固态相变的热力学基础
- 格式:pdf
- 大小:896.85 KB
- 文档页数:60
固态相变By Dong大魔王固态相变:金属和陶瓷等固态材料在温度和压力改变时,其内部组织或结构会发生变化,即发生从一种状态到另一种状态的改变,这种转变称为固态相变。
按热力学分类:一级相变:相变时新旧两相的化学势相等,但化学势的一级偏微熵不等的相变称为一级相变;二级相变:相变时新旧两相的化学势相等,且化学势的一级偏微熵也相等,但化学势的二级偏微熵不相等的相变称为二级相变。
按平衡状态图分类:①平衡相变指在缓慢加热或冷却过程中所发生的能获得的符合平衡状态相图的平衡组织的相变。
主要有同素异构转变、多形性转变、平衡脱溶沉淀、共析相变、调幅分解、有序化转变。
②非平衡相变:伪共析相变、马氏体相变、贝氏体相变、非平衡脱溶相变按原子迁移情况分类:①扩散型相变:相变时,相界面的移动是通过原子近程或远程扩散而进行的相变称为扩散型相变。
基本特点是:相变过程中有原子扩散运动,相变速率受原子扩散速度所控制;新相和母相得成分往往不同;只有因新相和母相比容不同而引起的体积变化,没有宏观形状改变。
②非扩散型相变:相变过程中原子不发生扩散,参与转变的所有原子的运动是协调一致的相变称为非扩散型相变。
一般特征是:存在由于均匀切变引起的宏观形状改变,可在预先制备的抛光试样表面上出现浮突现象;相变不需要通过扩散,新相和母相的化学成分相同;新相和母相之间存在一定的晶体学位向关系;某些材料发生非扩散相变时,相界面移动速度极快,可接近声速。
试述金属固态相变的主要特征①相界面:金属固态相变时,新相和母相的界面分为两种。
②位相关系:两相界面为共格或半共格时新相和母相之间必然有一定位相关系,两项之间没有位相关系则为非共格界面。
③惯习面:新相往往在母相一定晶面上形成,这个晶面称为惯习面。
④应变能:圆盘型粒子所导致的应变能最小,其次是针状,球状最大。
固态相变阻力包括界面能和应变能。
⑤晶体缺陷的影响:新相往往在缺陷处优先成核。
原子的扩散:收扩散控制的固态相变可以产生很大程度的过冷。
固态金属(包括纯金属和合金)在加热和冷却过程中可能发生各种相的转变,称为固态相变。
材料科学研究中的固态相变主要是指温度改变而产生的相变。
固态相变包括以下三种基本变化:①晶体结构的变化②化学成分的变化③有序程度的变化。
按相变过程中原子的运动特点分类:1)扩散型相变;2)非扩散型相变。
扩散型相变特点转变,块状转变,多形性转变,调幅分解1. 脱溶分解脱溶:从过饱和固溶体中析出新相的过程称为脱溶或沉淀。
条件:凡是有固溶度变化的相图,从单相区进入两相区时都会发生脱溶。
固溶处理工艺=淬火,不是淬火, 没有相变。
脱溶过程中由于析出了弥散分布的强化相,导致强度硬度显著升高的现象称沉淀强化(沉淀硬化),溶质原子的沉淀需要时间,随着时间的延长强化效果明显,又称为时效强化。
2)调幅分解:调幅分解(也称为增幅分解)是指过饱和固溶体在一定温度下分解成结构相同、成分不同两个相的过程。
特点:1)两个相之间没有明显的界面2)调幅分解没有形核,因此没有新的晶体结构出现3)调幅分解的成分变化通过上坡扩散来实现。
3)块状转变:新相与母相成分一样,但晶体结构不同.非扩散型相变:前后组元原子运动不超过一个原子间距的转变。
按平衡状态分类1)平衡相变2)非平衡相变三、按热力学分类1)一级相变 2)二级相变金属固态相变与液态金属结晶一样,金属固态相变与液-固相变一样,其相变驱动力来自新相与母相的自由能差,也通过形核和长大两个过程来完成。
但因相变前后均为固态,固有以下几个特点:(1).界面与界面能固态相变时,母相和新相均为固相,故其界面与固/液界面不同。
通常固/固界面可以按结构特点分为共格界面、半共格界面和非共格界面三种,其中共格界面界面能最低,半共格界面次之,非共格界面最高。
(2).惯习面和新、旧两相的位相关系惯习面的存在是为了减小两相的界面能,它的存在表面新相与母相存在一定晶体学位相关系。
(3).弹性应变能固态相变的阻力由界面能和弹性应变能构成。
第1章:奥氏体的形成1.金属固态相变的基础⑴热力学原理(自由能下降):固体中有元素扩散、自由能最低原则、降低自由能的过程⑵动力学原理(时间和温度):成份起伏,结构起伏,能量起伏→相变过程(形核、长大)发生相转变2.奥氏体的形成⑴热处理:通过加热、保温和冷却的方法,改变金属及合金的组织结构,使其获得所需要的性能的热加工工艺。
⑵奥氏体化:钢加热获得奥氏体的过程。
⑶奥氏体形成的热力学条件系统总的自由能变化ΔG:ΔG=-ΔG V+ΔG S+ΔGεΔGV——奥氏体与旧相体积自由能之差;ΔGS ——形成奥氏体时所增加的表面能;ΔGε——形成奥氏体时所增加的应变能ΔG<0,形成奥氏体。
⑷实际加热时临界点的变化加热:偏向高温,存在过热度;A C1,A C3,A CCm冷却:偏向低温,存在过冷度。
A r1,A r3,A rCm3.奥氏体的组织、结构⑴奥氏体的组织通常由多边形的等轴晶粒所组成,有时可观察到孪晶。
⑵奥氏体的结构①具有面心立方结构。
(奥氏体是C溶于γ-Fe中的固溶体。
合金钢中的奥氏体是C及合金元素溶于γ-Fe中的固溶体。
)②C是处于γ-Fe八面体的中心空隙处,即面心立方晶胞的中心或棱边的中点;③最大空隙的半径为0.052nm,与C原子半径(0.077 nm)比较接近。
C原子的存在,使奥氏体点阵常数增大④实际上奥氏体最大碳含量是2.11%(重量)4.奥氏体的性能⑴顺磁性。
用于相变点和残余奥氏体含量的测定等。
⑵比容最小。
也常利用这一性质借膨胀仪来测定奥氏体的转变情况。
⑶线膨胀系数最大。
利用奥氏体钢膨胀系数大的特性来做仪表元件。
⑷奥氏体的导热性能最差(除渗碳体外)。
奥氏体钢要慢速加热。
⑸奥氏体的塑性高,屈服强度低。
5.奥氏体的形成机制⑴奥氏体的形核①在铁素体与渗碳体的界面处依靠系统内的成分起伏、结构起伏和能量起伏形成。
②奥氏体形核于相界面处的原因:Ⅰ界面处碳浓度差大,有利于获得奥氏体晶核形成所需的碳浓度。