表观遗传学绪论
- 格式:ppt
- 大小:8.60 MB
- 文档页数:47
分子生物学:表观遗传学表观遗传学( epigenetics):指非基因序列变化导致的基因表达的可遗传的改变。
细胞中生物信息的表达受两种因素的调控:遗传调控提供了“生产’维持生命活动所必需的蛋白质的“蓝本”,而表观遗传调控则指导细胞怎样、何时和何地表达这些遗传信息。
表观遗传学研究的主要内容:DNA的甲基化,染色质的物理重塑和化学修饰,非编码RNA基因调节。
依赖ATP的染色质的重塑由ATP水解释放的能量可以使DNA和组蛋白的构象发生改变;包括DNA的甲基化和组蛋白N端尾巴上特殊位点的化学基团修饰,同样可以直按或间接地影响染色质的结构和功能。
二者之间相互渗透,相互作用,共同影响着染色质的结构和基因的表达。
此外,近些年发现转录组(transcriptome)中组有多种非编码RNA广泛参与基因表达调控,非编码RNA的基因调节也可属于表观遗传学的研究的范畴。
DNA甲基化的概况DNA的甲基化既可以发生在腺嘌呤的第6位氮原子上,也可以发生在胞嘧啶的第5位碳原子上。
*在真核生物中,DNA甲基化只发生在胞嘧啶第5位碳原子上。
真核DNA甲基化由DNA甲基转移酶(Dnmt, DNA methyltransferase)催化,S-腺苷甲硫氨酸(SAM, S-adenosyl methionine)作为甲基供体,将甲基转移到胞嘧啶上,生成5一甲基胞嘧啶(5-mC)。
在哺乳动物中,DNA甲基化主要发生在CpG双核苷酸序列,全部CG二核苷酸中约70%~80%的C是甲基化(mCpG), 所以CpG称为甲基化位点。
CG抑制:DNA中CG的排列出现的概率小于期望值1/16(A42+4=16),如人的基因组中CG排列小于1%,而非随机期望的约6%(1/16).基因组中的CpG位点并非均一分布。
在某些区域中(大约有300~3 000 bp),CpG位点出现的密度高(50%或更高),这些区域即所谓的CpG岛。
大部分CpG岛(>200bp, C+G含量=/>50%. CpG观测值/期望值=/>0.6) 位于基因的5’端,包括基因的启动子区域和第一外显子区,而且60%的人类(哺乳动物40%)基因组的启动子区都含有CpG岛(几乎所有管家基因都存在CpG岛),它们在基因表达调控中可能发挥着重要的作用。
什么是表观遗传学什么是表观遗传学,简述其研究进展表观遗传学(epige***ics)——主要研究任务是通过对生活习惯、饮食习惯等因素的研究,寻找在没有改变dna序列的前体下,环境如何影响我们的基因的答案。
比如说,空气中的污染物如何改变一个人的dna的表达,从而导致像肺气肿或肺癌之类的疾病。
在基因组中除了dna和rna序列以外,还有许多调控基因的资讯,它们虽然本身不改变基因的序列,但是可以通过基因修饰,蛋白质与蛋白质、dna和其它分子的相互作用,而影响和调节遗传的基因的功能和特性,并且通过细胞**和增殖周期影响遗传。
因此表观遗传学又称为实验遗传学、化学遗传学、特异性遗传学、后遗传学、表遗传学和基因外调节系统,它是生命科学中一个普遍而又十分重要的新的研究领域。
它不仅对基因表达、调控、遗传有重要作用,而且在肿瘤、免疫等许多疾病的发生和防治中亦具有十分重要的意义。
表观遗传学(epige***ics)研究转录前基因在染色质水平的结构修饰对基因功能的影响,这种修饰可通过细胞**和增值周期进行传递。
表观遗传学已成为生命科学中普遍关注的前沿,在功能基因组时代尤其如此。
免疫系统被认为是一个解析表观遗传学调控机制的良好模型,而且免疫细胞伯分化及功能表达和表观遗传学的联络甚密,无疑使这一交叉领域的发展一开始就置身于一片沃土之中。
为此,本文对表观遗传学的免疫学意义作一简介,侧面重于t细胞分化特别是th1、th2及相关细胞因子基因表达中的表观遗传学调控。
研究基因的核苷酸序列不发生改变的情况下,基因表达了可遗传的变化什么是表观遗传学,简述其研究进展表观遗传学,研究基因的核苷酸序列不发生改变的情况下,基因表达的可遗传的变化的一门遗传学分支学科。
发展一直以来人们都认为基因组dna决定着生物体的全部表型,但逐渐发现有些现象无法用经典遗传学理论解释,比如基因完全相同的同卵双生双胞胎在同样的环境中长大后,他们在性格、健康等方面会有较大的差异。
表观遗传学综述表观遗传学是研究基因组中与表观遗传变化相关的因素和机制的学科。
表观遗传学是指影响基因表达和细胞功能的遗传变化,而不是基因序列本身的变化。
表观遗传学的研究范围包括DNA甲基化、组蛋白修饰、非编码RNA等。
本文将从表观遗传学的概念、研究方法、重要发现以及应用前景等方面进行综述。
表观遗传学是近年来兴起的一个新兴学科,它的研究对象是基因组中与遗传变化有关的因素和机制,而非基因序列本身的变化。
表观遗传学研究的是基因组中的可变性,这种可变性可以被环境因素所影响,从而导致基因表达的变化,进而影响细胞功能和个体表型。
表观遗传学的研究有助于我们更好地理解遗传与环境之间的相互作用,揭示出基因表达调控的新机制。
表观遗传学的研究方法主要包括DNA甲基化、组蛋白修饰和非编码RNA等。
DNA甲基化是表观遗传学研究中最为常见的一种方法,它通过在DNA分子上加上一个甲基基团来影响基因的表达。
组蛋白修饰是指对染色质中的蛋白质进行化学修饰,从而影响基因的可及性和表达水平。
非编码RNA是一类在细胞中广泛存在的RNA分子,它们不参与蛋白质合成,而是通过调控基因的表达来影响细胞功能。
表观遗传学的研究已经取得了一系列重要的发现。
例如,科学家们发现DNA甲基化在基因组中的分布不均匀,有些区域往往富集于甲基化,而其他区域则不甲基化。
这种不均匀的分布可能与基因的功能和调控有关。
此外,研究还发现组蛋白修饰也在基因表达中起到重要的调控作用,不同的修饰方式可以导致基因的激活或抑制。
非编码RNA的研究也逐渐揭示出它们在基因表达调控中的重要性。
表观遗传学的研究在许多领域都有广泛的应用前景。
例如,在人类疾病研究中,表观遗传学的研究可以帮助我们理解疾病的发生机制,并为疾病的预防和治疗提供新的思路。
此外,表观遗传学的研究还可以应用于农业领域,帮助我们改良农作物的品质和产量。
表观遗传学的研究还有助于我们更好地理解生物进化的过程,揭示出生物多样性的形成和维持的机制。
细胞生物学第一章绪论表观遗传学epigenetics 与核苷酸序列无关的调节基因表达的可遗传控制机制。
表观遗传学是研究基因核苷酸序列不发生改变的情况下,基因表达的可遗传的变化的一门遗传学分支学科。
表观遗传的现象很多,已知的有DNA甲基化(DNA methylation),基因组印记(genomic imprinting),母体效应(maternal effects),基因沉默(gene silencing),核仁显性,休眠转座子激活和RNA 编辑(RNA editing)等。
细胞凋亡apoptosis 一种有序的或程序性的细胞死亡方式,是细胞接受某些特定信号刺激后进行的正常生理应答反应。
该过程具有典型的形态学和生化特征,凋亡细胞最后以凋亡小体被吞噬消化。
细胞分化cell differentiation细胞在形态、结构和功能上产生稳定性差异的过程。
细胞学说由德国人施莱登施旺在1838-1839年提出,即一切植物、动物都是由细胞组成的,细胞是一切动植物的基本单位。
细胞学说主要内容cell theory 生物科学的重要学说之一,包括三个基本内容:所有生命体均由单个或多个细胞组成;细胞是生命的结构基础和功能单位;细胞只能由原有细胞分裂产生。
细胞生物学Cell biology 是研究细胞基本生命活动规律的科学,是现代生命科学的重要基础学科之一,它从显微、亚显微和分子三个层次研究细胞结构和功能,细胞增殖、分化、衰老与凋亡,细胞信号转导,细胞基因表达与调控,细胞起源与进化等。
概括的说,细胞生物学是应用现代物理化学技术成就和分子生物学的概念与方法,以细胞作为生命活动的基本单位的思维作为出发点,探索生命活动规律的学科,其核心问题是将遗传与发育在细胞水平上结合起来。
分子细胞生物学以细胞为对象,主要在分子水平上研究细胞生命活动的分子机制,即研究细胞器、生物大分子与生命活动现象之间的变化发展过程,研究它们之间的相互关系,以及它们与环境之间的相互关系。
表观遗传学导论(提纲)表观遗传(epigenetic inheritance)是指DNA序列不发生变化但基因表达却发生了可遗传的改变,即基因型未发生变化而表型却发生了改变。
换言之,这是一种DNA序列外的遗传方式。
表观遗传学(epigenetics)则是研究不涉及DNA序列改变的基因表达和调控的可遗传变化的,或者说是研究从基因演绎为表型的过程和机制的遗传学分支。
现代研究发现,基因组含有两类遗传信息:一类是传统意义上的遗传信息,即DNA序列所提供的遗传信息;另一类是表观遗传学信息,它提供了何时、何地、以何种方式去应用遗传信息的指令。
表观遗传学信息通过表观遗传修饰(epigenetic modification)来体现,主要有两类,一是DNA分子的特定碱基的结构修饰,如胞嘧啶的甲基化;二是染色质构型重塑(chromatin remodeling),如组蛋白的修饰及构型变化,这种修饰可通过细胞分裂和增殖周期进行传递。
表观遗传学主要是对染色质重塑、DNA甲基化及组蛋白修饰、X染色体失活、非编码RNA调控等多方面进行研究。
表观遗传的异常会引起表型的改变,机体结构和功能的异常,导致发生肿瘤、自身免疫病、衰老、神经精神异常和多种儿科综合征。
对表观遗传中各种因子的突变导致疾病的研究,将有助我们了解表观遗传机制、基因表达和环境之间的关系,并期望能纠正或降低那些能够导致疾病的表观基因的不稳定性,指导疾病的诊治和新药的研制。
一、表观遗传修饰(一)DNA甲基化表观遗传修饰最重要的形式是DNA甲基化(DNA methylation)。
DNA甲基化是在在DNA甲基转移酶(DNAmethyltransferase,DNMT)的作用下,以S—腺苷甲硫氨酸(SAM)为甲基供体,可以将甲基基团转移到基因组DNA胞嘧啶第5位碳原子(C5)上。
在哺乳动物中,C5的甲基化主要发生在CpG二核苷酸(CpG doublets)上,这些CpG不均匀地分散于基因组中。