的加法满足交换律和结合律,复数代数形式的乘法类似多项式乘以多项式,除法类似分母有理化;用类比的思想学习复数中的运算问题.熟练记忆.3. 已知变量满足,则的最大值为()A. 4B. 7C. 10D. 12【答案】C【解析】先作可行域,则直线过点A(4,2)时取最大值10,选C.4. 在等差数列中,,,以表示的前项和,则使达到最大值的是()A. 21B. 20C. 19D. 18【答案】B【解析】因为,,所以,,从而d,, 所以当时取最大值,选B.5. 已知函数的图象与函数的图象的对称中心完全相同,则为()A. B. C. D.【答案】D【解析】因为函数的图象与函数的图象的对称中心完全相同,所以,选D.6. 在空间中,是两条不同的直线,是两个不同的平面,则下列命题中的真命题是()A. 若,则B. 若,则C. 若,则D. 若,则【答案】D【解析】若,则位置关系不定;若,则位置关系不定;若,则或若,则,选D.7. 为了解学生在课外活动方面的支出情况,抽取了个同学进行调查,结果显示这些学生的支出金额(单位:元)都在,其中支出金额在的学生有17人,频率分布直方图如图所示,则()A. 180B. 160C. 150D. 200【答案】A【解析】对应的概率为,所以,选A.8. 一个几何体的三视图如图所示,该几何体的各个表面中,最大面的面积为()A. B. C. 2 D. 4【答案】B【解析】几何体如图,,所以最大面SAB的面积为,选B.9. 若函数在上的最大值为,最小值为,则()A. B. 2 C. D.【答案】A【解析】为偶函数,当时,因此,选A.10. 若正项递增等比数列满足(),则的最小值为()A. B. C. 2 D. 4【答案】D..................点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.11. 如图是计算函数的值的程序框图,则在①、②、③处应分别填入的是()A.B.C.D.【答案】B【解析】试题分析:①处是时的解析式,应填;②处是时的解析式,应填;③处是时的解析式,应填,故选B.考点:1.程序框图;2.分段函数.12. 已知定义在上的奇函数满足:(其中),且在区间上是减函数,令,,,则,,的大小关系(用不等号连接)为()A. B.C. D.【答案】A【解析】因为,所以,即周期为4,因为为奇函数,所以可作一个周期[-2e,2e]示意图,如图在(0,1)单调递增,因为,因此,选A.点睛:函数对称性代数表示(1)函数为奇函数,函数为偶函数(定义域关于原点对称);(2)函数关于点对称,函数关于直线对称,(3)函数周期为T,则二、填空题(每题4分,满分20分,将答案填在答题纸上)13. 设,,,若,则______.【答案】【解析】由题意可得:,由向量垂直的充要条件有:,求解关于实数的方程可得:.14. 已知函数在点处的切线方程为,则_______. 【答案】【解析】15. 抛物线的焦点为,其准线与双曲线相交于两点,若,则_______.【答案】【解析】可根据题干条件画出草图,得到角MFO为60度角,根据三角函数值得到解得。
故答案为:.16. 已知正项数列的前项和为,若和都是等差数列,且公差相等,则_______.【答案】【解析】由等差数列前n项和性质得点睛:在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.三、解答题(本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在中,角所对边分别是,满足.(1)求的值;(2)若,,求和的值.【答案】(1)(2)【解析】试题分析:(1)得,所以;(2)得,又有余弦定理得可得,得试题解析:(1)由题意得,所以因为所以(2)由得由可得所以代入可得18. 高三一班、二班各有6名学生参加学校组织的高中数学竞赛选拔考试,成绩如茎叶图所示.(1)若一班、二班6名学生的平均分相同,求值;(2)若将竞赛成绩在内的学生在学校推优时,分别赋1分,2分,3分,现在一班的6名参赛学生中取两名,求推优时,这两名学生赋分的和为4分的概率.【答案】(1)(2)【解析】试题分析:(1)由两个班的平均分相等可求得x.(2)由茎叶图可知,一班赋3,2,1分的学生各有2名,不妨分别记为A1,A2, B1,B2, C1,C2,由枚举法可知总共情况15种,满足条件5种,所以概率P==。
试题解析:(Ⅰ)由93+90+x+81+73+77+61=90+94+84+72+76+63,得x=4.(Ⅱ)由题意知一班赋3,2,1分的学生各有2名,设赋3分的学生为A1,A2,赋2分的学生为B1,B2,赋1分的学生为C1,C2,则从6人抽取两人的基本事件为A1A2,A1B1,A1B2,A1C1,A1C2,A2B1,A2B2,A2C1,A2C2,B1B2,B1C1,B1C2,B2C1,B2C2,C1C2共15种,其中赋分和为4分的有5种,∴这两名学生赋分的和为4的概率P==.19. 如图已知四棱锥中,底面是边长为2的菱形,,,,点是棱的中点,点在棱上,且,平面.(1)求实数的值;(2)求三棱锥的体积.【答案】(1)(2)【解析】【试题分析】(1)运用空间三角形的相似建立等式求解;(2)先确定三棱锥的高,再运用三棱锥的体积公式求解:(Ⅰ)连接,设,则平面平面,//平面,//,∽,,,.(Ⅱ),又,,,平面,所以.20. 已知椭圆的左右焦点分别为,上顶点为,若直线的斜率为1,且与椭圆的另一个交点为,的周长为.(1)求椭圆的标准方程;(2)过点的直线(直线的斜率不为1)与椭圆交于两点,点在点的上方,若,求直线的斜率.【答案】(1)(2)【解析】试题分析:(1)由的周长为,可得,由直线的斜率为可得,由直线的斜率,得,结合求出从而可得椭圆的标准方程;(2)先求出,由可得,直线的方程为,则,联立,所以,根据韦达定理列出关于的方程求解即可.试题解析:(1)因为的周长为,所以,即,由直线的斜率,得,因为,所以,所以椭圆的标准方程为.(2)由题意可得直线方程为,联立得,解得,所以,因为,即,所以,当直线的斜率为时,不符合题意,故设直线的方程为,由点在点的上方,则,联立,所以,所以,消去得,所以,得,又由画图可知不符合题意,所以,故直线的斜率为.【方法点晴】本题主要考查待定系数求椭圆方程以及直线与椭圆的位置关系和数量积公式,属于难题.用待定系数法求椭圆方程的一般步骤;①作判断:根据条件判断椭圆的焦点在轴上,还是在轴上,还是两个坐标轴都有可能;②设方程:根据上述判断设方程或;③找关系:根据已知条件,建立关于、、的方程组;④得方程:解方程组,将解代入所设方程,即为所求.21. 已知函数.(1)当时,求曲线在处的切线方程;(2)若当时,,求的取值范围.【答案】(1)(2)【解析】试题分析:(Ⅰ)先求的定义域,再求,,,由直线方程的点斜式可求曲线在处的切线方程为(Ⅱ)构造新函数,对实数分类讨论,用导数法求解.试题解析:(I)的定义域为.当时,,曲线在处的切线方程为(II)当时,等价于设,则,(i)当,时,,故在上单调递增,因此;(ii)当时,令得.由和得,故当时,,在单调递减,因此. 综上,的取值范围是【考点】导数的几何意义,利用导数判断函数的单调性【名师点睛】求函数的单调区间的方法:(1)确定函数y=f(x)的定义域;(2)求导数y′=f′(x);(3)解不等式f′(x)>0,解集在定义域内的部分为单调递增区间;(4)解不等式f′(x)<0,解集在定义域内的部分为单调递减区间.视频请考生在22、23二题中任选一题作答,如果都做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线的参数方程为(为参数),圆的极坐标方程为.(1)求直线的普通方程与圆的执直角坐标方程;(2)设曲线与直线交于两点,若点的直角坐标为,求的值.【答案】(1),(2)【解析】试题分析:(1)根据加减消元法将直线的参数方程化为普通方程,根据将圆的极坐标方程化为直角坐标方程,(2)先化直线参数方程标准形式,代入圆的直角坐标方程,根据参数几何意义得,再根据韦达定理求值.试题解析:解:(1)直线的普通方程为,,所以所以曲线的直角坐标方程为.(2)点在直线上,且在圆内,由已知直线的参数方程是(为参数)代入,得,设两个实根为,则,即异号所以.点睛:直线的参数方程的标准形式的应用过点M0(x0,y0),倾斜角为α的直线l的参数方程是.(t是参数,t可正、可负、可为0)若M1,M2是l上的两点,其对应参数分别为t1,t2,则(1)M1,M2两点的坐标分别是(x0+t1cos α,y0+t1sin α),(x0+t2cos α,y0+t2sin α).(2)|M1M2|=|t1-t2|.(3)若线段M1M2的中点M所对应的参数为t,则t=,中点M到定点M0的距离|MM0|=|t|=.(4)若M0为线段M1M2的中点,则t1+t2=0.23. 选修4-5:不等式选讲已知关于的不等式有解.(1)求实数的取值范围;(2)已知,证明:.【答案】(1)(2)见解析【解析】试题分析:(Ⅰ)原问题等价于,结合绝对值三角不等式的性质可得;试题解析:(Ⅰ),故;(Ⅱ)由题知,故,.。