电流互感器结构及原理
- 格式:doc
- 大小:60.00 KB
- 文档页数:8
互感器原理及结构互感器(Transformer)是一种电气设备,用于变换电压和电流的传输。
它基于电磁感应原理工作,通过相互综合绕组的磁场耦合来实现能量传递。
以下是互感器的原理及结构的详细解释:1. 原理:互感器的工作原理基于两个重要的电磁感应原理:法拉第电磁感应定律:当一个导体中的磁通量变化时,将在该导体上产生电动势。
在互感器中,一个绕组中的交流电流产生的磁场变化会引起另一个绕组中的电动势,并将能量传递到另一个绕组中。
互感定律:根据互感定律,两个绕组之间的电压比等于绕组的匝数比。
互感器利用这个原理来实现电压和电流的变换。
2. 结构:互感器由以下主要部件构成:铁芯:互感器的铁芯由磁性材料制成,通常为硅钢片。
铁芯提供了低磁阻路径,以增强磁感应强度。
一次绕组(Primary Winding):一次绕组是传递电源能量的绕组,通常与电源连接。
它产生一个交流磁场,使能量传递到二次绕组。
二次绕组(Secondary Winding):二次绕组接收来自一次绕组的磁场的能量,并产生一个变压后的电压输出。
它通常与负载连接。
绝缘层(Insulation):互感器的绕组之间和绕组与铁芯之间有绝缘层,以防止绕组接触和发生电气短路。
冷却系统:大型互感器通常配备冷却系统,如油冷却或水冷却系统,以保持互感器的温度在安全范围内。
互感器的结构可以因其具体应用而有所不同。
例如,变压器是最常见的互感器类型之一,具有两个或多个绕组,用于变换电压。
其他类型的互感器可能包括电流互感器(用于测量电流)和电压互感器(用于测量电压)等。
互感器作为电力系统中重要的传输设备,不仅可以变换电压和电流,还可以提供绝缘和隔离等功能,以确保电力系统的安全运行。
其原理和结构的理解对于电力系统的设计、运行和维护都至关重要。
电流互感器结构原理电流互感器是一种常见的电力测量仪表,用于测量交流电路中的电流。
它的结构原理是基于电磁感应现象,通过变压器的工作原理实现电流的测量。
电流互感器由铁心、一次绕组、二次绕组和外壳等部分组成。
铁心是互感器的核心部件,由硅钢片叠压而成,具有良好的磁导性能。
一次绕组和二次绕组分别绕在铁心上,一次绕组通电流入口,二次绕组是输出测量信号的地方。
外壳则起到保护和固定绕组的作用。
当交流电流通过一次绕组时,会在铁心中产生交变磁场。
这个交变磁场会感应出二次绕组中的电动势,从而在二次绕组中产生相应的电流。
根据变压器的原理,一次绕组和二次绕组的电流之间有一定的比例关系,即:I1/N1 = I2/N2其中,I1和I2分别是一次绕组和二次绕组中的电流,N1和N2分别是一次绕组和二次绕组中的匝数。
通过调整一次绕组和二次绕组的匝数比例,可以实现对电流的变压器式测量。
为了提高电流互感器的测量精度和防止电流互感器对电路的影响,通常在互感器的一次绕组中串联上一个电阻,称为额定负载电阻。
额定负载电阻的阻值需要根据互感器的额定电流和二次绕组的额定负载阻抗来确定。
除了基本的结构原理外,电流互感器还有一些特殊的设计,以满足不同的应用需求。
例如,对于大电流测量,可以采用分体式电流互感器,即将一次绕组和二次绕组分开放置,通过导线连接。
对于高精度测量,可以采用更多的绕组和铁心结构,以提高测量的精确度。
总结起来,电流互感器是一种利用电磁感应原理测量电流的仪表。
通过一次绕组和二次绕组的变压器原理,将电流转换为二次绕组的电流信号。
通过合理设计和选择额定负载电阻,可以实现对不同电流范围的测量。
电流互感器在电力系统中具有广泛的应用,是实现电能计量和保护设备的重要组成部分。
电流互感器结构原理1普通电流互感器结构原理电流互感器的结构较为简单,由相互绝缘的一次绕组、二次绕组、铁心以及构架、壳体、接线端子等组成。
其工作原理与变压器基本相同,一次绕组的匝数(N1)较少,直接串联于电源线路中,一次负荷电流(人)通过一次绕组时,产生的交变磁通感应产生按比例减小的二次电流(右);二次绕组的匝数(N0较多,与仪表、继电器、变送器等电流线圈的二次负荷(Z)串联形成闭合回路,见图5-1。
图5 - 1 普通电流互感器结构原理图由于一次绕组与二次绕组有相等的安培匝数,l1N1=l2N2,电流互感器额定电流比:瓦二丽。
电流互感器实际运行中负荷阻抗很小,二次绕组接近于短路状态,相当于一个短路运行的变压器2穿心式电流互感器结构原理穿心式电流互感器其本身结构不设一次绕组,载流(负荷电流)导线由L1至L2穿过由硅钢片擀卷制成的圆形(或其他形状)铁心起一次绕组作用。
二次绕组直接均匀地缠绕在圆形铁心上,与仪表、继电器、变送器等电流线圈的二次负荷串联形成闭合回路,见图5- 2。
图5 - 2穿心式电流互感器结构原理图由于穿心式电流互感器不设一次绕组,其变比根据一次绕组穿过互感器铁心中的匝数确定,穿心匝数越多,变比越小;反之,穿心匝数越少,变比越大,额定电流比:n。
式中11 ――穿心一匝时一次额定电流;n ――穿心匝数。
3特殊型号电流互感器3.1多抽头电流互感器。
这种型号的电流互感器,一次绕组不变,在绕制二次绕组时,增加几个抽头,以获得多个不同变比。
它具有一个铁心和一个匝数固定的一次绕组,其二次绕组用绝缘铜线绕在套装于铁心上的绝缘筒上,将不同变比的二次绕组抽头引出,接在接线端子座上,每个抽头设置各自的接线端子,这样就形成了多个变比,见图 5 - 3。
二反绕纽Ki K-i 心Kd图5 - 3多抽头电流互感器原理图例如二次绕组增加两个抽头, K1、K2为100/5 , K1、K3为75/5 , K1、K4为50/5等。
为了测量高电压交流电路内的电流,必须使用电流互感器将大电流变换成小电流,利用互感器的变比关系,配备适当的电流表计进行测量。
同时电流互感器也是电力系统的继电保护、自动控制和指示等方面不可缺少的设备,起到变流和电气隔离作用,运行中严禁二次开路。
一、基本结构1. 按照-次绕组的结构型式分类电流互感器按照-次绕组的结构型式分类如图TYBZ01901006-1所示。
2.电流互感器按照绝缘介质分类(1)浇注绝缘。
用环氧树脂或其他树脂为主的混合浇注成型的电流互感器。
10~35kV多采用此种方式,通常绕组外包定厚度的缓冲层,选用韧性较好的树脂浇注。
(2)气体绝缘。
产品内部充有特殊气体,如SFo气体作为绝缘的互感器,多用于高压产品。
(3)油绝缘。
油浸式互感器,内部是油和纸的复合绝缘,多为户外装置。
35kV 及以上电流互感器多采用此种方式,其-次绕组绝缘结构有“8"字形和“U"字形两种。
1)电磁式电流互感器。
一次绕组一般采用“8”字形绝缘结构,一次绕组套在有二次绕组的环形铁心上,次绕组和铁心都包有较厚的电缆纸,“8”字形绝缘结构如图TYBZ01901006 -2所示。
2)电容式电流互感器。
一次绕组一般采用10层以上同心圆形电容屏围成“U"字形,主绝缘全部包在一次绕组上。
为了提高主绝缘的强度,在绝缘中放置-一定数量的同心圆简形电容屏,容屏端部长度从里往外成台阶排列的原则制成,最外层电容屏接地,各电容屏间形成一个串联的电容器组。
各相邻电容屏间在制造时电容相等,保证其电压分布近于均匀。
由于电容屏端部电场不均匀,在高电压作用下,端部会产生局部放电,为了改善端部电场,通常在两层电容屏间增放一些短屏或者放置均压环。
电容式电流互感器结构原理图如图TYBZ01901006 -3所示。
二、工作原理电流互感器的工作原理与变压器类似,一次绕组和二次绕组是电流互感器电流变换的基本部件,它们绕在同一个铁心上。
一次绕组事联接在高压载流导线上,通过电流h1;二次绕组串联接有移为,次回路从电流互感器的二次绕组直到测最处的外部回路,即负载和连接导线称为二次回路,由于一次绕组与二次烧组有相等的安培匝数,I1*N1=I2*N2,电流互感器,额定电流比为I1/I2=N1/N2因此,一、二次绕组匝数不同,电流比不同。
电流互感器的结构原理电流互感器,也被称为电流互感器,是一种广泛应用于电力系统中的电气测量设备。
它的主要功能是将高电压、高电流的电力设备输出的电流信号降低为适合测量和保护装置使用的小电流信号。
在电力系统中,电流互感器扮演着重要的角色,它能够确保系统的安全运行并提供准确的电流测量。
电流互感器的结构原理是通过电感作用来实现的。
电感是指导体中的电流随时间变化而引起的自感应电动势,它是电流变压器的关键元件。
电流互感器通常由磁芯、一次绕组、二次绕组和外壳构成。
我们来了解一下电流互感器的磁芯。
磁芯是电流互感器的核心部件,它能够集中磁场并提高电流互感器的灵敏度。
常见的磁芯材料有硅钢片和纳米晶材料。
硅钢片具有高导磁率和低磁滞损耗的特性,而纳米晶材料则具有更高的导磁率和更低的磁滞损耗,能够提高电流互感器的测量精度。
我们来了解一下电流互感器的一次绕组。
一次绕组是通过与被测电流线圈相连接,使得电流能够通过互感器的一次绕组。
一次绕组一般由导线绕制而成,并且它承受着测量电流的作用。
接下来,我们来了解一下电流互感器的二次绕组。
二次绕组是通过与测量和保护装置相连接,将步骤3的小电流信号输出。
当一次绕组中的电流变化时,通过互感作用,二次绕组中也会产生相应的电流变化,从而实现电流信号的降压放大。
我们来了解一下电流互感器的外壳。
外壳是保护电流互感器内部元件不受外界环境和损坏的作用。
通常情况下,外壳由绝缘材料制成,以确保电流互感器的安全运行。
在电力系统中,电流互感器扮演着至关重要的角色。
它不仅可以提供准确的电流测量,还可以实现对电力系统的保护。
在过载或短路情况下,电流互感器能够及时检测到异常电流,并触发保护装置,保障系统的安全运行。
在个人观点上,电流互感器作为电力系统中的关键设备,其结构原理对于电力系统的可靠运行起着重要的作用。
通过合理的结构设计和科学的制造工艺,电流互感器能够提供稳定、准确的电流测量,进而保护电力设备和维护系统的运行安全。
互感器的结构和工作原理电力系统要安全经济运行,必须装设一些测量仪表,以测量电路中各种电气量,如电压、电流、功率、电能等。
我们经常还会遇到测量要求较高电压和较大电流的各种电气量。
为了更方便更正确地获得这种被测量的数值,必须使用互感器。
互感器的主要作用有:(1)将高电压变为低电压(100V),大电流变为小电流(5A)。
(2)使测量二次回路与一次回路高压和大电流实施电气隔离,以保证测量工作人员和仪表设备的安全。
(3)采用互感器后可使仪表制造标准化,而不用按被测量电压高低和电流大小来设计仪表。
(4)取出零序电流、电压分量供反应接地故障的继电保护装置使用。
第一节电流互感器的结构和工作原理一、电流互感器的主要技术数据(-)电流互感器分类目前,电流互感器的分类按不同情况划分如下:(1)电流互感器按用途可分为两类:一是测量电流、功率和电能用的测量用互感器;二是继电保护和自动控制用的保护控制用互感器。
(2)根据一次绕组匝数可分为单匝式和多匝式,如图4-1所示。
单匝式又分为贯穿型和母线型两种。
贯穿型互感器本身装有单根铜管或铜杆作为一次绕组;母线型互感器则本身未装一次绕组,而是在铁芯中留出一次绕组穿越的空隙,施工时以母线穿过空隙作为一次绕组。
通常油断路器和变压器套管上的装入式电流互感器就是一种专用母线型互感器。
(α)(b)(c)图4-1 电流互感器的结构原理(α)单匝式;(b)多匝式;(c)具有两个铁芯式(3)根据安装地点可分为户内式和户外式。
(4)根据绝缘方式可分为干式,浇注式,油浸式等。
干式用绝缘胶浸渍,适用于作为低压户内的电流互感器;浇注式用环氧树脂作绝缘,浇注成型;油浸式多为户外型。
(5)根据电流互感器工作原理可分为电磁式、光电式、磁光式、无线电式电流互感器。
(二)电流互感器的型号规定目前,国产电流互感器型号编排方法规定如下:产品型号均以汉语拼音字母表示,字母含义及排列顺序见表5-l 。
表4-1 电流互感器型号字母含义第一个字母 第二个字母 第三个字母 第四个字母 第五个字母 字母 含义字母 含义字母 含义字母 含义字母含义L电流 互感器A 穿墙式 C 瓷绝缘B 保护级 D 差动保护B 支持式 G 改进的 D 差动保护C 瓷箱式 J 树脂浇注 J 加大容量D 单匝式 K 塑料外壳 Q 加“强”式F 多匝式 L 电容式绝缘 Z 浇注绝缘J 接地保护 M 母线式 M 母线式 P 中频 Q 线圈式 S 速饱和 R 装入式 W 户外式 Y 低压的 Z 浇注绝缘Z支柱式(三)电流互感器的主要参数 1.额定电流变比额定电流变比是指一次额定电流与二次额定电流之比(有时简称电流比)。
电流互感器的工作原理电流互感器是一种广泛应用于电力系统中的电力测量仪器。
它通过对电流的变换和测量,能够提供准确的电流信号,并将其传递给继电保护设备或仪表。
一、电流互感器的基本结构电流互感器主要由铁芯、一次绕组、二次绕组和防护外壳等部分组成。
1. 铁芯铁芯是电流互感器的核心部分,其主要用途是提供磁通通路,确保一次绕组和二次绕组之间能够有效地感应电磁感应。
2. 一次绕组一次绕组是电流互感器中负责承载被测电流的线圈,它与被测电流直接相连,并通过电流在其上产生的磁场来感应二次绕组。
3. 二次绕组二次绕组是电流互感器中负责输出测量信号的线圈,它与继电保护设备或仪表相连,将通过一次绕组感应的电磁场转换为相应的电流信号输出。
4. 防护外壳防护外壳是用来保护电流互感器内部结构的,通常由绝缘材料或金属材料制成,能够对内部零部件起到良好的保护作用。
二、电流互感器的工作原理电流互感器的工作原理基于法拉第电磁感应定律。
当一次绕组中的电流通过时,产生的磁场会穿过铁芯并感应到二次绕组中。
根据法拉第电磁感应定律,磁通的变化会在二次绕组中产生感应电动势。
根据电磁感应定律,感应电动势的大小与磁通的变化率成正比。
因此,如果被测电流越大,一次绕组中产生的磁通量就越大,感应到二次绕组的感应电动势也就越大。
为了保证电流互感器的准确性和安全性,在一次绕组和二次绕组之间需要有一个适当的变比关系。
这个变比通常由互感器的额定变比来确定。
例如,如果一个电流互感器的额定变比为1000:5,那么它将会将1000安培的一次电流变换为5安培的二次电流输出。
三、电流互感器的应用领域电流互感器在电力系统中有着广泛的应用。
它主要用于以下几个方面:1. 电流测量和保护电流互感器能够将高电流值变换为适合测量和保护装置的低电流值,有效降低了与高电流相关的测量和保护器件的成本和复杂度。
2. 功率测量和补偿电流互感器能够提供准确的电流信号,用于计算电路的有功功率、无功功率和视在功率。
电流互感器/电压互感器的结构原理和使用注意事项通常所说的电压互感器和电流互感器都是电磁式的,电磁式电压互感器电气文字符号是PT,电磁式电流互感器电气文字符号是CT。
电压互感器和电流互感器在电力设备中应用广泛,用途也是缺之不可的,同时也是最常见的电气设备之一。
一、互感器的结构和工作原理1.电压互感器(PT)是一种将高电压变换为低电压的电气设备,一次绕组与高压系统的一次回路并联,二次绕组则与二次设备的负载并联。
PT基于电磁感应原理工作,正常运行时其二次负载基本不变,电流很小,接近于空载状态。
一般的PT包括测量级和保护级,其基本结构为:一次线圈和二次线圈分别绕在铁心上,在两个线圈之间和线圈与铁心之间都有绝缘隔离。
电力系统用的三线圈电压互感器,除了上述的一次线圈和二次线圈外,还有一个零序电压线圈,用来接继电器。
在线路出现单相接地故障时,线圈中产生的零序电压使继电器动作,切断线路,以保护线路中的发电机和变压器等贵重设备。
2.电流互感器(CT)是一种将高压电网大电流变换为小电流的电气设备,一次绕组串联在高压系统的一次回路内,二次绕组则与二次设备的负载相串联。
CT也是基于电磁感应的原理工作,但是它的二次负载阻抗很小,接近于短路状态。
电流互感器也分为测量用与保护用两类,基本结构和PT相似,一次线圈、二次线圈分别绕在铁心上,两个线圈之间及线圈与铁心之间有绝缘隔离。
根据电力系统要求切除短路故障和继电保护动作时间的快慢,保护用电流互感器分为稳态保护用与暂态保护用两种,前者用于电压比较低的电网中,称为一般保护用电流互感器;后者则用于高压超高压线路上。
二、互感器的使用注意事项1.PT二次侧直接与电压表连接,相当于运行在变压器的空载状态,短路会引起很大的短路电流,使用中不允许短路。
电磁式互感器都有一定的额定容量,从电力网中消耗功率,成为系统的负载,存在负荷分担问题。
而PT存在的最为严重的问题是可能出现铁磁谐振:PT的铁心电感和系统的电容元件由于感抗与容抗的交换,组成许多复杂的振荡回路,如果满足一定的条件,就可能激发起持续时间较长的铁磁谐振,这种谐振现象,某些元件的电压过高危及设备的绝缘,同时可能在非线性电感元件中产生很大的过电流,使电感线圈引起温度升高,击穿绝缘,以致烧损。
一、电流互感器结构原理1 普通电流互感器结构原理电流互感器的结构较为简单,由相互绝缘的一次绕组、二次绕组、铁心以及构架、壳体、接线端子等组成。
其工作原理与变压器基本相同,一次绕组的匝数(N1)较少,直接串联于电源线路中,一次负荷电流()通过一次绕组时,产生的交变磁通感应产生按比例减小的二次电流();二次绕组的匝数(N2)较多,与仪表、继电器、变送器等电流线圈的二次负荷(Z)串联形成闭合回路,见图1。
图1 普通电流互感器结构原理图由于一次绕组与二次绕组有相等的安培匝数,I1N1=I2N2,电流互感器额定电流比:。
电流互感器实际运行中负荷阻抗很小,二次绕组接近于短路状态,相当于一个短路运行的变压器。
2 穿心式电流互感器结构原理穿心式电流互感器其本身结构不设一次绕组,载流(负荷电流)导线由L1至L2穿过由硅钢片擀卷制成的圆形(或其他形状)铁心起一次绕组作用。
二次绕组直接均匀地缠绕在圆形铁心上,与仪表、继电器、变送器等电流线圈的二次负荷串联形成闭合回路,见图2。
图2 穿心式电流互感器结构原理图由于穿心式电流互感器不设一次绕组,其变比根据一次绕组穿过互感器铁心中的匝数确定,穿心匝数越多,变比越小;反之,穿心匝数越少,变比越大,额定电流比:。
式中I1——穿心一匝时一次额定电流;n——穿心匝数。
3 特殊型号电流互感器3.1 多抽头电流互感器。
这种型号的电流互感器,一次绕组不变,在绕制二次绕组时,增加几个抽头,以获得多个不同变比。
它具有一个铁心和一个匝数固定的一次绕组,其二次绕组用绝缘铜线绕在套装于铁心上的绝缘筒上,将不同变比的二次绕组抽头引出,接在接线端子座上,每个抽头设置各自的接线端子,这样就形成了多个变比,见图3。
图3 多抽头电流互感器原理图例如二次绕组增加两个抽头,K1、K2为100/5,K1、K3为75/5,K3、K4为50/5等。
此种电流互感器的优点是可以根据负荷电流变比,调换二次接线端子的接线来改变变比,而不需要更换电流互感器,给使用提供了方便。
3.2 不同变比电流互感器。
这种型号的电流互感器具有同一个铁心和一次绕组,而二次绕组则分为两个匝数不同、各自独立的绕组,以满足同一负荷电流情况下不同变比、不同准确度等级的需要,见图4。
图4 不同变比电流互感器原理图例如在同一负荷情况下,为了保证电能计量准确,要求变比较小一些(以满足负荷电流在一次额定值的2/3左右),准确度等级高一些(如1K1、1K2为200/5、0.2级);而用电设备的继电保护,考虑到故障电流的保护系数较大,则要求变比较大一些,准确度等级可以稍低一点(如2K1、2K2为300/5、1级)。
3.3 一次绕组可调,二次多绕组电流互感器。
这种电流互感器的特点是变比量程多,而且可以变更,多见于高压电流互感器。
其一次绕组分为两段,分别穿过互感器的铁心,二次绕组分为两个带抽头的、不同准确度等级的独立绕组。
一次绕组与装置在互感器外侧的连接片连接,通过变更连接片的位置,使一次绕组形成串联或并联接线,从而改变一次绕组的匝数,以获得不同的变比。
带抽头的二次绕组自身分为两个不同变比和不同准确度等级的绕组,随着一次绕组连接片位置的变更,一次绕组匝数相应改变,其变比也随之改变,这样就形成了多量程的变比,见图5(图中虚线为电流互感器一次绕组外侧的连接片)。
带抽头的二次独立绕组的不同变比和不同准确度等级,可以分别应用于电能计量、指示仪表、变送器、继电保护等,以满足各自不同的使用要求。
例如当电流互感器一次绕组串联时(图5a),1K1、1K2,1K2、1K3,2K1、2K2,2K2、2K3为300/5,1K1、1K3,2K1、2K3为150/5;当电流互感器一次绕组并联时(图5-5b),1K1、1K2,1K2、1K3,2K1、2K2,2K2、2K3为600/5,1K1、1K3,2K1、2K3为300/5。
其接线图和准确度等级标准在铭牌上或使用说明书中。
(a)一次串联(两匝)(b)一次并联(一匝)图5 一次绕组匝数可调、二次多绕组的电流互感器原理图3.4 组合式电流电压互感器。
组合式互感器由电流互感器和电压互感器组合而成,多安装于高压计量箱、柜,用作计量电能或用作用电设备继电保护装置的电源。
组合式电流电压互感器是将两台或三台电流互感器的一次、二次绕组及铁心和电压互感器的一、二次绕组及铁心,固定在钢体构架上,浸入装有变压器油的箱体内,其一、二次绕组出线均引出,接在箱体外的高、低压瓷瓶上,形成绝缘、封闭的整体。
一次侧与供电线路连接,二次侧与计量装置或继电保护装置连接。
根据不同的需要,组合式电流电压互感器分为V/V接线和Y/Y接线两种,以计量三相负荷平衡或不平衡时的电能,见图6(a)、(b)。
(a)两台电流互感器和电压互感器V/V接线(b)三台电流互感器和电压互感器Y/Y接图6 组合式电流电压互感器原理图二、电流互感器使用注意事项1.极性连接要正确。
电流互感器一般按减极性标注,如果极性连接不正确,就会影响计量,甚至在同一线路有多台电流互感器并联时,全造成短路事故。
2.二次回路应设保护性接地点,并可靠连接。
为防止一、二次绕组之间绝缘击穿后高电压窜入低压侧危及人身和仪表安全,电流互感器二次侧应设保护性接地点,接地点只允许接一个,一般将靠近电流互感器的箱体端子接地。
3.运行中二次绕组不允许开路。
否则会导致以下严重后果:(1)二次侧出现高电压,危及人身和仪表安全;(2)出现过热,可能烧坏绕组;(3)增大计量误差。
4.用于电能计量的电流互感器二次回路,不应再接继电保护装置和自动装置等,以防互相影响。
低压计量型电流互感器品种及选型方法2011-1-27 来源:上海安科瑞电气股份有限公司营销部>>进入该公司展台1、概述计量型电流互感器专用于工业计量,与电能表配套使用,计量准确可靠。
2、国内主要品牌及型号国内生产低压计量型电流互感器厂家、型号品牌繁多,主要常见的产品有:上海安科瑞AKH-0.66G系列计量型电流互感器,即AKH-0.66G-30*30I、AKH-0.66G-40I、AKH-0.66G-60I、AKH-0.66G-60II、AKH-0.66G-80I、AKH-0.66G-80II、AKH-0.66G-100II等等。
3、主要技术指标(以安科瑞AKH-0.66G为例)Ø 计量CT一次电流5-2000A,二次电流5A,1AØ 额定工作电压AC0.66kV(等效AC0.69kV,GB/T156-2007)Ø 额定频率50-60HzØ 环境温度-30℃~70℃,最高耐温120℃Ø 海拔高度≤3000mØ 工频耐压3000V/1min 50HzØ 用于没有雨雪直接侵袭,无严重污染及剧烈震动的场所4、选型说明文章链接:工控网(百站) /Tech_news/Detail/66425.html计量用电流互感器选型电能计量装置主要由电能表、计量用电压互感器、电流互感器及二次回路等部分组成,电流互感器是能计量装置的重要组成部分,现介绍计量用电流互感器的选择原则和使用注意事项。
1 选择的原则1.1额定电压的确定电流互感器的额定电压UN应与被测线路的电压UL相适应,即UN≥UL。
1.2额定变比的确定通常根据电流互感器所接一次负荷来确定额定一次电流I1,即: I1=P1/UNcosψ式中UN——电流互感器的额定电压,kV;P1——电流互感器所接的一次电力负荷,kVA;cosψ——平均功率因数,一般按cosψ=0.8计算。
为保证计量的准确度,选择时应保证正常运行时的一次电流为其额定值的60%左右,至少不得低于30%。
电流互感器的额定变比则由额定一次电流与额定二次电流的比值决定。
1.3额定二次负荷的确定互感器若接入的二次负荷超过额定二次负荷时,其准确度等级将下降。
为保证计量的准确性,一般要求电流互感器的二次负荷S2必须在额定二次负荷S2N 的25%~100%范围内,即:0.25S2N≤S2≤S2N1.4额定功率因数的确定计量用电流互感器额定二次负荷的功率因数应为0.8~1.0。
1.5准确度等级的确定根据电能计量装置技术管理规程(DL/T448-2000)规定,运行中的电能计量装置按其所计量电能量的多少和计量对象的重要程度,分为I、II、III、IV、V五类,不同类别的电能计量装置对电流互感器准确度等级的要求也不同电流互感器的配置1.6互感器的接线方式计量用电流互感器接线方式的选择,与电网中性点的接地方式有关,当为非有效接地系统时,应采用两相电流互感器,当为有效接地系统时,应采用三相电流互感器,一般地,作为计费用的电能计量装置的电流互感器应接成分相接线(即采用二相四线或三相六线的接线方式),作为非计费用的电能计量装置的电流互感器可采用二相三线或三相线的接线方式,各种接线方式如下图所示:1.7互感器二次回路导线的确定由于电流互感器二次回路导线的阻抗是二次负荷阻抗的一部分,直接影响着电流互感器的误差,因而哪二次回路连接导线的长度一定时,其截面积需要进行计算确定。
一般计量用互感器要求一次电流要经常运行在20%-100%之间.这样它的二次电流一般不会超过5A,请教各位老师如果测得它的二次电流为6A的话,那它的计量还准吗?如果不准的话那是多计量了还是少计量了呢?计量用电流互感器一般要求准确级在0.2s级以上。
电流互感器检测的标准:五个点:1%;%5;20%;100%;120%。
所以,可以肯定的说,6A的点是准确的。
计量用电流互感器一般要求准确级在0.2s级以上。
应该是445KVA吧?也就是千伏安,代表主变容量,PT就是电压互感器,10KV/100V 就是指互感器的一次侧即高压侧额定电压为10KV,二次侧即低压侧(接入仪表侧)额定电压为100V,100V是通用的标准电压。
CT是电流互感器,30/5A 是指一次侧额定电流三十安时二次侧电流是5安,5安是通用的标准电流。
电力部门给你们装表时都要经过基本计算,不会瞎装的,有一公式:主变容量(445KVA)等于根号3倍的高压侧额定电压(10KV)和额定电流的乘机。
反算过来,电流约25.7安,躲过主变励磁涌流,选30安是正确合适的,如果选用CT-50/5A 的互感器,你想想看,是不是对于你发电方就不合适了?再选大点儿,你就白白的发吧,电表可能就不转了。
所以作为计量,发电方互感器越小越好.。