第四章电容式电压互感器
- 格式:doc
- 大小:523.00 KB
- 文档页数:13
电容式电压互感器作用电容式电压互感器是一种常用的电力系统测量仪器,它通过测量电容的变化来实现对电压的测量和传递。
在电力系统中,电压互感器起着至关重要的作用,它能够将高电压信号转换为低电压信号,以供仪表和保护设备使用。
本文将详细介绍电容式电压互感器的工作原理、特点和应用。
电容式电压互感器的工作原理是基于电容的变化来实现的。
它由两层金属箔和绝缘材料构成,当高电压信号作用于电容器时,电容器的电场会发生变化,从而导致电容值的变化。
电容式电压互感器通过测量电容值的变化来反映电压的大小,然后将其转换为相应的低电压信号输出。
这种转换过程需要通过信号处理电路来实现,以保证输出信号的准确性和稳定性。
电容式电压互感器具有一些独特的特点和优势。
首先,它具有较高的精度和稳定性,能够在广泛的电压范围内提供准确的测量结果。
其次,电容式电压互感器具有较低的负载影响和较小的相位差,不会对电力系统的运行产生明显的影响。
此外,它还具有较小的体积和重量,方便安装和维护。
最重要的是,电容式电压互感器不需要外部电源,能够自行工作,大大提高了其可靠性和安全性。
电容式电压互感器在电力系统中有着广泛的应用。
首先,它常用于电力系统的测量和计量,能够对电网的电压进行准确的监测和记录。
其次,它还被广泛应用于保护设备中,用于检测电力系统中的过电压和短路等故障情况。
此外,电容式电压互感器还可以用于电力系统的故障录波和故障分析,为电力系统的运行和维护提供重要的参考依据。
电容式电压互感器作为一种重要的电力测量仪器,在电力系统中发挥着重要的作用。
它通过测量电容的变化来实现对电压的测量和传递,具有精度高、稳定性好和体积小等优势。
电容式电压互感器广泛应用于电力系统的测量、计量和保护等方面,为电力系统的运行和维护提供了重要的支持。
在未来的发展中,我们可以期待电容式电压互感器在电力领域的更广泛应用和进一步的创新。
电容式电压互感器(CVT)是通过电容分压把高电压变换成低电压,再经中间变压器变压提供给计量、继电保护、自动控制、信号指示。
CVT还可以将载波频率耦合到输电线用于通信、高频保护和遥控等。
因此与电磁式电压互感器相比,电容式电压互感器除可防止因电压互感器铁心饱和引起铁磁谐振外,还具有电网谐波监测功能,以及体积小、质量轻、造价低等特点,因此在电力系统中得到了广泛应用。
一、电容式电压互感器基本结构CVT主要由两部分组成,即电容分压器和电磁单元。
电容式电压互感器结构如图所示。
图TYBZ01901∞5-l电容式电压互感器结构I一法兰,2—1R套I3-主电Ih4一绐螺介质,5—二次引线出现Ih6一箱充17—中间变压8h8一油位显示19—油110—*胀号(1)电容分压器由逡套、电容芯子、电容器油和金属膨胀器组成。
电容器芯子由若干个膜纸复合绝缘介质与铝箔卷绕的元件串联而成,经真空浸渍处理。
瓷套内灌注电容器油,并装有金属膨胀器补偿油体积随温度的变化。
(2)电磁单元由装在密封油箱内的中间变压器,补偿电抗器和阻尼装置组成。
(3)二次出线盒内装有载波通信端子,并带有过电压保护间隙。
(4)油箱外有油位表、出线盒、铭牌、放油塞、接地座。
CVT通过电容分压到中间变压器,一般为13OOOV,中间变压器有两个二次绕组,主二次绕组用于测量,二次电压为100V3V;辅助二次绕组用于继电保护,电压为IOOV,为了能监视系统的接地故障,附加二次绕组接成开口三角形之用。
阻尼电阻R接在辅二次绕组上,用于抑制谐波的产生。
电容式电压互感器结构有分装式和组装式两种。
分装式由电容分压器构成一个单元,电抗器和中间变压器等构成另一个单元,分开安装:组装式即将电容分压器单元叠置在电抗器、中间变压器单元上,联成一体。
二.电容式电压互感器工作原理CVT从中间变压器高压端处把分压电容分成两部分厂般称下面电容器的电容为C2,上面的电容器串联后的电容为G,则当外加电压为U时,电容C2上分得的电压U2为U2=C1∕(C1+C2)*U1调节C和C2的大小,即可得到不同的分压比。
电容式电压互感器工作原理电容式电压互感器是一种用于测量高压电力系统中电压的重要装置。
它能够将高压系统的电压转换成相对较小的电压,以便于测量和监控。
在电力系统中,电容式电压互感器扮演着至关重要的角色,下面我们来详细了解一下它的工作原理。
电容式电压互感器由电容器、电感器和绝缘体组成。
当高压电力系统的电压作用于电容器时,电容器会积累电荷并产生电场。
在电场的作用下,电容器中会产生电压,这个电压与高压系统中的电压成正比。
然后,电压互感器中的电感器会将这个电压转换成相对较小的电压输出,以便于测量和监控。
电容式电压互感器的工作原理可以用以下几个步骤来概括:1. 高压电压作用于电容器,在电力系统中,高压电压会作用于电容器,使得电容器中积累电荷,并产生电场。
2. 电场产生电压,在电容器中产生的电场会导致电容器两端产生电压,这个电压与高压系统中的电压成正比。
3. 电感器转换电压,电压互感器中的电感器会将电容器中产生的电压转换成相对较小的电压输出,以便于测量和监控。
总的来说,电容式电压互感器利用电容器和电感器的相互作用,将高压系统中的电压转换成相对较小的电压输出,以便于后续的测量和监控。
它在电力系统中起着至关重要的作用,能够保障系统的安全稳定运行。
除了上述基本工作原理外,电容式电压互感器还有一些特殊的工作原理需要我们注意。
比如,在额定负荷下,电容式电压互感器的输出电压应当稳定,不受外界因素的影响。
此外,电容式电压互感器还需要具备良好的绝缘性能,以保证在高压系统中能够正常工作而不会受到损坏。
综上所述,电容式电压互感器是一种重要的电力系统测量装置,它利用电容器和电感器的相互作用,将高压系统中的电压转换成相对较小的电压输出。
它的工作原理简单清晰,但在实际应用中需要注意一些特殊情况,以保证其稳定可靠地工作。
希望通过本文的介绍,能够让大家对电容式电压互感器的工作原理有一个更加深入的了解。
电容式电压互感器工作原理
电容式电压互感器是一种用来测量高电压的电器设备。
其工作原理基于电容器的电压分压特性。
电容式电压互感器由一个中心引线和两个金属板组成。
当高电压通过中心引线进入电容式电压互感器时,中心引线和两个金属板之间形成了一个电场。
这个电场将导致两个金属板之间产生电压差。
根据电容器的原理,电容值与电场强度成正比,与金属板之间的距离成反比。
因此,两个金属板之间的电压差将与输入中心引线的电压成正比。
电容式电压互感器通常使用降压比例来测量高电压。
例如,互感器可以降低输入电压的100倍。
这样,当输入电压为1000伏特时,输出电压就是10伏特。
这使得测量和监测高电压变得更加简单和安全。
电容式电压互感器还可以通过改变金属板之间的距离或改变电容器的电容值来调整压降。
这样可以根据需要调整降压比例。
总之,电容式电压互感器通过利用电容器的电压分压特性来测量高电压。
这种工作原理使得测量和监测高电压变得更加方便和安全。
1 电容式电压互感器(CVT)电压互感器[1](PT/VT)是用来变换线路电压的设备,主要功能是测量线路的电压、功率和电能。
电压互感器是电力系统中不可缺少的一种设备,在各电压等级都发挥着重要作用,其主要用于电压测量、电能计量、继电保护和自动控制等方面。
电压互感器根据结构型式主要分为电磁式、电容式和电子式三种。
目前新型的电子式互感器发展迅猛,其具有很多优异性能,但是由于其稳定性和可靠性较差,无法成为法定计量设备,所以电力系统中使用最广泛的电压互感器仍为电磁式电压互感器(PT)和电容式电压互感器(CVT)[2]。
文献[3]中统计了截至2015年广州电网各类电压互感器的使用情况,电磁式、电容式、电子式使用量占比依次是18.58%、81.30%、0.12%,可见电容式电压互感器的使用数量占据绝对优势。
PT本质上是一台容量不大的变压器,其在低压等级的测量准确度较高,但随着电压等级的升高,其绝缘可靠性变低,成本也更为昂贵。
CVT是由电容分压器和电磁单元组成,先通过串联电容进行分压后接入电磁单元,电磁单元与PT相似,所以CVT具有PT的全部功能外还有以下特点:电容分压器的分压大大提高了CVT的绝缘性能,使得它在电磁单元绝缘水平较低时也可以对高电压进行转换;内部电容器可以通过耦合作用在长距离通讯、远方测量、线路高频保护等方面发挥载波作用;制作工艺不复杂、易于维护、经济性显著[4]。
所以CVT广泛应用于110kV及以上电压等级的电网中。
从结构上看,CVT比PT多出一套电容分压装置,且其多用于电压等级较高的电网中,所以其故障率也会有所升高。
我们最大CVT被广泛应用于超高压、特高压电网中,所以会经常出现在高海拔、大温差、易覆冰、易污秽等复杂地理环境中,环境因素会很大程度地影响其测量准确度,它的故障发生率也会有所上升[2]。
所以我们主要针对电网中使用最为广泛的电容式电压互感器进行了研究。
1.1 CVT的基本原理图1-1 电容式电压互感器基本原理图电容式电压互感器主要由电容单元和电磁单元两部分组成,其并联在线路上,先通过电容分压得到10~20kV的电压,然后再经过电磁单元变换成所需的检测电压[5]。
电容式电压互感器引言电容式电压互感器是一种常用于电力系统中的电气设备,用于测量高电压系统中的电压值。
它具有精确度高、稳定性好、响应速度快等特点,因此在电力系统的监测、保护和控制中起着重要作用。
本文将介绍电容式电压互感器的工作原理、结构组成以及其在电力系统中的应用。
工作原理电容式电压互感器是利用电容器在电压作用下的反应来测量电压值的。
其基本工作原理如下:1.电容式电压互感器的核心部分是一个绕组,它由一对互相绝缘的金属板组成。
这对金属板之间形成了一个电容。
当待测电压施加在金属板上时,会在板之间产生电场。
2.待测电压的电场会导致金属板上产生极化电荷,从而改变电容器的电容值。
这种变化可以通过测量电容器的电容值来得到待测电压的大小。
3.为了减小金属板之间的漏电流,电容式电压互感器通常会采用绝缘材料来隔离金属板,从而提高测量的精确度。
结构组成电容式电压互感器主要由以下组成部分构成:1.金属板:金属板是电容式电压互感器的关键部分。
它负责承受待测电压,并通过电场改变电容器的电容值。
2.绝缘材料:绝缘材料用于隔离金属板之间,以减小漏电流。
绝缘材料需要具有良好的绝缘性能和耐电压能力。
3.线圈:电容式电压互感器中的线圈用于接收电容器中的信号,并将其转化为可测量的电压信号。
4.外壳:外壳是电容式电压互感器的保护部分,它可以防止电容器受到外界环境的干扰,同时提供机械强度。
应用电容式电压互感器具有广泛的应用范围,主要包括以下方面:1.电力系统监测:电容式电压互感器可以用于电力系统中对电压进行精确测量,从而确保电力系统的稳定运行。
它可以用于测量各个节点的电压值,并及时反馈给监控系统。
2.电力系统保护:电容式电压互感器用于电力系统的保护,例如过压保护、欠压保护等。
当电压超出预设范围时,电容式电压互感器会发出警报信号,以便采取相应的措施。
3.电力系统控制:电容式电压互感器可以用于电力系统的控制,例如自动电压调节器(AVR)的控制。
第四章电容式电压互感器Capacitor Voltage Transformer第一节电容式电压互感器的应用在110kV及以上的电力系统中要采用电容式电压互感器,特别是在超高压系统中都采用电容式电压互感器,其理由如下:1 可以抑制铁磁谐振60kV及以下的电磁式电压互感器和架空线对地的分布电容可能发生并联铁磁谐振;110kV及以上的电磁式电压互感器和少油断路器断口电容(均压用)可能发生串联铁磁谐振。
电容式电压互感器本身即是一个谐振回路,XL ≈XC。
如果CVT采取阻尼措施后确认不会发生铁磁谐振,那么与系统并联运行后只是增加了振荡回路的电容,破坏了铁磁谐振发生的条件XL =XC,回路不会发生铁磁谐振。
关于铁磁谐振的理论分析,另有资料介绍。
2 载波需要高压电力系统经常通过高压输电线进行通讯。
是用耦合电容器和阻波器将高电压变成低电压,调谐成需要的各种波段,称作载波通讯。
变电站如选用电磁式电压互感器,为了载波需要,还要选用一个耦合电容器。
如选用电容式电压互感器,既可当电压互感器,又可当耦合电容器用。
显然造价低了,占地面积小了。
3 电容式电压互感器冲击电压分布均匀,绝缘强度高。
尤其是超高压电力系统用的电压互感器,电磁式绝缘结构冲击分布很不均匀,制造十分困难。
第二节电容式电压互感器的工作原理1 利用串联电容进行分压,即大的容抗上承受高电压,小的容抗上获得较低的电压。
将较低的电压施加在一个电磁装置上,通过电磁装置感应出标准规定的电压互感器的二次电压,如100/√3V,100/3V,100V。
电容式电压互感器由电容分压器和电磁单元两部分组成。
如有载波要求,电容分压器低压端还应接有载波附件。
电容式电压互感器的原理接线电路见图124。
2 电容分压器2.1 它既作电容式电压互感器的分压器用,又作载波时的耦合电容器用。
2.2 电容分压器的组成电容器元件:由绝缘介质和被它隔开的电极构成的部件。
电容器单元:有一个或多个电容器元件组装在同一外壳中并有引出端子的组装体。
电容器叠柱:电容器单元串联的组装体。
注:所谓电容器是通用术语,不特指元件、单元或叠柱。
2. 3电容分压器的额定电容设计电容器分压器时选用的电容值。
对于电容器单元,指单元端子之间的电容。
对于电容器叠柱,指叠柱的线路端子与低压端子之间或线路端子与接地端子之间的电容。
对于电容分压器,指总电容CN =C1NC2N/(C1N+C2N)。
2. 4高压电容器C1接在线路端子与中压端子之间的电容器。
2. 5中压电容器C2接在中压端子与低压端子之间的电容器。
2. 6电容分压器的接线端子高压端子:与线路连接的端子。
中压端子:连接电磁单元的端子。
低压端子:直接接地或通过排流线圈接地的端子。
2. 7电容允许偏差实际电容与额定电容间允许的差值国标规定:单元、叠柱及电容分压器的电容C的偏差,应为实测电容与额定电容相对偏差不大于-5%~+10%。
叠柱中任意两个单元的实际电容之比与这两个单元的额定电压之比的倒数之间相差不大于5%。
CVT用电容分压器可以要求较小的分压比偏差。
式中:C——单个元件的电容n ——串联元件的数量在任何试验过程中,单元、叠柱或电容分压器的电容C的变化值应不超过相当于一个元件的电容量。
为了显示出一个或多个元件击穿所引起的电容变化,应在型式试验和例行试验之前进行预先的电容测量,测量时采用足够低的电压(低于15%额定电压),以避免元件发生击穿。
2. 8 中间电压UC当一次电压施加在高压端子与低压端子或接地端子之间时,电容分压器中压端子与低压端子或接地端子之间的电压。
CVT的中间电压主要由其准确级和二次输出而定。
准确级高、二次输出大,需选取较高的中间电压。
通常中间电压在11.5/√3~36/√3kV范围内选取。
2. 9 电容分压器的额定分压比KCN施加在电容分压器上的电压与开路中间电压的比值的额定值。
K CN =(C1N+C2N)/C1N。
2. 10电容温度系数TC给定温度变化量下的电容变化率式中:ΔC——在温度间隔ΔT测得的电容变化值。
C20℃——20℃时测得的电容量。
ΔC/ΔT仅当电容在所研究的温度范围内是温度的近似线性函数时方可使用,否则,电容与温度的关系应用曲线或表格表示。
低于20℃时ΔT为负值,高于20℃时ΔT 为正值。
2. 11 低压端子杂散电容低压端子与接地端子之间的杂散电容。
2. 12 低压端子杂散电导低压端子与接地端子之间的杂散电导。
3 电磁单元接在电容分压器的中压端子与接地端子之间,用以提供二次电压。
电磁单元主要由一台变压器和一个补偿电抗器组成。
变压器将中间电压降低到二次电压要求值。
在额定频率下,补偿电抗器的电抗值近似等于电容分压器两部分电容并联(C1+C2)的容抗值。
补偿电感可以全部或部分并入变压器之中。
3.1 中压变压器实际上是一台电磁式电压互感器,在正常使用时,其二次电压正比于一次电压。
3.2 补偿电抗器一个有铁心的电抗器,通常接在中压端子与中压变压器一次绕组的高压端子之间,或接在接地端子与中压变压器一次绕组接地侧端子之间,或者并入中压变压器的一次和二次绕组内。
补偿电抗器电感的设计值为:()()22121N N N f C C L π+=。
3.3 阻尼装置电磁单元中与二次负荷并联的一种装置,其用途是: a )限制一个或多个部件上的过电压。
b )抑制持续的铁磁谐振。
c )改善电容式电压互感器暂态响应特性。
3.4 补偿电抗器的保护器件并联在补偿电抗器两端子的一个器件,用以限制系统过电压或CVT 铁磁谐振引起补偿电抗器的过电压。
而且有利于阻尼CVT 的铁磁谐振。
可以采用避雷器或其他放电间隙。
4 载波附件接在电容分压器低压端子与地之间用以注入载波信号的电路元件,其阻抗在工频下很小,但在载波频率下相当大。
改善载波特性的关键在于降低杂散电容,以减小对高频信号的分流。
电容分压器低压端和接地端之间存在着杂散电容——主要是低压端子及与其连接的器件对油箱、铁心等的电容;中压端通过变压器和补偿电抗器也存在杂散电容,对载波装置来说两个电容并联,对载波信号有影响。
用聚丙烯膜(ε=2~2.2)代替纸—油绝缘(ε=3.6),杂散电容可减小到规定值。
在载波工作频率(30—500)kHz 范围内,杂散电容不大于(300+0.05C N )pF 。
a )排流线圈接在电容器的低压端子与地之间的一个电感元件,排流线圈的阻抗在工频下很小,但在载波频率下具有高阻抗值。
b )限压器件接在排流线圈两端或接在电容分压器低压端子与地之间一个器件,用以限制在下列情况下出现在排流线圈上的过电压。
(ⅰ)在高压端子对地发生短路时。
(ⅱ)在高压端子与地之间施加冲击电压时。
(ⅲ)在一次侧开关合闸时。
5 电容式电压互感器的基本工作原理设电容分压器1C 和2C 的阻抗分别为1111c j R Z c c ω+= ; 2221c j R Z c c ω+= ,式中:1c R 和2c R 分别为1C 和2C 有功损耗的等效电阻。
根据图124电路可以写出: 解上列方程得出: 如忽略1c R 及2c R , 式中:cc c c K C C C Z Z Z 1211212=+=+c K ——电容式电压互感器的分压比c Z ——电容分压器的容抗 ,cj Z c ω1= , 21C C C +=I ——流过电磁单元一次侧的电流 所以 :由上式可看出,当分压比一定时,因CX Z c c ω1==数值很大,c U &及2U &将随负荷电流的变化而剧烈变化,在标准规定的负荷变化范围内无法保证误差要求。
所以必须在中压回路中串联一个电抗器,以补偿电容的电抗,使L X ≈c X ,式中L X 是补偿电抗器的感抗。
同理,直接用电容分压器作电压互感器来测量系统电压也是不可取的。
电路图124典型电路可视为以中压端子为结点的三端子网络,根据戴维南定理(亦称等效发电机原理),由中压端子向左看,高压端子与低压端子短接时得到的阻抗是等效发电机内阻抗,C 1和C 2并联,)(121c c X C +=ω。
向右看是中压回路的阻抗。
可给出图125所示的等值电路。
图中:)(121c c X C +=ω——电容分压器等效容抗()21C C +——电容分压器的等效电容 R C ——电容分压器等效电阻X L 、R L ——补偿电抗感抗、电阻1X 、'2X 、1R 、'2R ——中压变压器一、二次绕组漏抗、电阻X 0、R 0——中压变压器励磁电抗、电阻 Z '——负荷阻抗 •C U ——中间电压•'2U ——二次电压•1I ——一次电流 •'2I ——二次电流 •0I ——励磁电流中间变压器实际上是一台电压为中间电压U C 的电磁式电压互感器,补偿电抗器和中间变压器的一次绕组串联,接在一次端子的高压端,也可接在一次绕组的低压端。
在额定频率下,电容分压器的等效容抗X C 和补偿电抗器的感抗X L 应是谐振状态,即X C = X L ,这是电容式电压互感器正常工作的基本条件,本身即处于铁磁谐振状态,必须接入阻尼器和补偿电抗器的过电压保护装置方可消除铁磁谐振。
电容式电压互感器的等值电路与电磁式电压互感器相同,只是前者比后者一次电路中多了等效电容和补偿电抗器电感。
等值电路的电动势平衡方程式为:因为:•••+='201I I Icc c X I j X I j R I X I j X I j R I U U 212212*********&&&&&&&&'-'+'+-++'=(1)式中:R 10=R L +R C +RC C C tg X R δ⋅= (δtg 为电容分压器的损耗角正切) 与图125相应的相量图如图126所示。
图126第三节 电容式电压互感器误差特性1 误差计算:和电磁式电压互感器一样,由阻抗压降造成的电容式电压互感器的误差。
有一个二次绕组的误差为:a )空载误差电压误差 )((%)10100x m r P u u I u I ∆∆+-=ε (2) 相位差 )(4.34)('10100x p r m u u I u I ∆∆-=ε (3) 式中:2200)(sin )(C n P U S VA I *∆=θ00sin )(θVA ——中压变压器铁心励磁功率的有功分量,W 00cos )(θVA ——中压变压器铁心励磁功率的无功分量,VA 0)(VA ——铁心的励磁功率,VA n S 2——额定二次负荷,VA CNCC U U U =*——中间电压标幺值 因为∆P I 和∆m I 和电压U C (磁通0Φ)是非线性关系,它随电压而变化,所以空载误差随电压变化而变化,与二次负荷无关。