高二数学不等式的解法知识点总结
- 格式:doc
- 大小:12.00 KB
- 文档页数:2
不等式不等式這部分知識,滲透在中學數學各個分支中,有著十分廣泛的應用。
因此不等式應用問題體現了一定的綜合性、靈活多樣性,對數學各部分知識融會貫通,起到了很好的促進作用。
在解決問題時,要依據題設與結論的結構特點、內在聯繫、選擇適當的解決方案,最終歸結為不等式的求解或證明。
不等式的應用範圍十分廣泛,它始終貫串在整個中學數學之中。
諸如集合問題,方程(組)的解的討論,函數單調性的研究,函數定義域的確定,三角、數列、複數、立體幾何、解析幾何中的值、最小值問題,無一不與不等式有著密切的聯繫,許多問題,最終都可歸結為不等式的求解或證明。
知識整合1。
解不等式的核心問題是不等式的同解變形,不等式的性質則是不等式變形的理論依據,方程的根、函數的性質和圖象都與不等式的解法密切相關,要善於把它們有機地聯繫起來,互相轉化。
在解不等式中,換元法和圖解法是常用的技巧之一。
通過換元,可將較複雜的不等式化歸為較簡單的或基本不等式,通過構造函數、數形結合,則可將不等式的解化歸為直觀、形象的圖形關係,對含有參數的不等式,運用圖解法可以使得分類標準明晰。
2。
整式不等式(主要是一次、二次不等式)的解法是解不等式的基礎,利用不等式的性質及函數的單調性,將分式不等式、絕對值不等式等化歸為整式不等式(組)是解不等式的基本思想,分類、換元、數形結合是解不等式的常用方法。
方程的根、函數的性質和圖象都與不等式的解密切相關,要善於把它們有機地聯繫起來,相互轉化和相互變用。
3。
在不等式的求解中,換元法和圖解法是常用的技巧之一,通過換元,可將較複雜的不等式化歸為較簡單的或基本不等式,通過構造函數,將不等式的解化歸為直觀、形象的圖象關係,對含有參數的不等式,運用圖解法,可以使分類標準更加明晰。
4。
證明不等式的方法靈活多樣,但比較法、綜合法、分析法仍是證明不等式的最基本方法。
要依據題設、題斷的結構特點、內在聯繫,選擇適當的證明方法,要熟悉各種證法中的推理思維,並掌握相應的步驟,技巧和語言特點。
高二文科数学知识点整理(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!高二文科数学知识点整理本店铺为各位同学整理了《高二文科数学知识点整理》,希望对你的学习有所帮助!1.高二文科数学知识点整理篇一解决不等式的有关问题:(1)不等式恒成立问题(绝对不等式问题)可考虑值域。
高二数学知识点之不等式的解法
高二数学知识点之不等式的解法
用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。
以下是小编整理的高二数学知识点之不等式的解法,欢迎参考阅读!
不等式的解法:
(1)一元二次不等式:一元二次不等式二次项系数小于零的,同解变形为二次项系数大于零;注:要对进行讨论:
(2)绝对值不等式:若,则;;
注意:
(1)解有关绝对值的问题,考虑去绝对值,去绝对值的方法有:
⑴对绝对值内的部分按大于、等于、小于零进行讨论去绝对值;
(2).通过两边平方去绝对值;需要注意的是不等号两边为非负值。
(3).含有多个绝对值符号的不等式可用“按零点分区间讨论”的方法来解。
(4)分式不等式的解法:通解变形为整式不等式;
(5)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的公共部分。
(6)解含有参数的不等式:
解含参数的'不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论:
①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.
②在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.
③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小,设根为(或更多)但含参数,要讨论。
高二数学不等式知识点一、不等式的定义和性质不等式是用不等号连接的数学表达式,包括等于和不等于两种情况。
不等式的解是使得不等式成立的数的集合。
1. 不等式的基本性质- 对于任意实数a,b和c,有以下性质:- 自反性:a ≥ a,a ≤ a;- 对称性:如果a ≥ b,则b ≤ a,如果a > b,则b < a;- 传递性:如果a ≥ b,b ≥ c,则a ≥ c;- 加法性:如果a ≥ b,c ≥ d,则a + c ≥ b + d;- 乘法性:如果a ≥ b,c ≥ 0,则ac ≥ bc;如果c ≤ 0,则ac ≤ bc。
2. 不等式的解集表示法- 图形表示法:将不等式的解集表示在数轴上的一段区间;- 区间表示法:使用不等式的解表示出来的数的区间,如[a, b]表示包括a和b的闭区间;- 集合表示法:使用集合进行表示,如{x | x > 0}表示x大于0的数。
二、一元一次不等式一元一次不等式是指只含有一个未知量的线性不等式。
1. 不等式的解集表示- 当不等式是大于等于或小于等于形式时,解集可用区间表示;- 当不等式是大于或小于形式时,解集可用集合或图形表示。
2. 解一元一次不等式的基本步骤a) 将不等式化为标准形式,即将不等式移项并合并同类项;b) 判断不等式的方向,根据不等式的符号确定区间;c) 画出解集的图形表示或用集合表示出来。
三、一元二次不等式一元二次不等式是指含有一个未知量的二次式与0之间的关系。
1. 不等式的解集表示- 当不等式是大于等于或小于等于形式时,解集可用区间表示;- 当不等式是大于或小于形式时,解集可用集合或图形表示。
2. 解一元二次不等式的基本步骤a) 将不等式化为标准形式,即将不等式移项并合并同类项;b) 判断不等式的方向,根据二次项系数的正负情况确定区间;c) 画出解集的图形表示或用集合表示出来。
四、绝对值不等式绝对值不等式是指含有绝对值符号的不等式。
高二数学基本不等式知识点一、不等式的基本性质在学习不等式之前,我们先来了解一下不等式的基本性质。
不等式具有以下性质:1. 若不等式两边同时加(减)一个相同的正(负)数,不等式的不等关系不变。
2. 若不等式两边同时乘(除)一个相同的正(负)数,不等式的不等关系不变。
但是需注意,当乘(除)以一个负数时,不等号方向需要颠倒。
3. 若不等式两边交换位置,不等号方向需要颠倒。
二、基本不等式1. 两个正数的不等式:若a > 0,b > 0,则a > b等价于a² > b²。
2. 两个负数的不等式:若a < 0,b < 0,则a > b等价于a² < b²。
3. 正负数的不等式:若a > 0,b < 0,则a > b等价于a² < b²。
4. 平方不等式:若x > 0,y > 0,则x < y等价于√x < √y。
同理,对于x < 0,y < 0的情况,不等号方向需要颠倒。
5. 两个正数与一个负数的不等式:若a > 0,b > 0,c < 0,则a > b等价于 -a < -b,a * c > b * c。
三、不等式的解集表示法当我们解不等式时,需要将解表示出来。
不等式的解集表示法有以下几种形式:1. 区间表示法:用数轴上的区间表示解集。
例:对于不等式x > 3,解集可以用开区间(3, +∞)表示。
2. 图形表示法:我们可以通过图形的方式表示解集。
例:对于不等式x ≤ -2,解集可以用沿x轴方向的线段表示。
3. 集合表示法:用集合的形式表示解集。
例:对于不等式2 < x ≤ 5,解集可以用集合表示为{x | 2 < x ≤ 5}。
四、不等式的应用不等式是数学中常见的工具,在现实生活中也有广泛的应用。
数学·必修5(人教A版)一、本章概述不等关系是中学数学中最基本、最广泛、最普遍的关系.不等关系起源于实数的性质,产生了实数的大小关系、简单不等式、不等式的基本性质,如果赋予不等式中变量以特定的值、特定的关系,又产生了重要不等式、基本不等式等.不等式是永恒的吗?显然不是,由此又产生了解不等式与证明不等式两个极为重要的问题.解不等式即寻求不等式成立时变量应满足的范围或条件,不同类型的不等式又有不同的解法.不等式证明则是推理性问题或探索性问题.推理性即在特定条件下,阐述论证过程,揭示内在规律,基本方法有比较法、综合法、分析法;探索性问题大多是与自然数n有关的证明问题,常采用观察—归纳—猜想—证明的思路,以数学归纳法完成证明.另外,不等式的证明方法还有换元法、放缩法、反证法、构造法等.不等式中常见的基本思想方法有等价转化、分类讨论、数形结合、函数与方程.不等式的知识渗透在数学中的各个分支,相互之间有着千丝万缕的联系,因此不等式又可作为一个工具来解决数学中的其他问题,诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,以及三角、数列、立体几何、解析几何中的最大值、最小值问题,这些问题无一不与不等式有着密切的联系.不等式还可以解决现实世界中反映出来的数学问题,许多问题最终归结为不等式的求解或证明.解决这类综合问题的一般思维方法是:引参,建立不等关系,解某一主元的不等式(实为分离变元),适时活用基本不等式.其中建立不等关系的常用途径是:①根据题设条件;②判别式法;③基本不等式法;④依据某些变量(如sin x,cos x)的有界性等.不等式的应用体现了一定的综合性、灵活多样性.这类问题大致可以分为两类:一类是建立不等式、解不等式;另一类是建立函数式求最大值或最小值.利用不等式解应用题的基本步骤:①审题;②建立不等式模型;③解决数学问题;④作答.本章中,不等式的证明是难点,解不等式是重点,含参数的不等式综合题是高考命题的热点.掌握不等式的意义和实数的符号法则,是分散难点和解决难点的关键.如能熟悉不等式的性质,认清基本不等式的特点,灵活运用比较、分析、综合等基本方法,认真进行思考和探索,是不难找到解题途径的.要善于进行转化变形,即化无理为有理、化分式为整式、化高次为低次、化绝对值为非绝对值等等,以突破解证不等式这一难关.通过本章的学习达到以下基本目标:1.会用不等式(组)表示不等关系;2.熟悉不等式的性质,能应用不等式的性质求解“范围问题”,会用作差法比较大小;3.会解一元二次不等式,熟悉一元二次不等式、一元二次方程和二次函数的关系;4.会作二元一次不等式(组)表示的平面区域,会解简单的线性规划问题;5.明确基本不等式及其成立条件,会灵活应用基本不等式证明或求解最值.二、主干知识1.不等式与不等关系.不等式的性质刻画了在一定条件下两个量的不等关系.不等式的性质包括“单向性”和“双向性”.单向性主要用于证明不等式,双向性是解不等式的基础.因为解不等式要求的是同解变形.要正确理解不等式的性质,必须先弄清每一性质的条件和结论、注意条件和结论的放宽和加强,以及条件与结论之间的相互联系.双向性主要有:(1)不等式的基本性质:⎩⎪⎨⎪⎧ a >b ⇔a -b >0,a =b ⇔a -b =0,a <b ⇔a -b <0,这是比较两个实数的大小的依据;(2)a >b ⇔b <a ;(3)a >b ⇔a +c >b +c .单向性主要有:(1)a >b ,b >c ⇒a >c ;(2)a >b ,c >d ⇒a +c >b +d ;(3)a >b ,c >0(c < 0)⇒ac >bc (ac <bc );(4)a >b >0,c >d >0⇒ac >bd ;(5)a >b >0,0<c <d ⇒a c >b d ;(6)a >b >0,m ∈N *⇒a m >b m ;(7)a >b >0,n ∈N *,n >1⇒n a >n b .特别提醒:(1)同向不等式可以相加,异向不等式可以相减.即: 若a >b ,c >d ,则a +c >b +d ;若a >b ,c <d ,则a -c >b -d .但异向不等式不可以相加,同向不等式不可以相减.(2)左右同正不等式,同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘.即:若a >b >0,c >d >0,则ac >bd ;若a >b >0,0<c <d ,则a c >b d .(3)左右同正不等式,两边可以同时乘方或开方.即:若a >b >0,n ∈N *,n >1,则a n >b n 或n a >nb .(4)若ab >0,a >b ,则1a <1b ;若ab <0,a >b ,则1a >1b .如果对不等式两边同时乘以一个代数式,要注意它的正负号,如果正负号未定,要注意分类讨论.2.一元二次不等式及其解法解一元二次不等式常用数形结合法,基本步骤如下:①将一元二次不等式化成ax 2+bx +c >0的形式,②计算判别式并求出相应的一元二次方程的实数解,③画出相应的二次函数的图象,④根据图象和不等式的方向写出一元二次不等式的解集.设相应二次函数的图象开口向上,并与x 轴相交,则有口诀:大于取两边,小于取中间.解含参数的不等式的通法是“定义域为前提,函数增减性为基础,分类讨论是关键”.要注意对字母参数的讨论,如果遇到下述情况则一般需要讨论:(1)在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析Δ),比较两个根的大小,设根为x 1,x 2,要分x 1>x 2、x 1=x 2、x 1<x 2讨论.(2)不等式两端乘或除一个含参数的式子时,则需讨论这个式子的正负.(3)求解过程中,需用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.注意解完之后要写上:“综上,原不等式的解集是…”.若按参数讨论,最后应按参数取值分别说明其解集;若按未知数讨论,最后应求并集.一元二次不等式ax2+bx+c>0或ax2+bx+c<0(a>0)的解集:设相应的一元二次方程ax2+bx+c=0(a>0)的两根为x1、x2且x1≤x2,Δ=b2-4ac,则不等式的解的各种情况如下表所示:二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=(a>0)的根ax2+bx+c>0(a>0)的解集ax2+bx+c<0(a>0)的解集Δ>0有两相异实根x1,x2(x1<x2){x|x<x1,或x>x2}{x|x1<x<x2}Δ=0有两相等实根x1=x2=-b2a{x|x≠-b2a}∅Δ<0无实根R∅特别提醒:(1)解题中要充分利用一元二次不等式的解集是实数集R和空集∅的几何意义,准确把握一元二次不等式的解集与相应一元二次方程的根及二次函数图象之间的内在联系.(2)解不等式的关键在于保证变形转化的等价性.简单分式不等式可化为整式不等式求解:先通过移项、通分等变形手段将原不等式化为右边为0的形式,然后通过符号法则转化为整式不等式求解.转化为求不等式组的解时,应注意区别“且”、“或”,涉及最后几个不等式的解集是“交”,还是“并”.注意:不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值.(3)在解决实际问题时,先要从实际问题中抽象出数学模型,并寻找出该数学模型中已知量与未知量,再建立数学关系式,然后用适当的方法解决问题.(4)解含参数的不等式是高中数学中的一类较为重要的题型,解决这类问题的难点在于对参数进行恰当分类.分类相当于增加了题设条件,便于将问题分而治之.在解题过程中,经常会出现分类难以入手或者分类不完全的现象.强化分类意识,选择恰当的解题切入点,掌握一些基本的分类方法,善于借助直观图形找出分类的界值是解决此类问题的关键.3.二元一次不等式(组)与简单的线性规划问题.(1)确定二元一次不等式表示的区域的步骤:①在平面直角坐标系中作出直线Ax+By+C=0;②在直线的一侧任取一点P(x0,y0),当C≠0时,常把原点作为特殊点;③将P(x0,y0)代入Ax+By+C求值:若Ax0+By0+C>0,则包含点P的半平面为不等式Ax+By+C>0所表示的平面区域,不包含点P的半平面为不等式Ax+By+C <0所表示的平面区域.也可采用:把二元一次不等式改写成y>kx +b或y<kx+b的形式,前者表示直线的上方区域,后者表示直线的下方区域.(2)线性规划的有关概念:①满足关于x,y的一次不等式或一次方程的条件叫线性约束条件;②关于变量x,y的解析式叫目标函数,关于变量x,y一次式的目标函数叫线性目标函数;③求目标函数在线性约束条件下的最大值或最小值的问题,称为线性规划问题;④满足线性约束条件的解(x,y)叫可行解,由所有可行解组成的集合叫做可行域;⑤使目标函数取得最大值或最小值的可行解叫做最优解.(3)解简单线性规划问题的基本步骤:①根据实际问题的约束条件列出不等式;②作出可行域,写出目标函数;③确定目标函数的最优位置,从而获得最优解.具体来讲有以下5步:a.画图:画出线性约束条件所表示的平面区域即可行域;b.定线:令z=0,得一过原点的直线;c.平移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线;d.求最优解:通过解方程组求出最优解;e.求最值:求出线性目标函数的最大或最小值.特别提醒:(1)画不等式Ax+By+C≥0所表示的平面区域时,区域包括边界线,因此,将边界直线画成实线;无等号时区域不包括边界线,用虚线表示不包含直线l.(2)Ax+By+C>0表示在直线Ax+By+C=0(B>0)的上方,Ax +By+C<0表示在直线Ax+By+C=0(B>0)的下方.(3)设点P(x1,y1),Q(x2,y2),直线l:Ax+By+C=0,若Ax1+By1+C与Ax2+By2+C同号,则P,Q在直线l的同侧,异号则在直线l的异侧.(4)在求解线性规划问题时要注意:①将目标函数改成斜截式方程;②寻找最优解时注意作图规范.4.基本不等式ab≤a+b 2.(1)基本不等式:设a,b是任意两个正数,那么ab≤a+b2.当且仅当a=b时,等号成立.①基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.②如果把a+b2看做是正数a,b的等差中项,ab看做是正数a,b的等比中项,那么基本不等式也可以叙述为:两个正数的等差中项不小于它们的等比中项.③基本不等式ab≤a+b2几何意义是“半径不小于半弦”.(2)对基本不等式的理解:①基本不等式的左式为和结构,右式为积的形式,该不等式表明两正数a ,b 的和与两正数a ,b 的积之间的大小关系,运用该不等式可作和与积之间的不等变换.②“当且仅当a =b 时,等号成立”的含义:a .当a =b 时等号成立的含意是:a =b ⇒a +b 2=ab ; b .仅当a =b 时等号成立的含意是:a +b 2=ab ⇒a =b ; 综合起来,其含意是:a +b 2=ab ⇔a =b . (3)设a ,b ∈R ,不等式a 2+b 2≥2ab ⇔ab ≤a 2+b 22⇔ab ≤⎝ ⎛⎭⎪⎫a +b 22. (4)基本不等式的几种变式:设a >0,b >0,则a +1a ≥2,b a +a b ≥2,a 2b ≥2a -b .(5)常用的几个不等式:① a 2+b 22≥a +b 2≥ab ≥21a +1b(根据目标不等式左右的运算结构选用);②设a ,b ,c ∈R ,则a 2+b 2+c 2≥ab +bc +ca (当且仅当a =b =c 时,取等号);③真分数的性质:若a >b >0,m >0,则b a <b +m a +m(糖水的浓度问题).特别提醒:(1)用基本不等式求函数的最值时,要特别注意“一正、二定、三相等,和定积最大,积定和最小”这17字方针.常用的方法为:拆、凑、平方.(2)用基本不等式证明不等式时,应重视对所证不等式的分析和化归,应观察不等式左右两边的结构,注意识别轮换对称式,此时可先证一部分,其他同理可证,然后再累加或累乘.题型1 恒成立问题(1)若不等式f (x )>A 在区间D 上恒成立,则等价于在区间D 上f (x )min >A ;(2)若不等式f (x )<B 在区间D 上恒成立,则等价于在区间D 上f (x )max <B .设函数f (x )=x ,g (x ) =x +a (a >0),若x ∈[1,4]时不等式⎪⎪⎪⎪⎪⎪f (x )-ag (x )f (x )≤1恒成立,求a 的取值范围.解析:由⎪⎪⎪⎪⎪⎪⎪⎪f (x )-ag (x )f (x )≤1⇔-1≤f (x )-ag (x )f (x )≤1,得0≤ag (x )f (x )≤2, 即ax +a 2x ≤2在x ∈[1,4]上恒成立,也就是ax +a 2≤2x 在x ∈[1,4]上恒成立.令t =x ,则t ≥0,且x =t 2,由此可得 at 2-2t +a 2≤0在t ∈[1,2]上恒成立,设g (t ) = at 2-2t +a 2,则只需⎩⎪⎨⎪⎧g (1)≤0,g (2)≤0⇒⎩⎨⎧a -2+a 2≤0,4a -4+a 2≤0,解得 0<a ≤22-2,即满足题意的a 的取值范围是(0,22-2].题型2 能成立问题(1)若在区间D 上存在实数x 使不等式f (x )>A 成立,则等价于在区间D 上的f (x )max >A ;(2)若在区间D 上存在实数x 使不等式f (x )<B 成立,则等价于在区间D 上的f (x )min <B .若存在x ∈R ,使不等式|x -4|+|x -3|<a 成立,求实数a的取值范围.解析:设f (x )=|x -4|+|x -3|,依题意f (x )的最小值<a .又f (x )=|x -4|+|x -3|≥|(x -4)-(x -3)|=1(等号成立的条件是3≤x ≤4).故f (x )的最小值为1,∴a >1.即实数a 的取值范围是(1,+∞).题型3 恰成立问题(1)若不等式f (x )>A 在区间D 上恰成立,则等价于不等式f (x )>A 的解集为D ;(2)若不等式f (x )<B 在区间D 上恰成立,则等价于不等式f (x )<B 的解集为D .已知函数y =2x 2-ax +10x 2+4x +6的最小值为1,求实数a 的取值集合.解析:由y ≥1即2x 2-ax +10x 2+4x +6≥1⇒x 2-(a +4)x +4≥0恒成立,∴Δ=(a +4)2-16≤0,解得-8≤a ≤0(必要条件).再由y =1有解,即2x 2-ax +10x 2+4x +6=1有解,⇒x 2-(a +4)x +4=0有解,得:Δ=(a +4)2-16≥0,解得a ≤-8或a ≥0.综上即知a =-8或a =0时,y min =1,故所求实数a 的取值集合是{-8,0}.题型4 利用基本不等式求最值基本不等式通常用来求最值问题:一般用a +b ≥2ab (a >0,b>0)解“定积求和,和最小”问题,用ab ≤⎝ ⎛⎭⎪⎪⎫a +b 22求“定和求积,积最大”问题,一定要注意适用的范围和条件:“一正、二定、三相等”,特别是利用拆项、添项、配凑、分离变量、减少变元等方法,构造定值条件的方法,和对等号能否成立的验证.若等号不能取到,则应用函数单调性来求最值,还要注意运用基本不等式解决实际问题.已知0<x <2,求函数y =x (8-3x )的最大值.解析:∵0<x <2,∴0<3x <6,8-3x >0, ∴y =x (8-3x )=13·3x ·(8-3x )≤132+-⎛⎫⎪⎝⎭3x 83x 2=163, 当且仅当3x =8-3x ,即x =43时,取等号,∴当x =43时,y =x (8-3x )有最大值为163.设函数f (x )=x +2x +1,x ∈[0,+∞).求函数f (x )的最小值.解析:f (x )=x +2x +1=(x +1)+2x +1-1,∵x ∈[0,+∞),∴x +1>0,2x +1>0,∴x +1+2x +1≥2 2.当且仅当x +1=2x +1,即x =2-1时,f (x )取最小值. 此时f (x )min =22-1.题型5 简单线性规划问题求目标函数在约束条件下的最优解,一般步骤为:一是寻求约束条件和目标函数,二是作出可行域,三是在可行域内求目标函数的最优解,特别注意目标函数z =ax +by +c 在直线ax +by =0平移过程中变化的规律和图中直线斜率关系.简单的线性规划应用题在现实生活中的广泛应用也是高考的热点.若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是( )A.73B.37C.43D.34解析:不等式组表示的平面区域如图所示:由于直线y =kx +43过定点⎝⎛⎭⎪⎫0,43,因此只有直线过AB 中点时,直线y =kx +43能平分平面区域,因为A (1,1),B (0,4),所以AB 中点M ⎝ ⎛⎭⎪⎫12,52.当y =kx +43过点⎝ ⎛⎭⎪⎫12,52时,52=k 2+43,所以k =73.答案:A题型6 三个二次(二次函数、二次不等式、二次方程)问题 一元二次方程、一元二次不等式与二次函数三者之间形成一个关系密切、互为关联、互为利用的知识体系.将二次函数看作主体,一元二次方程和一元二次不等式分别为二次函数的函数值为零(零点)和不为零的两种情况,一般讨论二次函数主要是将其通过一元二次方程和一元二次不等式来讨论,而讨论一元二次方程和一元二次不等式又要将其与相应的二次函数相联系,通过二次函数的图象揭示解(集)的几何特征.当m 为何值时,方程2x 2+4mx +3m -1=0有两个负根?解析:方程2x 2+4mx +3m -1=0有两个负根,则有⎩⎪⎨⎪⎧Δ=(4m )2-4×2×(3m -1)≥0,-b a =-4m 2=-2m <0,c a =3m -12>0,即⎩⎪⎨⎪⎧m ≤12或m ≥1,m >0,m >13.∴当m ∈⎩⎨⎧⎭⎬⎫m 13<m ≤12或m ≥1时,原方程有两个负根.题型7 不等式与函数的综合问题定义在(-1,1)上的奇函数f (x )在整个定义域上是减函数,且f (1-a )+f (1-a 2)<0,求实数 a 的取值范围.解析:∵f (x )的定义域为(-1,1),∴⎩⎨⎧-1<1-a <1,-1<1-a 2<1,∴⎩⎨⎧0<a <2,-2<a <2且a ≠0,∴0<a <2,①原不等式变形为f (1-a )<-f (1-a 2). 由于f (x )为奇函数,有-f (1-a 2)=f (a 2-1), ∴f (1-a )<f (a 2-1). 又f (x )在(-1,1)上是减函数,∴1-a >a 2-1,解得-2<a <1.② 由①②可得0<a <1, ∴a 的取值范围是(0,1).题型8 求分式函数的最值求函数y =x 4+3x 2+3x 2+1的最小值.解析:y =(x 4+2x 2+1)+(x 2+1)+1x 2+1=(x 2+1)+1x 2+1+1≥2(x 2+1)·1x 2+1+1=3,当且仅当x 2+1=1x 2+1,即x 2+1=1,即x =0时等号成立.。
高中数学知识点不等式的性质及解法高中数学中,不等式的性质及解法是一个重要的知识点。
它涉及到不等式的基本性质、不等式的加减乘除、不等式的等价变形以及一元一次不等式、一元二次不等式等不等式类型的解法。
下面将详细介绍不等式的性质及解法。
一、不等式的性质1.两边加减同一个数不等号方向不变。
2.两边乘除同一个正数不等号方向不变,同一个负数不等号方向改变。
3.如果两个不等式成立,则它们的和、差、乘积、商仍然成立。
4.如果两个不等式的符号方向相反,求和时不等式方向不确定,求差时等式方向不确定,求积时反而求商时等式方向相反。
5.无论何时,两边加上相等的数,不等式的大小不变。
二、一元一次不等式对于一元一次不等式,常规的解法是将其转化为等价的不等式进行求解。
具体步骤如下:1. 化简:将不等式中的所有项移到一边,化简为标准形式ax+b<0或ax+b>0。
2.等价变形:根据不等式的性质,进行乘除法或加减法,将不等式变形为更简单的形式。
3.解不等式:根据等价变形后的不等式,确定x的取值范围。
三、一元二次不等式对于一元二次不等式,可以利用抛物线的性质进行求解。
具体分为以下几种情况:1.一元二次不等式的根在抛物线的两侧,此时,可以通过求解抛物线与x轴的交点来确定不等式的解集。
2.一元二次不等式的根在抛物线上,此时,可以通过根的位置确定抛物线在不等式中的符号。
3.一元二次不等式的根在抛物线的一侧,此时,可以根据抛物线的开口方向来确定不等式的解集。
四、综合应用在实际问题中,不等式的应用非常广泛,比如在经济学、物理学、生物学等领域中的一些实际问题往往可以转化为不等式进行求解。
这时候,除了要掌握不等式的基本性质和解法外,还需要注意问题的本质,合理进行变量的定义和范围的确定。
综上所述,不等式的性质及解法在高中数学中占据很重要的地位。
掌握不等式的基本性质,熟悉不等式的加减乘除运算,能够灵活运用不等式的等价变形以及一元一次不等式、一元二次不等式的解法,对于提高解题能力和培养数学思维都非常有帮助。
高二数学知识点及公式总结(通用10篇)高二数学公式总结篇一1、不等式证明的依据(2)不等式的性质(略)(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)2、不等式的证明方法(1)比较法:要证明ab(a0(a-b0),这种证明不等式的方法叫做比较法。
用比较法证明不等式的步骤是:作差——变形——判断符号。
(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法。
(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法。
证明不等式除以上三种基本方法外,还有反证法、数学归纳法等。
高二数学知识点及公式总结篇二圆与圆的位置关系1、利用平面直角坐标系解决直线与圆的位置关系;2、过程与方法用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论。
高二数学公式总结篇三1、辗转相除法是用于求公约数的一种方法,这种算法由欧几里得在公元前年左右首先提出,因而又叫欧几里得算法。
2、所谓辗转相法,就是对于给定的两个数,用较大的数除以较小的数。
若余数不为零,则将较小的数和余数构成新的一对数,继续上面的除法,直到大数被小数除尽,则这时的除数就是原来两个数的公约数。
3、更相减损术是一种求两数公约数的方法。
其基本过程是:对于给定的两数,用较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数就是所求的公约数。
4、秦九韶算法是一种用于计算一元二次多项式的值的方法。
5、常用的排序方法是直接插入排序和冒泡排序。
高二数学不等式的解法知识点总结不等式分为严格不等式与非严格不等式。
一般地,用纯粹的大于号、小于号连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)。
小编准备了高二数学不等式的解法知识点,希望你喜欢。
不等式的解法:
(1)一元二次不等式:一元二次不等式二次项系数小于零的,同解变形为二次项系数大于零;注:要对进行讨论:(2)绝对值不等式:若,则 ; ;
注意:
(1)解有关绝对值的问题,考虑去绝对值,去绝对值的方法有:
⑴对绝对值内的部分按大于、等于、小于零进行讨论去绝对值;
(2).通过两边平方去绝对值;需要注意的是不等号两边为非负值。
(3).含有多个绝对值符号的不等式可用按零点分区间讨论的方法来解。
(4)分式不等式的解法:通解变形为整式不等式;
(5)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的
公共部分。
(6)解含有参数的不等式:
解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论:
①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.
②在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.
③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小,设根为 (或更多)但含参数,要讨论。
高二数学不等式的解法知识点就为大家介绍到这里,希望对你有所帮助。