高二数学不等式教案
- 格式:doc
- 大小:1.44 MB
- 文档页数:37
高中数学不等式的模型教案
教学目标:
1. 理解不等式的概念及性质。
2. 掌握解不等式的方法。
3. 能够运用不等式解决实际问题。
教学重点:
1. 不等式的定义。
2. 不等式的性质。
3. 解不等式的方法。
教学难点:
1. 不等式组合的运算规则。
2. 不等式解答实际问题的能力。
教学过程:
一、导入(5分钟)
教师引导学生讨论生活中的“不等式”,以引起学生的兴趣和思考。
二、讲解不等式的定义(15分钟)
1. 介绍不等式的定义和符号表示。
2. 讲解不等式的性质和性质与等号的关系。
三、解不等式的方法(20分钟)
1. 介绍解一元一次不等式的基本方法。
2. 演示解决不等式的过程,并指导学生做练习。
四、练习与讨论(15分钟)
1. 让学生做一些不等式的练习题,并讨论解题过程和答案。
2. 教师解答学生提出的问题,帮助学生理解不等式的知识点。
五、实际问题解决(15分钟)
1. 给学生提供一些实际问题,让学生运用不等式解决问题。
2. 学生自主讨论解决问题的方法,并展示解题过程。
六、总结(5分钟)
1. 教师对本节课进行总结,提出学生存在的问题和不足之处。
2. 提醒学生在日常生活中多加练习,提高不等式解决问题的能力。
作业布置:
* 完成课堂练习题目。
* 自编不等式实际问题,并解答。
教学反思:
* 对学生学习不等式过程中的困难加以理解和帮助。
* 注重学生实际问题解决能力的培养。
高中数学《不等式》教案教学内容:不等式
教学目标:
1. 理解不等式的概念和性质。
2. 掌握不等式的解法和解集表示法。
3. 能够根据不等式的性质解决实际问题。
教学重点:
1. 掌握不等式的基本概念和性质。
2. 能够利用不等式解决实际问题。
教学难点:
1. 熟练掌握各种不等式的解法。
2. 能够根据实际问题建立并解决不等式。
教学过程:
一、导入(5分钟)
1. 引入不等式的概念,并和等式做比较,引发学生思考。
二、讲解不等式的性质和解法(15分钟)
1. 讲解不等式的符号表示及性质。
2. 讲解不等式的解法,包括加减法、乘法、除法等。
三、练习与讨论(20分钟)
1. 练习不等式的基本运算和解法。
2. 让学生在小组讨论中解决不等式问题。
四、实际问题应用(10分钟)
1. 列举一些实际问题,让学生通过建立不等式解决。
五、总结与展望(5分钟)
1. 总结不等式的性质和解法。
2. 展望下节课内容,讲解高级不等式的解法。
六、作业布置(5分钟)
1. 布置练习题,巩固不等式的知识。
教学板书:
不等式
1. 定义:比较两个数的大小关系的代数式。
2. 符号表示:大于(>)、小于(<)、大于等于(≥)、小于等于(≤)。
3. 特性:加减法、乘除法性质。
教学反思:
通过本节课的教学,学生对不等式的概念和性质有了初步了解,并能够熟练解决基本的不等式问题。
下一步可以引入更复杂的不等式,挑战学生的解题能力。
高中数学代数不等式教案
一、教学目标:
1. 了解不等式的概念,掌握不等式的性质和解不等式的方法;
2. 能够解决简单的一元一次不等式;
3. 能够推导不等式,简单应用不等式解决实际问题。
二、教学重点和难点:
1. 不等式的性质和解不等式的方法;
2. 推导不等式和应用不等式解决实际问题。
三、教学内容:
1. 不等式的概念及性质;
2. 解一元一次不等式的方法;
3. 推导不等式;
4. 应用不等式解决实际问题。
四、教学过程:
1. 导入新课:通过提问引出学生对不等式的认识,引出不等式的概念和性质;
2. 学习不等式的性质和解不等式的方法,并讲解示例;
3. 学生练习解题;
4. 学习推导不等式的方法,并讲解示例;
5. 学生练习推导不等式;
6. 学习应用不等式解决实际问题,并讲解示例;
7. 学生练习应用不等式解决实际问题;
8. 总结本节课的内容,布置作业。
五、课后作业:
1. 练习册上的相关习题;
2. 思考如何应用不等式解决生活中的问题。
六、教学反思:
通过本节课的教学,学生对不等式的概念和性质有了更深入的理解,解不等式的方法也得到了初步掌握。
但是,需要鼓励学生多加练习,提高解题能力。
在教学中,要充分启发学生的思维,引导学生灵活运用不等式解决实际问题。
高二数学不等式教案高二数学不等式教案在教学工作者开展教学活动前,很有必要精心设计一份教案,借助教案可以提高教学质量,收到预期的教学效果。
优秀的教案都具备一些什么特点呢?以下是小编帮大家整理的高二数学不等式教案,希望对大家有所帮助。
高二数学不等式教案1教学目标1.理解同向不等式,异向不等式概念;2.掌握并会证明定理1,2,3;3.理解定理3的推论是同向不等式相加法则的依据,定理3是移项法则的依据;4.初步理解证明不等式的逻辑推理方法.教学重点:定理1,2,3的证明的证明思路和推导过程教学难点:理解证明不等式的逻辑推理方法教学方法:引导式教学过程一、复习回顾上一节课,我们一起学习了比较两实数大小的方法,主要根据的是实数运算的符号法则,而这也是推证不等式性质的主要依据,因此,我们来作一下回顾:这一节课,我们将利用比较实数的方法,来推证不等式的性质.二、讲授新课在证明不等式的性质之前,我们先明确一下同向不等式与异向不等式的概念.1.同向不等式:两个不等号方向相同的不等式,例如:是同向不等式.异向不等式:两个不等号方向相反的不等式.例如:是异向不等式.2.不等式的性质:定理1:若,则定理1说明,把不等式的左边和右边交换,所得不等式与原不等式异向.在证明时,既要证明充分性,也要证明必要性.证明由正数的相反数是负数,得说明:定理1的后半部分可引导学生仿照前半部分推证,注意向学生强调实数运算的符号法则的应用.定理2:若,且,则.证明:根据两个正数的'和仍是正数,得∴说明:此定理证明的主要依据是实数运算的符号法则及两正数之和仍是正数.定理3:若,则定理3说明,不等式的两边都加上同一个实数,所得不等式与原不等式同向.证明说明:(1)定理3的证明相当于比较与的大小,采用的是求差比较法;(2)不等式中任何一项改变符号后,可以把它从一边移到另一边,理由是:根据定理3可得出:若,则即.定理3推论:若.证明:说明:(1)推论的证明连续两次运用定理3然后由定理2证出;(2)这一推论可以推广到任意有限个同向不等式两边分别相加,即:两个或者更多个同向不等式两边分别相加,所得不等式与原不等式同向;(3)两个同向不等式的两边分别相减时,就不能作出一般的结论;(4)定理3的逆命题也成立.(可让学生自证)三、课堂练习1.证明定理1后半部分;2.证明定理3的逆定理.说明:本节主要目的是掌握定理1,2,3的证明思路与推证过程,练习穿插在定理的证明过程中进行.课堂小结通过本节学习,要求大家熟悉定理1,2,3的证明思路,并掌握其推导过程,初步理解证明不等式的逻辑推理方法.课后作业1.求证:若2.证明:若高二数学不等式教案2教学目的:1.掌握常用基本不等式,并能用之证明不等式和求最值;2.掌握含绝对值的不等式的性质;3.会解简单的高次不等式、分式不等式、含绝对值的不等式、简单的无理不等式、指数不等式和对数不等式.学会运用数形结合、分类讨论、等价转换的思想方法分析和解决有关教学过程:一、复习引入:本章知识点二、讲解范例:几类常见的问题(一) 含参数的不等式的解法例1解关于x的不等式 .例2解关于x的不等式 .例3解关于x的不等式 .例4解关于x的不等式例5 满足的x的集合为A;满足的x的集合为B 1 若AB 求a的取值范围 2 若AB 求a的取值范围 3 若AB为仅含一个元素的集合,求a的值.(二)函数的最值与值域例6 求函数的最大值,下列解法是否正确?为什么?解一:,解二:当即时,例7 若,求的最值。
高中数学5个不等式教案
课题:高中数学不等式
目标:学生能够理解和解决各种不等式问题,掌握不等式的基本性质和解法方法。
一、引入:
通过一个简单的问题引入不等式的概念,让学生明白不等式的意义和作用。
二、基本性质:
1. 不等式的基本性质:大小关系、加减乘除,等不等式的性质。
2. 不等式的转化:加减法转化、乘除法转化等。
3. 不等式的表示:解集表示法、图示法等。
三、解不等式:
1. 一元一次不等式:解一元不等式常用的方法和技巧。
2. 一元二次不等式:解一元二次不等式的方法和步骤。
3. 复合不等式:解复合不等式的方法和技巧。
四、不等式的应用:
1. 不等式在几何中的应用:三角形不等式等。
2. 不等式在实际问题中的应用:最大最小值问题、优化问题等。
五、综合练习:
安排一些综合性的练习题,让学生运用所学知识解决问题。
六、总结:
对本节课所学的内容进行总结,强化学生对不等式知识的理解和掌握。
七、作业:
布置适量的作业,巩固所学内容。
以上是一份高中数学不等式教案范本,教师可根据实际情况和教学需要进行具体调整和安排。
高中数学基本不等式教案设计(优秀3篇)篇一:高中数学教学设计篇一教学目标1、明确等差数列的定义。
2、掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题3、培养学生观察、归纳能力。
教学重点1、等差数列的概念;2、等差数列的通项公式教学难点等差数列“等差”特点的理解、把握和应用教具准备投影片1张教学过程(I)复习回顾师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。
这两个公式从不同的角度反映数列的特点,下面看一些例子。
(放投影片)(Ⅱ)讲授新课师:看这些数列有什么共同的特点?1,2,3,4,5,6;①10,8,6,4,2,…;②生:积极思考,找上述数列共同特点。
对于数列①(1≤n≤6);(2≤n≤6)对于数列②—2n(n≥1)(n≥2)对于数列③(n≥1)(n≥2)共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。
师:也就是说,这些数列均具有相邻两项之差“相等”的特点。
具有这种特点的数列,我们把它叫做等差数。
一、定义:等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。
如:上述3个数列都是等差数列,它们的公差依次是1,—2……二、等差数列的通项公式师:等差数列定义是由一数列相邻两项之间关系而得。
若一等差数列的首项是,公差是d,则据其定义可得:若将这n—1个等式相加,则可得:即:即:即:……由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。
如数列①(1≤n≤6)数列②:(n≥1)数列③:(n≥1)由上述关系还可得:即:则:=如:三、例题讲解例1:(1)求等差数列8,5,2…的第20项(2)—401是不是等差数列—5,—9,—13…的项?如果是,是第几项?解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得—401=—5—4(n—1)成立解之得n=100,即—401是这个数列的第100项。
高中不等式的教案高中不等式的教案(通用11篇)高中不等式的教案篇1教学目标1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。
2、过程与方法目标:按照创设情景,提出问题→剖析归纳证明→几何解释→应用(最值的求法、实际问题的解决)的过程呈现。
启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。
3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。
教学重难点1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);2、利用基本不等式求解实际问题中的最大值和最小值。
教学过程一、创设情景,提出问题;设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实基于此,设置如下情境: 上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。
[问]你能在这个图中找出一些相等关系或不等关系吗?本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式在此基础上,引导学生认识基本不等式。
三、理解升华:1、文字语言叙述:两个正数的算术平均数不小于它们的几何平均数。
2、联想数列的知识理解基本不等式已知a,b是正数,A是a,b的等差中项,G是a,b的正的等比中项,A与G有无确定的大小关系?两个正数的等差中项不小于它们正的等比中项。
3、符号语言叙述:4、探究基本不等式证明方法:[问]如何证明基本不等式?(意图在于引领学生从感性认识基本不等式到理性证明,实现从感性认识到理性认识的升华,前面是从几何图形中的面积关系获得不等式的,下面用代数的思想,利用不等式的性质直接推导这个不等式。
含有绝对值的不等式教学目标(1)掌握绝对值不等式的基本性质,在学会一般不等式的证明的基础上,学会含有绝对值符号的不等式的证明方法;(2)通过含有绝对值符号的不等式的证明,进一步巩固不等式的证明中的由因导果、执要溯因等数学思想方法;(3)通过证明方法的探求,培养学生勤于思考,全面思考方法;(4)通过含有绝对值符号的不等式的证明,可培养学生辩证思维的方法和能力,以及严谨的治学精神。
教学建议一、知识结构二、重点、难点分析① 本节重点是性质定理及推论的证明.一个定理、公式的运用固然重要,但更重要的是要充分挖掘吸收定理公式推导过程中所蕴含的数学思想与方法,通过证明过程的探求,使学生理清思考脉络,培养学生勤于动脑、勇于探索的精神.② 教学难点一是性质定理的推导与运用;一是证明的方法选择.在推导定理中进行的恒等变换与不等变换,相对学生的思维水平是有一定难度的;证明的方法不外是比较法、分析法、综合法以及简单的放缩变换,根据要证明的不等式选择适当的证明方法是无疑学生学习上的难点.三、教学建议(1)本节内容分为两课时,第一课时为性质定理的证明及简单运用,第二课时为的证明举例.(2)课前复习应充分.建议复习:当时;;以及绝对值的性质:,为证明例1做准备.(3)可先不给出性质定理,提出问题让学生研究:是否等于?大小关系如何?是否等于?等等.提示学生用一些数代入计算、比较,以便归纳猜想一般结论.(4)不等式的证明方法较多,也应放手让学生去探讨.(5)用向量加减法的三角形法则记忆不等式及推论.(6)本节教学既要突出教师的主导作用,又要强调学生的主体作用,课上尽量让全体学生参与讨论,由基础较差的学生提出猜想,由基础较好的学生帮助证明,培养学生的团结协作的团队精神.教学设计示例教学目标理解及其两个推论,并能应用它证明简单含有绝对值不等式的证明问题。
教学重点难点重点是理解掌握定理及等号成立的条件,绝对值不等式的证明。
难点是定理的推导过程的探索,摆脱绝对值的符号,通过定理或放缩不等式。
高中数学的几个不等式教案
教学目标:
1. 了解不等式的基本概念与性质
2. 掌握解不等式的方法与技巧
3. 能够独立解决不等式问题
教学内容:
1. 不等式的定义及表示方法
2. 不等式的性质
3. 解不等式的方法
4. 不等式的应用
教学步骤:
1. 热身:利用简单的不等式练习引出不等式的概念
2. 导入:介绍不等式的定义及表示方法
3. 讲解:讲解不等式的性质,如加减乘除不等式、绝对值不等式等
4. 演示:演示解不等式的方法,如化简、整理、分析不等式中的关系等
5. 练习:让学生进行一些不等式练习,巩固所学知识
6. 拓展:引导学生探讨不等式的应用领域,如最值问题、应用题等
7. 总结:总结本节课的重点内容并布置作业
教学反馈:
1. 学生完成作业后,进行批改并给予反馈
2. 收集学生对不等式学习过程中的疑问,进行解答与指导
教学资源:
1. 教材:高中数学教材中的相关章节
2. 教具:黑板、彩色粉笔、教学PPT等
3. 练习册:针对不等式的练习题
教学评估:
1. 课堂学习表现评定
2. 作业完成情况评定
3. 学生解决不等式问题的能力评定
教学总结:
通过本节课的教学,学生应该能够掌握不等式的基本概念与性质,掌握解不等式的方法与技巧,提高解决数学问题的能力。
同时,也对不等式的应用有一定的了解与认识。
2.2 一元二次不等式的应用学 习 目 标核 心 素 养1.会解简单的分式不等式和简单的高次不等式.(重点)2.会求解方程根的存在性问题和不等式恒成立问题.(重点、难点)1.通过学习分式不等式与高次不等式培养数学运算素养.2.通过一元二次不等式的实际应用提升数学建模素养.1.分式不等式的解法阅读教材P 82“例10”以上部分,完成下列问题.(1)f x g x >0与f (x )·g (x )>0同解.(2)f x g x<0与f (x )·g (x )<0同解.(3)f x g x ≥0与f (x )·g (x )≥0且g (x )≠0同解.(4)f x g x≤0与f (x )·g (x )≤0且g (x )≠0同解.思考:(1)不等式f xg x≥0与f (x )·g (x )>0或f (x )=0同解吗?[提示] 同解.(2)解分式不等式的主导思想是什么? [提示] 化分式不等式为整式不等式. 2.高次不等式的解法阅读教材P 82“例10”以下至P 83“练习1”以上部分,完成下列问题.如果把函数f (x )图像与x 轴的交点形象地看成“针眼”,函数f (x )的图像看成“线”,那么这种求解不等式的方法,我们形象地把它称为穿针引线法.思考:(1)解一元二次不等式可以用穿针引线法吗? [提示] 可以(2)应用穿针引线法解高次不等式f (x )>0,对f (x )的最高次项的系数有什么要求吗?[提示] 把f (x )最高次项的系数化为正数. 1.不等式4x +23x -1>0的解集是( )A .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >13或x <-12 B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <13 C .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >13D .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-12 A [4x +23x -1>0⇔(4x +2)(3x -1)>0⇔x >13或x <-12,此不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >13或x <-12.] 2.函数f (x )=x -1x的定义域是________. (-∞,0)∪[1,+∞) [由题意得x -1x≥0,即x (x -1)≥0且x ≠0,解之得x ≥1或x <0,故其定义域是(-∞,0)∪[1,+∞).]3.不等式(x -1)(x +2)(x -3)<0的解集为________. (-∞,-2)∪(1,3) [如图所示:由图知原不等式的解集为(-∞,-2)∪(1,3).] 4.不等式x +1x +22x +3x +4>0的解集为_________________.{x |-4<x <-3或x >-1} [原式可转化为(x +1)(x +2)2(x +3)(x +4)>0,根据数轴穿根法,解集为-4<x <-3或x >-1.]分式不等式和高次不等式的解法【例1】 解下列不等式:(1)x +43-x <0;(2)x +1x -2≤2;(3)(6x 2-17x +12)(2x 2-5x +2)>0.[解] (1)由x +43-x <0,得x +4x -3>0,此不等式等价于(x +4)(x-3)>0,∴原不等式的解集为{x |x <-4或x >3}.(2)法一:移项得x +1x -2-2≤0,左边通分并化简有-x +5x -2≤0,即x -5x -2≥0, 同解不等式为⎩⎪⎨⎪⎧x -2x -5≥0,x -2≠0,∴x <2或x ≥5.∴原不等式的解集为{x |x <2或x ≥5}.法二:原不等式可化为x -5x -2≥0,此不等式等价于⎩⎪⎨⎪⎧x -5≥0,x -2>0①或⎩⎪⎨⎪⎧x -5≤0,x -2<0, ②解①得x ≥5,解②得x <2,∴原不等式的解集为{x |x <2或x ≥5}.(3)原不等式可化为(2x -3)(3x -4)(2x -1)(x -2)>0,进一步化为⎝⎛⎭⎪⎫x -32⎝ ⎛⎭⎪⎫x -43⎝ ⎛⎭⎪⎫x -12(x -2)>0,如图所示,得原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <12或43<x <32或x >2. 1.分式不等式的解法:先通过移项、通分整理成标准型f xg x >0(<0)或f xg x≥0(≤0),再化成整式不等式来解.如果能判断出分母的正负,直接去分母也可.2.一元高次不等式f (x )>0用穿针引线法求解,其步骤是: (1)将f (x )最高次项的系数化为正数;(2)将f (x )分解为若干个一次因式的积或二次不可分因式之积;(3)将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线(注意重根情况,偶次方根穿而不过,奇次方根既穿又过);(4)根据曲线显现出的f (x )值的符号变化规律,写出不等式的解集.1.解下列不等式:(1)x +12x -3≥1;(2)x 4-2x 3-3x 2<0.[解] (1)移项得x +12x -3-1≥0,即4-x2x -3≥0,同解不等式为⎩⎪⎨⎪⎧4-x 2x -3≥02x -3≠0,∴32<x ≤4,故原不等式的解集为⎝ ⎛⎦⎥⎤32,4. (2)原不等式可化为x 2(x -3)(x +1)<0, 当x ≠0时,x 2>0,由(x -3)(x +1)<0, 得-1<x <3;当x =0时,原不等式为0<0,无解.∴原不等式的解集为{x |-1<x <3,且x ≠0}.一元二次不等式在生活中的应用千瓦时.本年度计划将电价降价到0.55元/千瓦时至0.75元/千瓦时之间,而用户期望电价为0.4元/千瓦时.经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k ).该地区电力的成本价为0.3元/千瓦时.(1)写出本年度电价下调后,电力部门的收益y 与实际电价x 的函数关系式;(2)设k =0.2a ,当电价最低定为多少时仍可保证电力部门的收益比上年度至少增长20%?[解] (1)设下调后的电价为x 元/千瓦时,依题意知,用电量增至k x -0.4+a ,电力部门的收益为y =⎝⎛⎭⎪⎫kx -0.4+a (x -0.3)(0.55≤x ≤0.75).(2)依题意,有⎩⎪⎨⎪⎧⎝⎛⎭⎪⎫0.2a x -0.4+a x -0.3≥[a 0.8-0.3]1+20%,0.55≤x ≤0.75,整理,得⎩⎪⎨⎪⎧x 2-1.1x +0.3≥0,0.55≤x ≤0.75,解此不等式组,得0.60≤x ≤0.75.所以当电价最低定为0.60元/千瓦时时,仍可保证电力部门的收益比上年度至少增长20%.解不等式应用题的步骤2.某校园内有一块长为800 m ,宽为600 m 的长方形地面,现要对该地面进行绿化,规划四周种花卉(花卉带的宽度相同),中间种草坪,如图,若要求草坪的面积不小于总面积的一半,求花卉带宽度的范围.[解] 设花卉带宽度为x m ,则草坪的长为(800-2x )m ,宽为(600-2x )m ,根据题意,得(800-2x )(600-2x )≥12×800×600,整理,得x 2-700x +60 000≥0, 解得x ≥600(舍去)或x ≤100, 由题意知x >0,所以0<x ≤100.即当花卉带的宽度在(0,100]内取值时,草坪的面积不小于总面积的一半.不等式的恒成立问题[探究问题]1.设f (x )=mx 2+2x +1,若f (x )>0对任意的x ∈R 恒成立,f (x )的图像如何?求m 的范围.[提示] 由条件知m >0,即f (x )的图像开口向上,且和x 轴没有交点,故⎩⎪⎨⎪⎧m >0Δ=4-4m <0,解之得m >1.2.设f (x )的值域是[1,2],若f (x )≥a 恒成立,求a 的取值范围.[提示] a ≤13.设x ∈[3,4],若存在x ∈[3,4],使x ≥a ,求a 的取值范围.[提示] a ≤4【例3】 设函数f (x )=mx 2-mx -1.(1)若对于一切实数x ,f (x )<0恒成立,求m 的取值范围; (2)对于任意x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围.思路探究:(1)讨论m 的符号,结合函数f (x )的图像求解. (2)求f (x )的最大值,使其最大值小于-m +5;或分离参数m 后,转化为求函数的最值问题.[解] (1)要使mx 2-mx -1<0恒成立, 若m =0,显然-1<0,满足题意;若m ≠0,⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0⇒-4<m <0.∴-4<m ≤0.(2)法一:要使f (x )<-m +5在x ∈[1,3]上恒成立.就要使m ⎝⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.令g (x )=m ⎝⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数, ∴g (x )max =g (3)=7m -6<0, ∴0<m <67;当m =0时,-6<0恒成立; 当m <0时,g (x )是减函数,∴g (x )max =g (1)=m -6<0,得m <6, ∴m <0.综上所述:m <67.法二:当x ∈[1,3]时,f (x )<-m +5恒成立, 即当x ∈[1,3]时,m (x 2-x +1)-6<0恒成立. ∵x2-x +1=⎝⎛⎭⎪⎫x -122+34>0,又m (x 2-x +1)-6<0, ∴m <6x 2-x +1.∵函数y =6x 2-x +1=6⎝⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,∴只需m <67即可.1.(变条件)把例3中的函数换为:f (x )=x 2+(a -4)x +(5-2a ),若f (x )>0对任意的x ∈R 都成立,求实数a 的取值范围.[解] 由题意可知,f (x )的图像开口向上,故要使f (x )>0恒成立,只需Δ<0即可,即(a -4)2-4(5-2a )<0,解得-2<a <2.2.(变结论)例3的条件不变,若存在x ∈[1,3],f (x )<-m+5恒成立,求m 的取值范围.[解] 不等式f (x )<-m +5可化为mx 2-mx -1<-m +5, 即m (x 2-x +1)<6,由于x 2-x +1=⎝⎛⎭⎪⎫x -122+34>0,故原不等式等价于m <6x 2-x +1.当x ∈[1,3]时,x 2-x +1∈[1,7],故6x 2-x +1∈⎣⎢⎡⎦⎥⎤67,6,由题意可知m <6.有关不等式恒成立求参数的取值范围,通常有两种处理方法 (1)考虑能否进行参变量分离,若能,则构造关于变量的函数,转化为求函数的最大(小)值,从而建立参变量的不等式.(2)若参变量不能分离,则应构造关于变量的函数(如一次函数、二次函数),并结合图像建立参变量的不等式求解.1.解分式不等式和高次不等式的一般方法是穿针引线法,先将不等式化为标准型,即右边为零,左边分解成几个因式的积,使每个因式的x 系数全为1,再把各根依次从小到大标在数轴上后,要从右上方开始往左穿,若有重根,则奇次重根一次穿过,偶次重根要折回,然后根据x 轴上方为正,下方为负的原则,由不等式的类型写出解集.注意分式不等式分母不为零.对分式不等式一般不去分母,若要去分母,需对分母的正负进行讨论.2.一元二次不等式应用题常以二次函数为模型,解题时要弄清题意,准确找出其中的不等关系,再利用一元二次不等式求解,确定答案时应注意变量具有的“实际含义”.1.判断正误(正确的打“√”,错误的打“×”)(1)不等式3x +5x +1>2与3x +5>2(x +1)同解.( )(2)x -1x +2≤0与(x -1)(x +2)≤0同解.( )(3)应用穿针引线法解不等式(x +2)2(x -3)>0,可得其解集为(2,3).( )[答案] (1)× (2)× (2)×[提示] (1)错误,不等式3x +5x +1>2与x +3x +1>0同解;(2)错误,x -1x +2≤0与(x -1)(x +2)≤0且x +2≠0同解;(3)错误,(x +2)2(x -3)>0的解集为(3,+∞).2.对任意的x ∈R ,x 2-ax +1>0恒成立,则实数a 的取值范围是( )A .(-2,2)B .(-∞,2)∪(2,+∞)C .[-2,2]D .(-∞,2]∪[2,+∞)A [由题意可知Δ=a 2-4<0,解得-2<a <2.] 3.不等式2x -1x +3≤-2的解集为________.⎣⎢⎡⎭⎪⎫-54,-3 [原不等式可化为4x +5x +3≤0,故(4x +5)(x +3)≤0且x ≠-3,故解集为⎣⎢⎡⎭⎪⎫-54,-3.]4.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏.为了使这批台灯每天能获得400元以上的销售收入,应怎样制定这批台灯的销售价格?[解] 设每盏台灯售价x元,则x≥15,并且日销售收入为x[30-2(x-15)],由题意知,当x≥15时,有x[30-2(x-15)]>400,解得:15≤x<20.所以为了使这批台灯每天获得400元以上的销售收入,应当制定这批台灯的销售价格为x∈[15,20).。
第 周第 课时 授课时间:20 年 月 日(星期 )课题: §3.1不等式与不等关系第1课时授课类型:新授课 【教学目标】1.知识与技能:通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)的实际背景,掌握不等式的基本性质;2.过程与方法:通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法; 3.情态与价值:通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯。
【教学重点】用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题。
理解不等式(组)对于刻画不等关系的意义和价值。
【教学难点】用不等式(组)正确表示出不等关系。
【教学过程】1.课题导入在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系。
如两点之间线段最短,三角形两边之和大于第三边,等等。
人们还经常用长与短、高与矮、轻与重、胖与瘦、大与小、不超过或不少于等来描述某种客观事物在数量上存在的不等关系。
在数学中,我们用不等式来表示不等关系。
下面我们首先来看如何利用不等式来表示不等关系。
2.讲授新课1)用不等式表示不等关系引例1:限速40km/h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40km/h ,写成不等式就是: 40v ≤引例2:某品牌酸奶的质量检查规定,酸奶中脂肪的含量应不少于2.5%,蛋白质的含量p 应不少于2.3%,写成不等式组就是——用不等式组来表示2.5%2.3%f p ≤⎧⎨≥⎩ 问题1:设点A 与平面α的距离为d,B 为平面α上的任意一点,则||d AB ≤。
问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本。
据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本。
若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解:设杂志社的定价为x 元,则销售的总收入为 2.5(80.2)0.1x x --⨯ 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式2.5(80.2)200.1x x --⨯≥ 问题3:某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种。
按照生产的要求,600mm 的数量不能超过500mm 钢管的3倍。
怎样写出满足所有上述不等关系的不等式呢?解:假设截得500 mm 的钢管 x 根,截得600mm 的钢管y 根。
根据题意,应有如下的不等关系:(1)截得两种钢管的总长度不超过4000mm ;(2)截得600mm 钢管的数量不能超过500mm 钢管数量的3倍; (3)截得两种钢管的数量都不能为负。
要同时满足上述的三个不等关系,可以用下面的不等式组来表示:5006004000;3;0;0.x y x y x y +≤⎧⎪≥⎪⎨≥⎪⎪≥⎩3.随堂练习1、试举几个现实生活中与不等式有关的例子。
2、课本P82的练习1、24.课时小结用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题。
5.评价设计课本P83习题3.1[A 组]第4、5题 【板书设计】【授后记】第 周第 课时 授课时间:20 年 月 日(星期 )第2课时授课类型:新授课 【教学目标】1.知识与技能:掌握不等式的基本性质,会用不等式的性质证明简单的不等式;2.过程与方法:通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法; 3.情态与价值:通过讲练结合,培养学生转化的数学思想和逻辑推理能力. 【教学重点】掌握不等式的性质和利用不等式的性质证明简单的不等式; 【教学难点】利用不等式的性质证明简单的不等式。
【教学过程】1.课题导入在初中,我们已经学习过不等式的一些基本性质。
请同学们回忆初中不等式的的基本性质。
(1)不等式的两边同时加上或减去同一个数,不等号的方向不改变; 即若a b a c b c >⇒±>±(2)不等式的两边同时乘以或除以同一个正数,不等号的方向不改变; 即若,0a b c ac bc >>⇒>(3)不等式的两边同时乘以或除以同一个负数,不等号的方向改变。
即若,0a b c ac bc ><⇒<2.讲授新课1、不等式的基本性质:师:同学们能证明以上的不等式的基本性质吗? 证明:1)∵(a+c)-(b +c)=a -b >0, ∴a+c >b +c2)()()0a c b c a b +-+=->, ∴a c b c +>+.实际上,我们还有,a b b c a c >>⇒>,(证明:∵a>b ,b >c ,∴a-b >0,b -c >0. 根据两个正数的和仍是正数,得(a -b)+(b -c)>0,即a -c >0, ∴a>c .于是,我们就得到了不等式的基本性质: (1),a b b c a c >>⇒> (2)a b a c b c >⇒+>+ (3),0a b c ac bc >>⇒> (4),0a b c ac bc ><⇒< 2、探索研究思考,利用上述不等式的性质,证明不等式的下列性质: (1),a b c d a c b d >>⇒+>+; (2)0,0a b c d ac bd >>>>⇒>;(3)0,,1n na b n N n a b >>∈>⇒>>证明: 1)∵a>b ,∴a+c >b +c . ① ∵c>d ,∴b+c >b +d . ② 由①、②得 a +c >b +d .2)bd ac bd bc b d c bc ac c b a >⇒⎭⎬⎫>⇒>>>⇒>>0,0,3)反证法)假设nn b a ≤,则:a b a b<⇒<=⇒=这都与b a >矛盾,∴n n b a >.[范例讲解]:例1、已知0,0,a b c >><求证c c a b>。
证明:以为0a b >>,所以ab>0,10ab >。
于是 11a b ab ab ⨯>⨯,即11b a> 由c<0 ,得c ca b>3.随堂练习11、课本P82的练习32、在以下各题的横线处适当的不等号: (1)(3+2)2 6+26;(2)(3-2)2 (6-1)2; (3;(4)当a >b >0时,log 21a log 21b答案:(1)< (2)< (3)< (4)<[补充例题]例2、比较(a +3)(a -5)与(a +2)(a -4)的大小。
分析:此题属于两代数式比较大小,实际上是比较它们的值的大小,可以作差,然后展开,合并同类项之后,判断差值正负(注意是指差的符号,至于差的值究竟是多少,在这里无关紧要)。
根据实数运算的符号法则来得出两个代数式的大小。
比较两个实数大小的问题转化为实数运算符号问题。
解:由题意可知: (a +3)(a -5)-(a +2)(a -4) =(a 2-2a -15)-(a 2-2a -8) =-7<0 ∴(a +3)(a -5)<(a +2)(a -4) 随堂练习2 1、 比较大小:(1)(x +5)(x +7)与(x +6)2(2)2256259x x x x ++++与4.课时小结本节课学习了不等式的性质,并用不等式的性质证明了一些简单的不等式,还研究了如何比较两个实数(代数式)的大小——作差法,其具体解题步骤可归纳为:第一步:作差并化简,其目标应是n 个因式之积或完全平方式或常数的形式; 第二步:判断差值与零的大小关系,必要时须进行讨论; 第三步:得出结论5.评价设计课本P83习题3.1[A 组]第2、3题;[B 组]第1题 【板书设计】【授后记】第 周第 课时 授课时间:20 年 月 日(星期 )课题: §3.2一元二次不等式及其解法第1课时授课类型:新授课 【教学目标】1.知识与技能:理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法;培养数形结合的能力,培养分类讨论的思想方法,培养抽象概括能力和逻辑思维能力;2.过程与方法:经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图象探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法;3.情态与价值:激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。
【教学重点】从实际情境中抽象出一元二次不等式模型;一元二次不等式的解法。
【教学难点】理解二次函数、一元二次方程与一元二次不等式解集的关系。
【教学过程】1.课题导入从实际情境中抽象出一元二次不等式模型: 教材P84互联网的收费问题教师引导学生分析问题、解决问题,最后得到一元二次不等式模型:250x x -< (1)2.讲授新课1)一元二次不等式的定义象250x x -<这样,只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式2)探究一元二次不等式250x x -<的解集怎样求不等式(1)的解集呢? 探究:(1)二次方程的根与二次函数的零点的关系 容易知道:二次方程的有两个实数根:120,5x x ==二次函数有两个零点:120,5x x ==于是,我们得到:二次方程的根就是二次函数的零点。
(2)观察图象,获得解集画出二次函数25y x x =-的图象,如图,观察函数图象,可知: 当 x<0,或x>5时,函数图象位于x 轴上方,此时,y>0,即250x x ->; 当0<x<5时,函数图象位于x 轴下方,此时,y<0,即250x x -<;所以,不等式250x x -<的解集是{}|05x x <<,从而解决了本节开始时提出的问题。
3)探究一般的一元二次不等式的解法任意的一元二次不等式,总可以化为以下两种形式:220,(0)0,(0)ax bx c a ax bx c a ++>>++<>或 一般地,怎样确定一元二次不等式c bx ax ++2>0与c bx ax ++2<0的解集呢? 组织讨论:从上面的例子出发,综合学生的意见,可以归纳出确定一元二次不等式的解集,关键要考虑以下两点: (1)抛物线=y c bx ax ++2与x 轴的相关位置的情况,也就是一元二次方程c bx ax ++2=0的根的情况 (2)抛物线=y c bx ax ++2的开口方向,也就是a 的符号 总结讨论结果:(l )抛物线 =y c bx ax ++2(a> 0)与 x 轴的相关位置,分为三种情况,这可以由一元二次方程c bx ax ++2=0的判别式ac b 42-=∆三种取值情况(Δ> 0,Δ=0,Δ<0)来确定.因此,要分二种情况讨论(2)a<0可以转化为a>0分Δ>O ,Δ=0,Δ<0三种情况,得到一元二次不等式c bx ax ++2>0与c bx ax ++2<0的解集 一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集:设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表:(让学生独立完成课本第86页的表格) 0>∆0=∆0<∆二次函数c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2c bx ax y ++=2一元二次方程()的根002>=++a c bx ax有两相异实根 )(,2121x x x x < 有两相等实根ab x x 221-==无实根 的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R[范例讲解]例2 (课本第87页)求不等式01442>+-x x 的解集. 解:因为210144,0212===+-=∆x x x x 的解是方程. 所以,原不等式的解集是⎭⎬⎫⎩⎨⎧≠21x x 例3 (课本第88页)解不等式0322>-+-x x . 解:整理,得0322<+-x x .因为032,02=+-<∆x x 方程无实数解, 所以不等式0322<+-x x的解集是∅.从而,原不等式的解集是∅.3.随堂练习课本第89的练习1(1)、(3)、(5)、(7)4.课时小结解一元二次不等式的步骤:① 将二次项系数化为“+”:A=c bx ax ++2>0(或<0)(a>0) ② 计算判别式∆,分析不等式的解的情况: ⅰ.∆>0时,求根1x <2x ,⎩⎨⎧<<<><>.002121x x x A x x x A ,则若;或,则若ⅱ.∆=0时,求根1x =2x =0x ,⎪⎩⎪⎨⎧=≤∈<≠>.00000x x A x A x x A ,则若;,则若的一切实数;,则若φⅲ.∆<0时,方程无解,⎩⎨⎧∈≤∈>.00φx A R x A ,则若;,则若③ 写出解集.5.评价设计课本第89页习题3.2[A]组第1题【板书设计】【授后记】第 周第 课时 授课时间:20 年 月 日(星期 )课题: §3.2一元二次不等式及其解法第2课时授课类型:新授课 【教学目标】1.知识与技能:巩固一元二次方程、一元二次不等式与二次函数的关系;进一步熟练解一元二次不等式的解法;2.过程与方法:培养数形结合的能力,一题多解的能力,培养抽象概括能力和逻辑思维能力;3.情态与价值:激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会从不同侧面观察同一事物思想 【教学重点】熟练掌握一元二次不等式的解法 【教学难点】理解一元二次不等式与一元二次方程、二次函数的关系 【教学过程】1.课题导入1.一元二次方程、一元二次不等式与二次函数的关系 2.一元二次不等式的解法步骤——课本第86页的表格2.讲授新课[范例讲解]例1某种牌号的汽车在水泥路面上的刹车距离s m 和汽车的速度 x km/h 有如下的关系:21120180s x x =+ 在一次交通事故中,测得这种车的刹车距离大于39.5m ,那么这辆汽车刹车前的速度是多少?(精确到0.01km/h )解:设这辆汽车刹车前的速度至少为x km/h ,根据题意,我们得到21139.520180x x +> 移项整理得:2971100x x +->显然 0>,方程2971100x x +-=有两个实数根,即1288.94,79.94x x ≈-≈。