2020版导与练第一轮复习理科数学 (19)
- 格式:doc
- 大小:994.00 KB
- 文档页数:8
第十节变化率与导数、导数的计算知识点一 导数的概念1.函数y =f (x )在x =x 0处的导数 称函数y =f (x )在x =x 0处的瞬时变化率lim Δx →0f (x 0+Δx )-f (x 0)Δx=lim Δx →0Δy Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →0f (x 0+Δx )-f (x 0)Δx. 2.导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).3.函数f (x )的导函数称函数f ′(x )=lim Δx→0f (x +Δx )-f (x )Δx为f (x )的导函数.1.某质点的位移函数是s (t )=2t 3-12gt 2(g =10 m/s 2),则当t =2 s 时,它的加速度是( A )A .14 m/s 2B .4 m/s 2C .10 m/s 2D .-4 m/s 2解析:由v (t )=s ′(t )=6t 2-gt ,a (t )=v ′(t )=12t -g ,得t =2时,a (2)=v ′(2)=12×2-10=14(m/s 2).2.函数f (x )=x 2在区间[1,2]上的平均变化率为3,在x =2处的导数为4.解析:函数f (x )=x 2在区间[1,2]上的平均变化率为22-122-1=3,在x =2处的导数为f ′(2)=2×2=4.3.(2018·全国卷Ⅱ)曲线y =2ln(x +1)在点(0,0)处的切线方程为y =2x . 解析:∵y =2ln(x +1),∴y ′=2x +1.当x =0时,y ′=2,∴曲线y =2ln(x +1)在点(0,0)处的切线方程为y -0=2(x -0),即y =2x . 知识点二 导数的运算1.几种常见函数的导数2.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).3.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.4.函数y =x cos x -sin x 的导数为( B ) A .x sin x B .-x sin x C .x cos xD .-x cos x解析:y ′=(x cos x )′-(sin x )′=cos x -x sin x -cos x =-x sin x . 5.已知f (x )=x ln x ,若f ′(x 0)=2,则x 0等于( B ) A .e 2 B .e C.ln22D .ln2解析:f (x )的定义域为(0,+∞),f ′(x )=ln x +1,由f ′(x 0)=2,即ln x 0+1=2,解得x 0=e.1.求导常见易错点:①公式(x n )′=nx n -1与(a x )′=a x ln a 相互混淆;②公式中“+”“-”号记混,如出现如下错误:⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )+f (x )g ′(x )[g (x )]2,(cos x )′=sin x .2.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,且(f (x 0))′=0.3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.考向一 导数的运算【例1】 求下列函数的导数. (1)y =x 2sin x ; (2)y =ln x +1x ; (3)y =cos x e x ;(4)y =x sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2. 【解】 (1)y ′=(x 2)′sin x +x 2(sin x )′ =2x sin x +x 2cos x .(2)y ′=⎝ ⎛⎭⎪⎫ln x +1x ′=(ln x )′+⎝ ⎛⎭⎪⎫1x ′=1x -1x 2.(3)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos xe x. (4)∵y =x sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2 =12x sin(4x +π)=-12x sin4x ,∴y ′=-12sin4x -12x ·4cos4x =-12sin4x -2x cos4x .(1)对于复杂函数的求导,首先应利用代数、三角恒等变换等变形规则对函数解析式进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错.(2)利用公式求导时要特别注意除法公式中分子的符号,不要与求导的乘法公式混淆.(1)函数y =sin xx 的导数为y ′=x cos x -sin x x 2. (2)已知f (x )=(x +1)(x +2)(x +a ),若f ′(-1)=2,则f ′(1)=26. (3)函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)-ln x ,则f ′(2)的值是-74.解析:(1)∵y =sin xx ,∴y ′=x (sin x )′-x ′sin x x 2=x cos x -sin xx 2.(2)f (x )=(x +1)(x +2)(x +a )=(x 2+3x +2)(x +a )=x 3+(a +3)x 2+(3a +2)x +2a ,所以f ′(x )=3x 2+2(a +3)x +3a +2,所以f ′(-1)=3×(-1)2+2(a +3)×(-1)+3a +2=2,解得a =3,所以f ′(x )=3x 2+12x +11,所以f ′(1)=3×12+12×1+11=26.(3)∵f (x )=x 2+3xf ′(2)-ln x ,∴f ′(x )=2x +3f ′(2)-1x ,令x =2,得f ′(2)=4+3f ′(2)-12,解得f ′(2)=-74. 考向二 导数的几何意义方向1 已知切点求切线方程【例2】 (2018·全国卷Ⅰ)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x【解析】 解法1:因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以f (-x )=-f (x ),所以(-x )3+(a -1)·(-x )2+a (-x )=-[x 3+(a -1)x 2+ax ],所以2(a -1)x 2=0,因为x ∈R ,所以a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D.解法2:因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以f (-1)+f (1)=0,所以-1+a -1-a +(1+a -1+a )=0,解得a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D.【答案】 D 方向2 求切点坐标【例3】 设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则点P 的坐标为________.【解析】 y =e x 的导数为y ′=e x ,则曲线y =e x 在点(0,1)处的切线斜率k 1=e 0=1.y =1x (x >0)的导数为y ′=-1x 2(x >0),设P (m ,n ),则曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m 2(m >0).因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).【答案】 (1,1)方向3 未知切点的切线问题【例4】 (1)(2019·西安八校联考)曲线y =x 3上一点B 处的切线l 交x 轴于点A ,△OAB (O 为原点)是以∠A 为顶角的等腰三角形,则切线l 的倾斜角为( )A .30°B .45°C .60°D .120°(2)(2019·广州市调研测试)已知直线y =kx -2与曲线y =x ln x 相切,则实数k 的值为________.【解析】 (1)解法1:因为y =x 3,所以y ′=3x 2.设点B (x 0,x 30)(x 0≠0),则k l =3x 20,所以切线l 的方程为y -x 30=3x 20(x -x 0).取y =0,则x =23x 0,所以点A (23x 0,0).易知线段OB 的垂直平分线方程为y -x 302=-1x 20(x -x 02),根据线段OB 的垂直平分线过点A (23x 0,0)可得-x 302=-1x 20(23x 0-x 02),解得x 20=33,所以k l =3x 20=3,故切线l 的倾斜角为60°.故选C. 解法2:因为y =x 3,所以y ′=3x 2.设点B (x 0,x 30)(x 0≠0),则k l =3x 20,所以切线l 的方程为y -x 30=3x 20(x -x 0).取y =0,则x =23x 0,所以点A (23x 0,0).由|OA |=|AB |,得4x 209=x 209+x 60,又x 0≠0,所以x 20=33,所以k l =3x 20=3,故切线l 的倾斜角为60°.故选C.(2)由y =x ln x 得,y ′=ln x +1.设直线y =kx -2与曲线y =x ln x 相切于点P (x 0,y 0),则切线方程为y -y 0=(ln x 0+1)(x -x 0),又直线y =kx -2恒过点(0,-2),所以点(0,-2)在切线上,把(0,-2)以及y 0=x 0ln x 0代入切线方程,得x 0=2,故P (2,2ln2).把(2,2ln2)代入直线的方程y =kx -2,得k =1+ln2.【答案】 (1)C (2)1+ln21.与切线有关问题的处理策略(1)已知切点A (x 0,y 0)求斜率k ,即求该点处的导数值,k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .,(3)求过某点M (x 1,y 1)的切线方程时,需设出切点A (x 0,f (x 0)),则切线方程为y -f (x 0)=f ′(x 0)(x -x 0),再把点M (x 1,y 1)代入切线方程,求x 0.2.根据导数的几何意义求参数的值的思路一般是利用切点P (x 0,y 0)既在曲线上又在切线上构造方程组求解.1.(方向1)已知函数f (x )是奇函数,当x <0时,f (x )=x ln(-x )+x +2,则曲线y =f (x )在x =1处的切线方程为( B )A .y =2x +3B .y =2x -3C .y =-2x +3D .y =-2x -3解析:设x >0,则-x <0,∵f (x )为奇函数,当x <0时,f (x )=x ln(-x )+x +2,∴f (x )=-f (-x )=-(-x ln x -x +2)=x ln x +x -2.∴f (1)=-1,f ′(x )=ln x +2.∴f ′(1)=2,∴曲线y =f (x )在x =1处的切线方程是y =2x -3.故选B.2.(方向2)设a ∈R ,函数f (x )=e x +a ·e -x 的导函数是f ′(x ),且f ′(x )是奇函数.若曲线y =f (x )的一条切线的斜率是32,则切点的横坐标为( A )A .ln2B .-ln2 C.ln22D .-ln22解析:对f (x )=e x +a ·e -x 求导得f ′(x )=e x -a e -x ,又f ′(x )是奇函数,故f ′(0)=1-a =0,解得a =1,故f ′(x )=e x -e -x .设切点坐标为(x 0,y 0),则f ′(x 0)=e x 0-e -x 0=32,得e x 0=2或e x 0=-12(舍去),得x 0=ln2.3.(方向3)经过原点(0,0)作函数f (x )=x 3+3x 2的图象的切线,则切线方程为y =0或9x +4y =0.解析:当(0,0)为切点时,f ′(0)=0,故切线方程为y =0;当(0,0)不为切点时,设切点为P (x 0,x 30+3x 20)(x 0≠0),则切线方程为y -(x 30+3x 20)=(x -x 0)(3x 20+6x 0),因为切线过原点,所以x 30+3x 20=3x 30+6x 20,所以x 0=-32,此时切线方程为9x +4y =0.典例 若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.【分析】 分别求出两个对应函数的导数,设出两个切点坐标,利用导数得到两个切点坐标之间的关系,进而求出切线斜率,求出b 的值.【解析】 解法1:求得(ln x +2)′=1x ,[ln(x +1)]′=1x +1.设曲线y =ln x +2上的切点为(x 1,y 1),曲线y =ln(x +1)上的切点为(x 2,y 2),则k =1x 1=1x 2+1,所以x 2+1=x 1. 又y 1=ln x 1+2,y 2=ln(x 2+1)=ln x 1,所以k =y 1-y 2x 1-x 2=2, 所以x 1=1k =12,y 1=ln 12+2=2-ln2,所以b =y 1-kx 1=2-ln2-1=1-ln2.解法2:设直线y =kx +b 与y =ln x +2的切点坐标为A (x 1,ln x 1+2),则在点A 处的切线方程为y -(ln x 1+2)=1x 1(x -x 1),即为y =1x 1x +ln x 1+1 ①,设直线y =kx +b 与y =ln(x +1)的切点坐标为B (x 2,ln(x 2+1)),则在点B 处的切线方程为y -ln(x 2+1)=1x 2+1(x -x 2),即为y =1x 2+1x +ln(x 2+1)-x 2x 2+1②,由①②表示同一直线,则⎩⎨⎧ x 1=x 2+1,ln x 1+1=ln (x 2+1)-x 2x 2+1,解得x 1=12,x 2=-12,则b =ln 12+1=1-ln2.【答案】 1-ln2已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =8.解析:法1:∵y =x +ln x ,∴y ′=1+1x ,y ′|x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1.∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1 消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8.法2:同法1得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1).∵y ′=2ax +(a +2),∴y ′|x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎨⎧ x 0=-12,a =8.。
课时规范练19 三角函数的图象与性质基础巩固组1.函数f (x )=|sin x2·cos x2|的最小正周期是( ) A.π4 B.π2 C.ππ2.已知函数f (x )=2sin(ωx+φ)对任意x 都有f (π6+x)=f (π6-x),则f (π6)等于( )或0 或2或03.已知函数f (x )=sin (2x +3π2)(x ∈R ),下面结论错误的是( )A.函数f (x )的最小正周期为πB.函数f (x )是偶函数C.函数f (x )的图象关于直线x=π对称 D.函数f (x )在区间[0,π2]上是增函数4.当x=π4时,函数f (x )=sin(x+φ)取得最小值,则函数y=f (3π4-x)( )A.是奇函数,且图象关于点(π2,0)对称B.是偶函数,且图象关于点(π,0)对称C.是奇函数,且图象关于直线x=π2对称D.是偶函数,且图象关于直线x=π对称 5.(2018河南六市联考一,5)已知函数f (x )=2sin (ωx +π6)(ω>0)的图象与函数g (x )=cos(2x+φ)(|φ|<π2)的图象的对称中心完全相同,则φ为( ) A.π6 π6 C.π3π36.函数y=x cos x-sin x 的部分图象大致为( )7.(2018四川双流中学考前模拟)“φ=3π4”是“函数y=cos 2x 与函数y=sin(2x+φ)在区间[0,π4]上的单调性相同”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.函数y=tan (x2+π3)的单调递增区间是 ,最小正周期是 .9.若函数f (x )=sin ωx (ω>0)在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω= . 10.已知函数y=cos x 与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为π3的交点,则φ的值是 .综合提升组11.(2018天津,理6)将函数y=sin (2x +π5)的图象向右平移π10个单位长度,所得图象对应的函数( ) A .在区间[3π4,5π4]上单调递增B .在区间[3π4,π]上单调递减C .在区间[5π4,3π2]上单调递增D .在区间[3π2,2π]上单调递减12.已知函数f (x )=√3sin(ωx+φ)(ω>0,-π2<φ<π2),A (13,0)为f (x )图象的对称中心,B ,C 是该图象上相邻的最高点和最低点,若BC=4,则f (x )的单调递增区间是( ) A.(2k -23,2k +43),k ∈ZB.(2kπ-2π3,2kπ+4π3),k∈ZC.(4k-23,4k+43),k∈ZD.(4kπ-2π3,4kπ+4π3),k∈Z13.函数f(x)=sin(-2x+π3)的单调减区间为.14.设函数f(x)=A sin(ωx+φ)A>0,ω>0,|φ|<π2与直线y=3的交点的横坐标构成以π为公差的等差数列,且x=π6是f(x)图象的一条对称轴,则函数f(x)的单调递增区间为.创新应用组15.(2018河北衡水中学考前仿真,5)已知函数f(x)=√2sin(2ωx+π4)+1的图象在区间[0,12]上恰有一条对称轴和一个对称中心,则实数ω的取值范围为()A.[3π8,5π8) B.(3π8,5π8]C.[3π4,5π4) D.[3π4,5π4]16.(2018全国1,理16)已知函数f(x)=2sin x+sin 2x,则f(x)的最小值是.课时规范练19 三角函数的图象与性质由已知得f (x )=|sinx |2,故f (x )的最小正周期为π. 由f (π6+x)=f (π6-x)知,函数图象关于x=π6对称,f (π6)是函数f (x )的最大值或最小值.故选B .f (x )=sin (2x +3π2)=-cos 2x ,故其最小正周期为π,A 正确;易知函数f (x )是偶函数,B 正确;由函数f (x )=-cos 2x 的图象可知,函数f (x )的图象关于直线x=π4不对称,C 错误;由函数f (x )的图象易知,函数f (x )在[0,π2]上是增函数,D 正确.故选C .由题意,得sin (π+φ)=-1,∴φ=2k π-3π4(k ∈Z ).∴f (x )=sin x+2k π-3π4=sin x-3π4. ∴y=f (3π-x)=sin(-x )=-sin x.∴y=f (3π4-x)是奇函数,且图象关于直线x=π2对称.∵两个函数图象的对称中心完全相同,则它们的周期相同,∴ω=2,即f (x )=2sin (2x +π6),由2x+π6=k π,k ∈Z ,即x=kπ2−π12,k ∈Z ,∴f (x )的对称中心为kπ2−π12,0,k ∈Z ,∴g (x )的对称中心为kπ2−π12,0,k ∈Z ,∴gkπ2−π12=cos 2×kπ2−π12+φ=cos k π-π6+φ=±cos φ-π6=0,∴φ-π6=k π+π2,k∈Z ,∴φ=k π+2π3,当k=-1时,φ=-π+2π3=-π3,故选D .函数y=f (x )=x cos x-sin x 满足f (-x )=-f (x ),即该函数为奇函数,图象关于原点对称,故排除B;当x=π时,y=f (π)=πcos π-sin π=-π<0,故排除A,D .故选C .由题意可得函数y=cos 2x 在区间[0,π4]上单调递减.当φ=3π4时,函数y=sin(2x+φ)=sin (2x +3π4),x ∈[0,π4],此时2x+3π4∈[3π4,5π4].∴函数y=sin 2x+3π4在区间[0,π4]上单调递减.当φ=3π4+2π时,函数y=sin 2x+3π4在区间[0,π4]上单调递减,∴“φ=3π”是“函数y=cos 2x 与函数y=sin(2x+φ)在区间[0,π]上的单调性相同”的充分不必要条件.故选A . 8.(2kπ-5π,2kπ+π)(k ∈Z ) 2π 由k π-π<x +π<k π+π,k ∈Z ,得2k π-5π<x<2k π+π,k ∈Z .最小正周期T=π12=2π.9.32∵f (x )=sin ωx (ω>0)过原点,∴当0≤ωx ≤π2,即0≤x ≤π2ω时,y=sin ωx 是增函数;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时,y=sin ωx 是减函数. 由题意知π2ω=π3,∴ω=32.10.π6 由题意cos π3=sin (2×π3+φ),即sin (2π+φ)=1, 2π3+φ=k π+(-1)k ·π6(k ∈Z ), 因为0≤φ<π,所以φ=π6.将函数y=sin (2x +π5)的图象向右平移π10个单位长度,所得图象对应的函数解析式为y=sin [2(x -π10)+π5]=sin 2x.当-π2+2k π≤2x ≤π2+2k π,k ∈Z ,即-π4+k π≤x ≤π4+k π,k ∈Z 时,y=sin 2x 单调递增.当π2+2k π≤2x ≤3π2+2k π,k ∈Z ,即π4+k π≤x ≤3π4+k π,k ∈Z 时,y=sin 2x 单调递减.结合选项,可知y=sin2x 在区间[3π4,5π4]上单调递增.故选A . 由题意,得(2√3)2+(T 2)2=42,即12+π2ω2=16,求得ω=π2.再根据π2·13+φ=k π,k ∈Z ,且-π2<φ<π2,可得φ=-π6,则f (x )=√3sin (π2x -π6).令2k π-π≤πx-π≤2k π+π,k ∈Z ,求得4k π-2π≤x ≤4k π+4π,k ∈Z ,故f (x )的单调递增区间为(4kπ-2π3,4k π+4π3),k ∈Z ,故选D .13.[kπ-π12,kπ+5π12](k ∈Z ) 由已知函数为y=-sin (2x -π3),欲求函数的单调减区间,只需求y=sin (2x -π3)的单调增区间.由2k π-π2≤2x-π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所给函数的单调减区间为k π-π12,k π+5π12(k ∈Z ).14.[-π+kπ,π+kπ],k ∈Z 由题意,得A=3,T=π,∴ω=2,∴f (x )=3sin(2x+φ).又f (π6)=3或f (π6)=-3,∴2×π6+φ=k π+π2,k ∈Z ,φ=π6+k π,k ∈Z .∵|φ|<π2,∴φ=π6,∴f (x )=3sin (2x +π6).令-π2+2k π≤2x+π6≤π2+2k π,k ∈Z ,化简,得-π3+k π≤x ≤π6+k π,k ∈Z ,∴函数f (x )的单调递增区间为[-π3+kπ,π6+kπ],k ∈Z . 由题意,知x ∈[0,12],2ωx+π4∈π4,ω+π4,∵函数f (x )的图象在区间0,12上恰有一条对称轴和一个对称中心,∴π2∈π4,ω+π4,π∈π4,ω+π4,3π2∉π4,ω+π4,∴{ω+π4≥π2,ω+π4≥π,ω+π4<3π2,即π≤ω+π4<3π2, 即3π4≤ω<5π4.故选C .3√32由题意可得T=2π是f (x )=2sin x+sin 2x 的一个周期, 所以求f (x )的最小值可考虑求f (x )在[0,2π)上的值域.由f (x )=2sin x+sin 2x ,得f'(x )=2cos x+2cos 2x=4cos 2x+2cos x-2. 令f'(x )=0,可得cos x=12或cos x=-1,x ∈[0,2π)时,解得x=π3或x=5π3或x=π.因为f (x )=2sin x+sin 2x 的最值只能在x=π3,x=5π3,x=π或x=0时取到,且f (π3)=3√32,f (5π3)=-3√32,f (π)=0,f (0)=0,所以函数f (x )的最小值为-3√32.。
____第19课__导数的基本运算____1. 能根据导数定义求简单函数(如:y =c ,y =2,y =1x,y =x 等)的导数.2. 熟记基本初等函数的导数公式;理解导数的四则运算法则;能利用导数公式表的导数公式和导数四则运算法则求简单函数的导数1. 阅读:选修11第80~85 页.2. 解悟:①熟记教材第81页中的两个表格中常见函数和基本初等函数的求导公式;②教材第83页的函数的和、差、积、商求导法则你记住了吗?有没有特别留意积、商求导法则中的表达式的结构特征?③重点理解教材第83页的例2和例3,并体会解题过程中使用的法则依据,例3(2),你还能想出其他的解法吗?并总结对一个函数求导的关键是什么?3. 践习:在教材空白处,完成第82页练习第2、7题,第84~85页练习第4、5题,习题第5、8、14题,第98页习题第1、3、4、7题.基础诊断1. (1) (2)′=__2ln 2__; (2) (3x)′=__13-23__;(3) (3sin )′=__3cos __; (4) (ln 2)′=__1x__.2. 已知函数f()=1x cos 则f(π)+f ′⎝ ⎛⎭⎪⎫π2=__-π__.解析:由题意得,f ′()=-1x 2cos -1x sin ,所以f ′⎝ ⎛⎭⎪⎫π2=-1⎝ ⎛⎭⎪⎫π22 cos π2-1π2sin π2=-2π,f(π)=1π×cos π=-1π,所以f(π)+f ′⎝ ⎛⎭⎪⎫π2=-1π-2π=-3π. 3. 若函数f()=e x1-x ,则f ′(2)=__0__.解析:由题意得,f ′()=e x (2-x )(1-x )2,当=2时,f ′(2)=0.4. 曲线y =3-2+4在点(1,3)处的切线的倾斜角为__π4__.解析:因为(1,3)在曲线y =3-2+4上,y ′=32-2,所以在点(1,3)处的切线的斜率=3×1-2=1.设切线的倾斜角为α,所以tan α=1,所以α=π4,故所求的倾斜角为π4.范例导航考向❶ 利用导数公式和四则运算法则求简单函数的导数 例1 求下列函数的导数. (1) f()=log 2+2; (2) f()=e xx;(3) f()=-3x +1(>0); (4) y =ln +1; (5) f()=e ·ln ;(6) f()=(2-9)⎝ ⎛⎭⎪⎫x -3x .解析: (1) f ′()=1x ln 2+2(2) f ′()=x e x -e xx 2(3) f ′()=1-32x (>0)(4) y ′=ln +1 (5) y ′=e ⎝ ⎛⎭⎪⎫ln x +1x(6) f ′()=32-27x2-12下列函数求导运算错误的个数为__3__. ①(3)′=3log 3e; ②(log 2)′=1x ln 2;③⎝ ⎛⎭⎪⎫sin π3′=cos π3; ④⎝ ⎛⎭⎪⎫1ln x ′=.解析:①(3)′=3ln 3,故①错误;②(log 2)′=1x ln 2,故②正确,③⎝ ⎛⎭⎪⎫sin π3′=0,故③错误;④⎝ ⎛⎭⎪⎫1ln x ′=-1x (ln x )2,故④错误.所以运算错误的个数为3.考向❷ 导数的运算与导数几何意义的应用例2 设函数f()=133-a22+b +c(其中a>0),曲线y =f()在点P(0,f(0))处的切线方程为y =1.(1) 求b ,c 的值;(2) 当a =4时,求过点(0,c)与曲线y =f()相切的直线方程. 解析:(1) 由题意得,f ′()=2-a +b.因为曲线y =f()在点P(0,f(0))处的切线方程为y =1,所以⎩⎨⎧f (0)=1,f ′(0)=0,解得⎩⎨⎧b =0,c =1.(2) 由(1)知b =0,c =1. 又因为a =4,所以f()=133-22+1,则f ′()=2-4.设切点M(m ,13m 3-2m 2+1),所以=f ′(m)=m 2-4m ,则切线方程为y -13m 3+2m 2-1=(m 2-4m)(-m),将点(0,1)代入得1-13m 3+2m 2-1=(m 2-4m)(0-m),解得m =0或m =3,所以过点(0,1)与曲线y =f()相切的直线方程为y =1或3+y -1=0.对于例2中的f(),若过点(0,2)可作曲线y =f()的三条不同的切线,求实数a 的取值范围. 解析:设切点为(t ,f(t)).过点(0,2)可作曲线y =f()的三条不同的切线,等价于方程f(t)-2=f ′(t)(t -0)有三个相异的实根,即等价于方程23t 3-a 2t 2+1=0有三个相异的实根.设g(t)=23t 3-a 2t 2+1,则由g ′(t)=2t 2-at>0得t<0或t>a2;由g ′(t)=2t 2-at<0得 0<t<a2,所以函数g(t)在区间(-∞,0)和区间⎝ ⎛⎭⎪⎫a 2,+∞上单调递增,在区间⎝ ⎛⎭⎪⎫0,a 2上为单调递减,且极大值为g(0)=1,极小值为g ⎝ ⎛⎭⎪⎫a 2=1-a 324.要使g(t)=0有三个相异的实根当且仅当g ⎝ ⎛⎭⎪⎫a 2=1-a 324<0,即a>233时满足题意,故实数a 的取值范围是(233,+∞). 考向❸ 导数运算的灵活应用例3 已知f 1()=sin +cos ,f 2()=f ′1(),f 3()=f ′2(),…,f n ()=f ′n -1(),n ∈N *,n ≥2,求f 1⎝ ⎛⎭⎪⎫π2+f 2⎝ ⎛⎭⎪⎫π2+…+f 2 014⎝ ⎛⎭⎪⎫π2的值.解析:因为f 1()=sin +cos , 所以f 2()=f ′1()=cos -sin ,f 3()=f ′2()=-sin -cos =-f 1(), f 4()=f ′3()=-cos +sin =-f 2(),即f 1()+f 2()+f 3()+f 4()=0.又因为f 5()=f ′4()=sin +cos =f 1(),所以f n ()是周期为4的周期函数,则f 1⎝ ⎛⎭⎪⎫π2+f 2⎝ ⎛⎭⎪⎫π2+…+f 2 014⎝ ⎛⎭⎪⎫π2=f 1⎝ ⎛⎭⎪⎫π2+f 2⎝ ⎛⎭⎪⎫π2=1+0+0-1=0.自测反馈1. 已知曲线y =2-2+1,则在点(1,0)处的切线方程为__y =0__.解析:由题意得,点(1,0)在曲线y =2-2+1上,所以切点为(1,0).因为y ′=2-2,当=1时,y ′=0,所以切线的斜率为0,所以切线方程为y =0.2. 若直线y =+a 与曲线y =ln 相切,则a 的值为__-1__.解析:设切点为(0,0+a),y =ln 的导数为y ′=1x ,所以1x 0=1,即0=1,所以切点为(1,1+a).又因为切点也在曲线y =ln 上,所以1+a =ln 1,解得a =-1,故a 的值为-1.3. 曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为__1__.解析:由题意知,点M ⎝ ⎛⎭⎪⎫π4,0在曲线y =sin x sin x +cos x -12上,所以切点为⎝ ⎛⎭⎪⎫π4,0.因为y ′=1(sin x +cos x )2,当=π4时,y ′=1⎝ ⎛⎭⎪⎫sin π4+cos π42=12,所以曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为12.4. 曲线f()=f ′(1)e e -f(0)+122在点(1,f(1))处的切线方程为__y =e -12__.解析:由题意得,f ′()=f ′(1)ee -f(0)+,所以⎩⎨⎧f (0)=f ′(1)e ,f ′(1)=f ′(1)-f (0)+1,即⎩⎨⎧f (0)=1,f ′(1)=e ,所以原函数的表达式可化为f()=e -+122,所以f(1)=e -12,所以所求切线的方程为y -⎝ ⎛⎭⎪⎫e -12=e (-1),即y =e -121. 准确应用求导公式和根据函数结构选择合适的求导法则是正确求导的前提.2. 直线和函数类曲线的相切问题需要明确:“在点P 处”的曲线切线方程,一定是以点P 为切点,“过点P 处”的曲线切线方程,不论点P 是否在曲线上,点P 都不一定是切点.3. 你还有哪些体悟,写下;:。
2020届高考理科数学一轮复习要点+题型解析导数及其应用一、导数的运算问题【要点解析】1.基本初等函数的导数公式表2.导数的四则运算法则设f(x),g(x)是可导的,则(1)(f(x)±g(x))′=f′(x)±g′(x);(2)[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x);(3)'⎥⎦⎤⎢⎣⎡)()(xgxf=g(x)f′(x)-f(x)g′(x)g2(x)(g(x)≠0).(g(x)≠0).3.复合函数的导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y x′=y u′·u x′,即y 对x的导数等于y对u的导数与u对x的导数的乘积.【题型解析】【例1】.f (x )=x (2 018+ln x ),若f ′(x 0)=2 019,则x 0等于( ) A .e 2 B .1 C .ln 2D .e解析:选B f ′(x )=2 018+ln x +x ×1x =2 019+ln x ,故由f ′(x 0)=2 019,得2 019+ln x 0=2 019,则ln x 0=0,解得x 0=1.【例2】.已知f ′(x )是函数f (x )的导数,f (x )=f ′(1)·2x +x 2,则f ′(2)=( ) A.12-8ln 21-2ln 2 B.21-2ln 2 C.41-2ln 2D .-2【解析】:选C 因为f ′(x )=f ′(1)·2x ln 2+2x ,所以f ′(1)=f ′(1)·2ln 2+2,解得f ′(1)=21-2ln 2,所以f ′(x )=21-2ln 2·2x ln 2+2x ,所以f ′(2)=21-2ln 2×22ln 2+2×2=41-2ln 2.【例3】.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)=________. 【解析】:f ′(x )=4ax 3+2bx , ∵f ′(x )为奇函数且f ′(1)=2, ∴f ′(-1)=-2. 【答案】:-2二、导数的几何意义【要点解析】函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).(1)斜率:αtan )(0='=x f k(2)切点:())(00x f x ',在切线上,也在曲线上。
2019-2020年高考数学大一轮总复习 1.1集合与集合的运算课时作业理A级训练(完成时间:10分钟)1.(xx·四川)已知集合A={x|(x+1)(x-2)≤0},集合B为整数集,则A∩B=()A.{-1,0} B.{0,1}C.{-2,-1,0,1} D.{-1,0,1,2}2.(xx·全国)设集合U={1,2,3,4,5},集合A={1,2},则∁U A=()A.{1,2} B.{3,4,5}C.{1,2,3,4,5} D.∅3.(xx·广西)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为()A.2 B.3C.5 D.74.已知集合A={x|x2-x-2<0},B={x|-1<x<1},则()A.A B B.B AC.A=B D.A∩B=∅5.已知集合A={0,1},满足条件A∪B={2,0,1,3}的集合B共有()A.2个B.2个C.3个D.4个6.设集合U={x|x<5,x∈N*},M={x|x2-5x+6=0},则∁U M=()A.{1,4} B.{1,5}C.{2,3} D.{3,4}7.已知全集U=R,则正确表示集合M={0,1,2}和N={x|x2+2x=0}关系的韦恩(Venn)图是()A. B.C. D.8.集合A={x∈R||x-2|≤5}中的最小整数为________.9.(xx·重庆)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁U A)∩B =________.10.若集合A={-1,3},集合B={x|x2+ax+b=0},且A=B,求实数a,b.B 级训练(完成时间:15分钟)1.[限时1分钟,达标是( )否( )]设全集U =R ,M ={x |x (x +3)<0},N ={x |x <-1},则图中阴影部分表示的集合为( )A .{x |x ≥-1}B .{x |-3<x <0}C .{x |x ≤-3|D .{x |-1≤x <0}2.[限时1分钟,达标是( )否( )](xx·江西)若集合A ={x ∈R |ax 2+ax +1=0}其中只有一个元素,则a =( )A .4B .2C .0D .0或43.[限时1分钟,达标是( )否( )]已知集合M ={x ||x -4|+|x -1|<5},N ={x |a <x <6},且M ∩N =(2,b ),则a +b =( )A .6B .7C .8D .94.[限时1分钟,达标是( )否( )](xx·上海)已知互异的复数a ,b 满足ab ≠0,集合{}a ,b ={}a 2,b 2,则a +b =________.5.[限时3分钟,达标是( )否( )]已知集合A ={x |6x +1≥1,x ∈R },B ={x |x 2-2x -m <0},若A ∩B ={x |-1<x <4},则实数m 的值为________.6.[限时4分钟,达标是( )否( )]已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},分别求适合下列条件的a 的值.(1)9∈(A ∩B );(2){9}=A ∩B .[限时4分钟,达标是( )否( )]设A ={x |x 2-8x +15=0},B ={x |ax -1=0}.(1)若a =15,试判定集合A 与B 的关系; (2)若B ⊆A ,求实数a 组成的集合C .C 级训练(完成时间:8分钟)1.[限时4分钟,达标是( )否( )](xx·广东)设集合A ={(x 1,x 2,x 3,x 4,x 5)|x i ∈{-1,0,1},i =1,2,3,4,5},那么集合A 中满足条件“1≤|x 1|+|x 2|+|x 3|+|x 4|+|x 5|≤3”的元素个数为( )A .60B .90C .120D .1302.[限时4分钟,达标是( )否( )](xx·揭阳一模)定义一个集合A 的所有子集组成的集合叫做集合A 的幂集,记为P (A ),用n (A )表示有限集A 的元素个数,给出下列命题:①对于任意集合A ,都有A ∈P (A );②存在集合A ,使得n [P (A )]=3;③用∅表示空集,若A ∩B =∅,则P (A )∩P (B )=∅;④若A ⊆B ,则P (A )⊆P (B );⑤若n (A )-n (B )=1,则n [P (A )]=2×n [P (B )].其中正确的命题个数为( )A .4B .3C .2D .1第一章 集合与简易逻辑第1讲 集合与集合的运算【A 级训练】1.D 解析:A ={x |(x +1)(x -2)≤0}={x |-1≤x ≤2},又集合B 为整数集,故A ∩B ={-1,0,1,2},故选D.2.B3.B 解析:因为M ={1,2,4,6,8},N ={1,2,3,5,6,7},所以M ∩N ={1,2,6},即M ∩N中元素的个数为3.故选B.4.B 解析:A ={x |x 2-x -2<0}={x |-1<x <2},则B A .5.D 解析:因为A ={0,1},且A ∪B ={2,0,1,3},所以B 可能为{2,3}或{2,3,0}或{2,3,1}或{2,0,1,3},则满足条件的集合B 共有4个.6.A 解析:U ={1,2,3,4},M ={x |x 2-5x +6=0}={2,3},所以∁U M ={1,4}.7.A 解析:N 为x 2+2x =0的解集,解x 2+2x =0可得,x =0或-2,则N ={-2,0},M ∩N ={0}≠∅.8.-3 解析:由|x -2|≤5,得-5≤x -2≤5,即-3≤x ≤7,所以集合A 中的最小整数为-3.9.{7,9} 解析:因为全集U ={n ∈N |1≤n ≤10},A ={1,2,3,5,8},B ={1,3,5,7,9},所以∁U A ={4,6,7,9},所以(∁U A )∩B ={7,9},故答案为{7,9}.10.解析:因为A =B ,所以B ={x |x 2+ax +b =0}={-1,3}.所以⎩⎪⎨⎪⎧-a =-1+3=2b =-1×3=-3,解得a =-2,b =-3. 【B 级训练】1.D 解析:M ={x |x (x +3)<0}={x |-3<x <0},由图象知,图中阴影部分所表示的集合是M ∩(∁U N ),又N ={x |x <-1},所以∁U N ={x |x ≥-1}.所以M ∩(∁U N )=[-1,0).2.A解析:当a=0时,方程为1=0不成立,不满足条件,当a≠0时,Δ=a2-4a =0,解得a =4.3.B 解析:由集合M 中的不等式,解得0<x <5,所以M ={x |0<x <5},因为N={x |a <x <6},且M ∩N =(2,b ),所以a =2,b =5,则a +b =2+5=7.4.-1 解析:第一种情况:a =a 2,b =b 2,因为ab ≠0,所以a =b =1,与已知条件矛盾,不符;第二种情况:a =b 2,b =a 2,所以a =a 4⇒a 3=1,所以a 2+a +1=0,即a +b =-1.5.8 解析:由6x +1≥1,得x -5x +1≤0,所以-1<x ≤5,所以A ={x |-1<x ≤5}. 因为A ∩B ={x |-1<x <4},所以有42-2×4-m =0,解得m =8.此时B ={x |-2<x <4},符合题意,故实数m 的值为8.6.解析:(1)因为9∈(A ∩B ),所以9∈A 且9∈B .所以2a -1=9或a 2=9,所以a =5或a =-3或a =3.经检验a =5或a =-3符合题意.所以a =5或a =-3.(2)因为{9}=A ∩B ,所以9∈A 且9∈B ,由(1)知a =5或a =-3.当a =-3时,A ={-4,-7,9},B ={-8,4,9},此时A ∩B ={9};当a =5时,A ={-4,9,25},B ={0,-4,9},此时A ∩B ={-4,9},不合题意.综上知a =-3.7.解析:由x 2-8x +15=0,得x =3或x =5.所以A ={3,5}.(1)当a =15时,由15x -1=0,得x =5.所以B ={5},所以B A . (2)因为A ={3,5}且B ⊆A ,所以,若B =∅,则方程ax -1=0无解,有a =0;若B ≠∅,则a ≠0,由方程ax -1=0,得x =1a ,所以1a =3或1a =5,即a =13或a =15.所以C ={0,13,15}. 【C 级训练】1.D 解析:由题目中“1≤|x 1|+|x 2|+|x 3|+|x 4|+|x 5|≤3”考虑x 1,x 2,x 3,x 4,x 5的可能取值,设A ={0},B ={-1,1},分为①有2个取值为0,另外3个从B 中取,共有方法数:C 25×23;②有3个取值为0,另外2个从B 中取,共有方法数:C 35×22;③有4个取值为0,另外1个从B 中取,共有方法数:C 45×2.所以总共方法数是C 25×23+C 35×22+C 45×2=130,即元素个数为130.故选D.2.B 解析:由P (A )的定义可知①正确,④正确,设n (A )=n ,则n [P (A )]=2n ,所以②错误,若A ∩B =∅,则P (A )∩P (B )={∅},③不正确;n (A )-n (B )=1,即A 中元素比B 中元素多1个,则n [P (A )]=2×n [P (B )],⑤正确,故选B..。
第1节集合【选题明细表】基础巩固(时间:30分钟)1.(2018·全国Ⅰ卷)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B等于( A )(A){0,2} (B){1,2}(C){0} (D){-2,-1,0,1,2}解析:A∩B={0,2}∩{-2,-1,0,1,2}={0,2}.故选A.2.已知集合A={x|lg x>0},B={x|x≤1},则( B )(A)A∩B≠∅(B)A∪B=R(C)B⊆A (D)A⊆B解析:由B={x|x≤1},且A={x|lg x>0}=(1,+∞),所以A∪B=R.3.(2018·西安一模改编)已知集合M={-1,0,1},N={x|x=ab,a,b∈M,且a≠b},则集合M与集合N的关系是( B )(A)M=N (B)N M(C)M⊆N (D)M∩N=∅解析:因为M={-1,0,1},N={x|x=ab,a,b∈M,且a≠b},所以N={-1,0},于是N M.4.若x∈A,则∈A,就称A是伙伴关系集合,集合M={-1,0,,2,3}的所有非空子集中具有伙伴关系的集合的个数是( B )(A)1 (B)3 (C)7 (D)31解析:具有伙伴关系的元素组是-1,,2,所以具有伙伴关系的集合有3个:{-1},{,2},{-1,,2}.5.(2018·石家庄模拟)设全集U={x|x∈N*,x<6},集合A={1,3},B= {3,5},则∁U(A∪B)等于( D )(A){1,4} (B){1,5}(C){2,5} (D){2,4}解析:由题意得A∪B={1,3}∪{3,5}={1,3,5}.又U={1,2,3,4,5},所以∁U(A∪B)={2,4}.6.试分别用描述法、列举法两种方法表示“所有不小于3,且不大于200的奇数”所构成的集合.(1)描述法 ;(2)列举法 . 答案:(1){x|x=2n+1,n∈N,1≤n<100}(2){3,5,7,9, (199)7.(2017·江苏卷)已知集合A={1,2},B={a,a2+3},若A∩B={1},则实数a的值为.解析:因为A∩B={1},A={1,2},所以1∈B且2∉B.若a=1,则a2+3=4,符合题意.又a2+3≥3≠1,故a=1.答案:18.(2018·成都检测)已知集合A={x|x2-2 018x-2 019≤0},B={x|x< m+1},若A⊆B,则实数m的取值范围是.解析:由x2-2 018x-2 019≤0,得A=[-1,2 019],又B={x|x<m+1},且A⊆B.所以m+1>2 019,则m>2 018.答案:(2 018,+∞)9.集合A={x|x<0},B={x|y=lg[x(x+1)]},若A-B={x|x∈A,且x∉B},则A-B= .解析:由x(x+1)>0,得x<-1或x>0.所以B=(-∞,-1)∪(0,+∞),所以A-B=[-1,0).答案:[-1,0)能力提升(时间:15分钟)10.(2016·全国Ⅲ卷改编)设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则(∁R S)∩T等于( C )(A)[2,3](B)(-∞,-2)∪[3,+∞)(C)(2,3)(D)(0,+∞)解析:易知S=(-∞,2]∪[3,+∞),所以∁R S=(2,3),因此(∁R S)∩T= (2,3).11.设集合A={(x,y)|x+y=1},B={(x,y)|x-y=3},则满足M⊆(A∩B)的集合M的个数是( C )(A)0 (B)1 (C)2 (D)3解析:由得所以A∩B={(2,-1)}.由M⊆(A∩B),知M= 或M={(2,-1)}.12.(2018·江西省红色七校联考)如图,设全集U=R,集合A,B分别用椭圆内图形表示,若集合A={x|x2<2x},B={x|y=ln(1-x)},则阴影部分图形表示的集合为( D )(A){x|x≤1} (B){x|x≥1}(C){x|0<x≤1} (D){x|1≤x<2}解析:因为A={x|x2<2x}={x|0<x<2},B={x|y=ln(1-x)}={x|1-x>0}={x|x<1},所以∁U B={x|x≥1},则阴影部分为A∩(∁U B)={x|0<x<2}∩{x|x≥1}={x|1≤x<2}.故选D.13.若集合A={-1,1},B={x|mx=1},且A∪B=A,则m的值为( D )(A)1 (B)-1(C)1或-1 (D)1或-1或0解析:由A∪B=A,可知B A,故B={1}或{-1}或 ,此时m=1或-1或0.故选D.14.(2017·山东卷改编)设函数y=的定义域为A,函数y=ln(1-x)的定义域为B,全集U=R,则∁U(A∩B)= .解析:因为4-x2≥0,所以-2≤x≤2,所以A=[-2,2].因为1-x>0,所以x<1,所以B=(-∞,1),因此A∩B=[-2,1),于是∁U(A∩B)=(-∞,-2)∪[1,+∞).答案:(-∞,-2)∪[1,+∞)第2节命题及其关系、充分条件与必要条件【选题明细表】基础巩固(时间:30分钟)1.设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是( D )(A)若方程x2+x-m=0有实根,则m>0(B)若方程x2+x-m=0有实根,则m≤0(C)若方程x2+x-m=0没有实根,则m>0(D)若方程x2+x-m=0没有实根,则m≤0解析:根据逆否命题的定义,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x-m=0没有实根,则m≤0”.2.(2018·河南八市联考)命题“若a>b,则a+c>b+c”的否命题是( A )(A)若a≤b,则a+c≤b+c(B)若a+c≤b+c,则a≤b(C)若a+c>b+c,则a>b(D)若a>b,则a+c≤b+c解析:将条件、结论都否定.命题的否命题是“若a≤b,则a+c≤b+c”.3.(2018·山东省日照市模拟)命题p:sin 2x=1,命题q:tan x=1,则p 是q的( C )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件解析:由sin 2x=1,得2x=+2kπ,k∈Z,则x=+kπ,k∈Z,由tan x=1,得x=+kπ,k∈Z,所以p是q的充要条件.故选C.4.已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b 相交”是“平面α和平面β相交”的( A )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件解析:由题意知a⊂α,b⊂β,若a,b相交,则a,b有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a,b的位置关系可能为平行、相交或异面.因此“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.5.(2018·云南玉溪模拟)设a>0且a≠1,则“函数f(x)=a x在R上是减函数”是“函数g(x)=(2-a)x3在R上是增函数”的( A )(A)充分不必要条件(B)必要不充分条件(C)充分必要条件(D)既不充分也不必要条件解析:若函数f(x)=a x在R上是减函数,则a∈(0,1),若函数g(x)=(2-a)x3在R上是增函数,则a∈(0,2).则“函数f(x)=a x在R上是减函数”是“函数g(x)=(2-a)x3在R上是增函数”的充分不必要条件.6.(2018·江西九江十校联考)已知函数f(x)=则“x=0”是“f(x)=1”的( B )(A)充要条件(B)充分不必要条件(C)必要不充分条件(D)既不充分也不必要条件解析:若x=0,则f(0)=e0=1;若f(x)=1,则e x=1或ln(-x)=1,解得x=0或x=-e.故“x=0”是“f(x)=1”的充分不必要条件.故选B.7.(2018·北京卷)能说明“若a>b,则<”为假命题的一组a,b的值依次为.解析:只要保证a为正b为负即可满足要求.当a>0>b时,>0>.答案:1,-1(答案不唯一)8.有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是.解析:①原命题的否命题为“若a≤b,则a2≤b2”,错误.②原命题的逆命题为“若x,y互为相反数,则x+y=0”,正确.③原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”,正确.答案:②③9.直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点的充要条件是.解析:直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点等价于<,解之得-1<k<3.答案:-1<k<3能力提升(时间:15分钟)10.(2018·天津卷)设x∈R,则“|x-|<”是“x3<1”的( A )(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件解析:由“|x-|<”等价于0<x<1,而x3<1,即x<1,所以“|x-|<”是“x3<1”的充分而不必要条件.故选A.11.已知命题p:x2+2x-3>0;命题q:x>a,且﹁q的一个充分不必要条件是﹁p,则a的取值范围是( A )(A)[1,+∞) (B)(-∞,1](C)[-1,+∞) (D)(-∞,-3]解析:由x2+2x-3>0,得x<-3或x>1,由﹁q的一个充分不必要条件是﹁p,可知﹁p是﹁q的充分不必要条件,等价于q是p的充分不必要条件,故a≥1.12.函数f(x)=log a x-x+2(a>0且a≠1)有且仅有两个零点的充要条件是 .解析:若函数f(x)=log a x-x+2(a>0,且a≠1)有两个零点,即函数y=log a x的图象与直线y=x-2有两个交点,结合图象易知,此时a>1.可以检验,当a>1时,函数f(x)=log a x-x+2(a>0,且a≠1)有两个零点, 所以函数f(x)=log a x-x+2(a>0,且a≠1)有且仅有两个零点的充要条件是a>1.答案:a>113.(2018·湖南十校联考)已知数列{a n}的前n项和S n=Aq n+B(q≠0),则“A=-B”是“数列{a n}为等比数列”的条件.解析:若A=B=0,则S n=0,数列{a n}不是等比数列.如果{a n}是等比数列,由a1=S1=Aq+B得a2=S2-a1=Aq2-Aq,a3=S3-S2=Aq3-Aq2,由a1a3=,从而可得A=-B,故“A=-B”是“数列{a n}为等比数列”的必要不充分条件.答案:必要不充分14.(2018·山西五校联考)已知p:(x-m)2>3(x-m)是q:x2+3x-4<0的必要不充分条件,则实数m的取值范围为.解析:p对应的集合A={x|x<m或x>m+3},q对应的集合B={x|-4<x<1}.由p是q的必要不充分条件可知B A,所以m≥1或m+3≤-4,即m≥1或m≤-7.答案:(-∞,-7]∪[1,+∞)第3节简单的逻辑联结词、全称量词与存在量词【选题明细表】基础巩固(时间:30分钟)1.(2018·咸阳模拟)命题p:∀x<0,x2≥2x,则命题﹁p为( C )(A)∃x0<0,≥(B)∃x0≥0,<(C)∃x0<0,< (D)∃x0≥0,≥解析:全称命题的否定,应先改写量词,再否定结论,所以﹁p:∃x0<0,<.2.(2018·郑州调研)命题p:函数y=log2(x-2)的单调增区间是[1,+∞),命题q:函数y=的值域为(0,1).下列命题是真命题的为( B )(A)p∧q (B)p∨q(C)p∧(﹁q) (D)﹁q解析:由于y=log2(x-2)在(2,+∞)上是增函数,所以命题p是假命题.由3x>0,得3x+1>1,所以0<<1,所以函数y=的值域为(0,1),故命题q为真命题.所以p∧q为假命题,p∨q为真命题,p∧(﹁q)为假命题,﹁q为假命题.3.(2018·贵阳调研)下列命题中的假命题是( C )(A)∃x0∈R,lg x0=1 (B)∃x0∈R,sin x0=0(C)∀x∈R,x3>0 (D)∀x∈R,2x>0解析:当x=10时,lg 10=1,则A为真命题;当x=0时,sin 0=0,则B为真命题;当x<0时,x3<0,则C为假命题;由指数函数的性质知,∀x∈R,2x>0,则D为真命题.4.第十三届全运会于2017年8月27日在天津市隆重开幕,在体操预赛中,有甲、乙两位队员参加.设命题p是“甲落地站稳”,q是“乙落地站稳”,则命题“至少有一位队员落地没有站稳”可表示为( A ) (A)(﹁p)∨(﹁q) (B)p∨(﹁q)(C)(﹁p)∧(﹁q) (D)p∨q解析:命题“至少有一位队员落地没有站稳”包含以下三种情况:“甲、乙落地均没有站稳”“甲落地没站稳,乙落地站稳”“乙落地没有站稳,甲落地站稳”,故可表示为(﹁p)∨(﹁q).或者,命题“至少有一位队员落地没有站稳”等价于命题“甲、乙均落地站稳”的否定,即“p∧q”的否定.选A.5.(2018·河北省石家庄二中模拟)已知命题p:∃x0∈(0,+∞), ln x0=1-x0,则命题p的真假及﹁p依次为( B )(A)真;∃x0∈(0,+∞),ln x0≠1-x0(B)真;∀x∈(0,+∞),ln x≠1-x(C)假;∀x∈(0,+∞),ln x≠1-x(D)假;∃x0∈(0,+∞),ln x0≠1-x0解析:当x0=1时,ln x0=1-x0=0,故命题p为真命题;因为p:∃x0∈(0,+∞),ln x0=1-x0,所以﹁p:∀x∈(0,+∞),ln x≠1-x.6.命题p“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是( D )(A)∀x∈R,∃n∈N*,使得n<x2(B)∀x∈R,∀n∈N*,使得n<x2(C)∃x∈R,∃n∈N*,使得n<x2(D)∃x0∈R,∀n∈N*,使得n<解析:改变量词,否定结论.所以﹁p应为∃x0∈R,∀n∈N*,使得n<.7.(2018·河北“五个一”名校联考)命题“∃x0∈R,1<f(x0)≤2”的否定是.答案:∀x∈R,f(x)≤1或f(x)>28.若命题“∃x0∈R,使得+(a-1)x0+1<0”是真命题,则实数a的取值范围是.解析:因为“∃x0∈R,使得+(a-1)x0+1<0”是真命题,所以Δ=(a-1)2-4>0,即(a-1)2>4,所以a-1>2或a-1<-2,所以a>3或a<-1.答案:(-∞,-1)∪(3,+∞)9.已知命题p:x2+2x-3>0;命题q:>1,若“(﹁q)∧p”为真,则x的取值范围是.解析:因为“(﹁q)∧p”为真,即q假p真,又q为真命题时,<0,即2<x<3,所以q为假命题时,有x≥3或x≤2.p为真命题时,由x2+2x-3>0,解得x>1或x<-3.由得x≥3或1<x≤2或x<-3,所以x的取值范围是{x|x≥3或1<x≤2或x<-3}.答案:(-∞,-3)∪(1,2]∪[3,+∞)能力提升(时间:15分钟)10.下列命题中,真命题是( D )(A)∃x0∈R,使得≤0(B)sin2x+≥3(x≠kπ,k∈Z)(C)∀x∈R,2x>x2(D)a>1,b>1是ab>1的充分不必要条件解析:对∀x∈R都有e x>0,所以A错误;当x=-时,sin2x+=-1<3,所以B错误;当x=2时,2x=x2,所以C错误;a>1,b>1⇒ab>1,而当a=b=-2时,ab>1成立,a>1,b>1不成立,所以D 正确.11.(2018·北京朝阳区模拟)已知函数f(x)=a2x-2a+1.若命题“∀x∈(0,1),f(x)≠0”是假命题,则实数a的取值范围是( D ) (A)(,1) (B)(1,+∞)(C)(,+∞) (D)(,1)∪(1,+∞)解析:因为函数f(x)=a2x-2a+1,命题“∀x∈(0,1),f(x)≠0”是假命题,所以原命题的否定“∃x0∈(0,1),使f(x0)=0”是真命题,所以f(1)f(0)<0,即(a2-2a+1)(-2a+1)<0,所以(a-1)2(2a-1)>0,解得a>,且a≠1.所以实数a的取值范围是(,1)∪(1,+∞).12.(2018·江西红色七校联考)已知函数f(x)=给出下列两个命题:命题p:∃m∈(-∞,0),方程f(x)=0有解,命题q:若m=,则f(f(-1))=0.那么,下列命题为真命题的是( B )(A)p∧q (B)(﹁p)∧q(C)p∧(﹁q) (D)(﹁p)∧(﹁q)解析:因为3x>0,当m<0时,m-x2<0,所以命题p为假命题;当m=时,因为f(-1)=3-1=,所以f(f(-1))=f()=-()2=0,所以命题q为真命题,逐项检验可知,只有(﹁p)∧q为真命题.13.(2018·广东汕头一模)已知命题p:关于x的方程x2+ax+1=0没有实根;命题q:∀x>0,2x-a>0.若“﹁p”和“p∧q”都是假命题,则实数a的取值范围是( C )(A)(-∞,-2)∪(1,+∞) (B)(-2,1](C)(1,2) (D)(1,+∞)解析:因为“﹁p”和“p∧q”都是假命题,所以p真,q假.由p真,得Δ=a2-4<0,解之得-2<a<2.∀x>0,2x-a>0等价于a<2x恒成立,则a≤1.所以q假时,a>1.由得1<a<2,则a的取值范围是(1,2).14.(2018·郑州质量预测)已知函数f(x)=x+,g(x)=2x+a,若∀x1∈[,1],∃x2∈[2,3],使得f(x1)≤g(x2),则实数a的取值范围是.解析:依题意知f(x)max≤g(x)max.因为f(x)=x+在[,1]上是减函数,所以f(x)max=f()=.又g(x)=2x+a在[2,3]上是增函数,所以g(x)max=g(3)=8+a,因此≤8+a,则a≥.答案:[,+∞)第1节函数及其表示【选题明细表】基础巩固(时间:30分钟)1.函数g(x)=+log2(6-x)的定义域是( D )(A){x|x>6} (B){x|-3<x<6}(C){x|x>-3} (D){x|-3≤x<6}解析:由解得-3≤x<6,故函数的定义域为{x|-3≤x<6}.故选D.2.设f(x)=则f(f(-2))等于( C )(A)-1 (B) (C) (D)解析:因为-2<0,所以f(-2)=2-2=>0,所以f(f(-2))=f()=1-=1-=.故选C.3.如果f()=,则当x≠0且x≠1时,f(x)等于( B )(A)(x≠0且x≠1) (B)(x≠0且x≠1)(C)(x≠0且x≠1) (D)-1(x≠0且x≠1)解析:令t=,t≠0,则x=,则f()=可化为f(t)==(t≠1),所以f(x)=(x≠0,x≠1).故选B.4.(2016·全国Ⅱ卷)下列函数中,其定义域和值域分别与函数y=10lg x 的定义域和值域相同的是( D )(A)y=x (B)y=lg x(C)y=2x(D)y=解析:由y=10lg x定义域值域均为(0,+∞),与D符合.故选D.5.下列函数中,与y=x相同的函数是( B )(A)y=(B)y=lg 10x(C)y=(D)y=()2+1解析:对于A,与函数y=x的对应关系不同;对于B,与函数y=x的定义域相同,对应关系也相同,是同一函数;对于C,与函数y=x的定义域不同;对于D,与函数y=x的定义域不同.故选B.6.(2018·西安联考)已知函数f(x)=-x2+4x,x∈[m,5]的值域是[-5,4],则实数m的取值范围是( C )(A)(-∞,-1) (B)(-1,2](C)[-1,2] (D)[2,5]解析:因为f(x)=-x2+4x=-(x-2)2+4,所以当x=2时,f(2)=4,由f(x)=-x2+4x=-5,解得x=5或x=-1,所以要使函数在[m,5]的值域是[-5,4],则-1≤m≤2,故选C.7.(2018·石家庄质检)设函数f(x)=若f(f())=2,则实数a为( D )(A)- (B)- (C)(D)解析:易得f()=2×+a=+a.当+a<1时,f(f())=f(+a)=3+3a,所以3+3a=2,a=-,不满足+a<1,舍去.当+a≥1,即a≥-时,f(f())=log2(+a)=2,解得a=.故选D.8.(2018·西安铁中检测)已知函数f(2x)的定义域为[-1,1],则函数y=f(log2x)的定义域为.解析:由-1≤x≤1,知≤2x≤2,所以在函数y=f(log2x)中,有≤log2x≤2,因此≤x≤4,即y=f(log2x)的定义域为[,4].答案:[,4]能力提升(时间:15分钟)9.已知函数f(x)=且f(a)=-3,则f(6-a)等于( A )(A)- (B)- (C)- (D)-解析:当a≤1时,f(a)=2a-1-2=-3,即2a-1=-1,不成立,舍去;当a>1时,f(a)=-log2(a+1)=-3,即log2(a+1)=3,解得a=7,此时f(6-a)=f(-1)=2-2-2=-.故选A.10.已知函数f(x)=则f(x)的值域是( B )(A)[1,+∞) (B)[0,+∞)(C)(1,+∞) (D)[0,1)∪(1,+∞)解析:由f(x)=知当x≤1时,x2≥0;当x>1时,x+-3≥2-3=4-3=1,当且仅当x=,即x=2时取“=”,取并集得f(x)的值域是[0,+∞).故选B.11.已知f(x)是一次函数,且f[f(x)]=x+2,则 f(x)等于( A )(A)x+1 (B)2x-1(C)-x+1 (D)x+1或-x-1解析:设f(x)=kx+b(k≠0),又f[f(x)]=x+2,得k(kx+b)+b=x+2,即k2x+kb+b=x+2.所以k2=1,且kb+b=2,解得k=b=1,则f(x)=x+1.故选A.12.(2018·河南八市联合检测)设函数f(x)=若对任意的a∈R都有f(f(a))=2f(a)成立,则λ的取值范围是( C )(A)(0,2] (B)[0,2](C)[2,+∞) (D)(-∞,2)解析:当a≥1时,2a≥2,所以f(f(a))=f(2a)==2f(a)恒成立,当a<1时,f(f(a))=f(-a+λ)=2f(a)=2λ-a,所以λ-a≥1,即λ≥a+1恒成立,由题意,λ≥(a+1)max,λ≥2,综上,λ的取值范围是[2,+∞).故选C.13.(2018·江西上饶质检)已知函数f(x)=若a[f(a)- f(-a)]>0,则实数a的取值范围为( D )(A)(1,+∞)(B)(2,+∞)(C)(-∞,-1)∪(1,+∞)(D)(-∞,-2)∪(2,+∞)解析:当a>0时,不等式a[f(a)-f(-a)]>0可化为a2+a-3a>0,解得a>2,当a<0时,不等式a[f(a)-f(-a)]>0可化为-a2-2a<0,解得a<-2,综上所述,a的取值范围为(-∞,-2)∪(2,+∞).故选D.14.设函数f(x)=则使得f(x)≤2成立的x的取值范围是.解析:当x<1时,e x-1≤2,解得x≤1+ln 2,所以x<1.当x≥1时,≤2,解得x≤8,所以1≤x≤8.综上可知x的取值范围是(-∞,8].答案:(-∞,8]第2节函数的单调性与最值【选题明细表】基础巩固(时间:30分钟)1.(2018·湖北省高三调研)函数f(x)=log a(x2-4x-5)(a>1)的单调递增区间是( D )(A)(-∞,-2) (B)(-∞,-1)(C)(2,+∞) (D)(5,+∞)解析:由t=x2-4x-5>0,得x<-1或x>5,且函数t=x2-4x-5(x<-1或x>5)在区间(5,+∞)上单调递增,又函数y=log a t(a>1)为单调递增函数,故函数f(x)的单调递增区间是(5,+∞).故选D.2.(2018·郑州质检)下列函数中,在区间(-1,1)上为减函数的是( D )(A)y= (B)y=cos x(C)y=ln(x+1) (D)y=2-x解析:因为y=与y=ln(x+1)在(-1,1)上为增函数,且y=cos x在(-1,1)上不具备单调性,所以A,B,C不满足题意;只有y=2-x=()x在(-1,1)上是减函数.故选D.3.(2018·湖师附中)如果f(x)=ax2-(2-a)x+1在区间(-∞,]上为减函数,则a的取值范围是( C )(A)(0,1] (B)[0,1) (C)[0,1] (D)(0,1)解析:a=0时,f(x)=-2x+1在区间(-∞,]上为减函数,符合题意;当a≠0时,如果f(x)=ax2-(2-a)x+1在区间(-∞,]上为减函数,必有解得0<a≤1.综上所述,a的取值范围是[0,1],故选C.4.(2018·唐山二模)函数y=,x∈(m,n]的最小值为0,则m的取值范围是( D )(A)(1,2) (B)(-1,2) (C)[1,2) (D)[-1,2)解析:函数y===-1在区间(-1,+∞)上是减函数,且f(2)=0,所以n=2,根据题意,x ∈(m,n]时,y min =0, 所以m 的取值范围是[-1,2).故选D. 5.设函数f(x)=若f(a+1)≥f(2a-1),则实数a 的取值范围是( B )(A)(-∞,1] (B)(-∞,2] (C)[2,6] (D)[2,+∞)解析:易知函数f(x)在定义域(-∞,+∞)上是增函数, 因为f(a+1)≥f(2a-1), 所以a+1≥2a-1,解得a ≤2.故实数a 的取值范围是(-∞,2].故选B. 6.已知f(x)=2x ,a=(),b=(),c=log 2,则 f(a),f(b),f(c)的大小顺序为( B )(A)f(b)<f(a)<f(c) (B)f(c)<f(b)<f(a) (C)f(c)<f(a)<f(b) (D)f(b)<f(c)<f(a) 解析:易知f(x)=2x 在(-∞,+∞)上是增函数, 又a=()=()>()=b>0,c=log 2<0,所以f(a)>f(b)>f(c).故选B.7.(2018·石家庄调研)函数f(x)=()x-log2(x+2)在区间[-1,1]上的最大值为.解析:由于y=()x在R上递减,y=log2(x+2)在[-1,1]上递增,所以f(x)在[-1,1]上单调递减,故f(x)在[-1,1]上的最大值为f(-1)=3.答案:38.设函数f(x)=g(x)=x2f(x-1),则函数g(x)的递减区间是.解析:由题意知g(x)=函数的图象为如图所示的实线部分,根据图象,g(x)的减区间是[0,1).答案:[0,1)9.对于任意实数a,b,定义min{a,b}=设函数f(x)=-x+3,g(x)=log2x,则函数h(x)=min{f(x),g(x)}的最大值是.解析:法一在同一坐标系中,作函数f(x),g(x)图象,依题意,h(x)的图象如图所示.易知点A(2,1)为图象的最高点,因此h(x)的最大值为h(2)=1.法二依题意,h(x)=当0<x≤2时,h(x)=log2x是增函数,当x>2时,h(x)=3-x是减函数.所以当x=2时,h(x)取最大值h(2)=1.答案:1能力提升(时间:15分钟)10.(2017·全国Ⅰ卷)函数f(x)在(-∞,+∞)单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是( D ) (A)[-2,2] (B)[-1,1] (C)[0,4] (D)[1,3]解析:因为f(x)是奇函数,且f(1)=-1,所以f(-1)=-f(1)=1.所以f(1)≤f(x-2)≤f(-1).又因为f(x)在(-∞,+∞)上单调递减,所以-1≤x-2≤1.所以1≤x≤3.故选D.11.(2018·北京海淀期中)若函数f(x)=的值域为[-1,1],则实数a的取值范围是( A )(A)[1,+∞) (B)(-∞,-1](C)(0,1] (D)(-1,0)解析:当x≤a时,f(x)=cos x∈[-1,1],则当x>a时,-1≤≤1,即x≤-1或x≥1,所以a≥1.故选A.12.已知f(x)是定义在R上的偶函数,且在区间(-∞,0)上单调递增,若实数a满足f(2|a-1|)>f(-),则a的取值范围是.解析:因为f(x)在R上是偶函数,且在区间(-∞,0)上单调递增,所以f(x)在(0,+∞)上是减函数.则f(2|a-1|)>f(-)=f(),因此2|a-1|<=,又y=2x是增函数,所以|a-1|<,解得<a<.答案:(,)13.(2018·大理月考)已知f(x)是定义在[-1,1]上的奇函数且f(1)=1,当x1,x2∈[-1,1],且x1+x2≠0时,有>0,若f(x)≤m2-2am+1对所有x∈[-1,1],a∈[-1,1]恒成立,则实数m的取值范围是.解析:用-x2替换x2,得>0,由于f(x)是奇函数,所以>0,等价于函数f(x)是定义域上的增函数,所以f(x)max=f(1)=1.不等式f(x)≤m2-2am+1对所有x∈[-1,1]恒成立,即m2-2am+1≥1对任意a∈[-1,1]恒成立,即2ma-m2≤0对任意a∈[-1,1]恒成立,令g(a)=2ma-m2,则只要即可,解得m≤-2或者m≥2或者m=0.故所求的m的取值范围是(-∞,-2]∪{0}∪[2,+∞).答案:(-∞,-2]∪{0}∪[2,+∞)14.(2018·成都七中调研)已知函数f(x)=a-.(1)求f(0);(2)探究f(x)的单调性,并证明你的结论;(3)若f(x)为奇函数,求满足f(ax)<f(2)的x的范围.解:(1)f(0)=a-=a-1.(2)f(x)在R上单调递增.理由如下:因为f(x)的定义域为R,所以任取x1,x2∈R且x1<x2,则f(x1)-f(x2)=a--a+=, 因为y=2x在R上单调递增且x1<x2,所以0<<,所以-<0,+1>0,+1>0.所以f(x1)-f(x2)<0,即f(x1)<f(x2).所以f(x)在R上单调递增.(3)因为f(x)是奇函数,所以f(-x)=-f(x),则a-=-a+,解得a=1(或用f(0)=0去解).所以f(ax)<f(2)即 f(x)<f(2),又因为f(x)在R上单调递增,所以x<2.所以不等式的解集为(-∞,2).第3节函数的奇偶性与周期性【选题明细表】基础巩固(时间:30分钟)1.(2018·云南玉溪模拟)下列函数中,既是偶函数,又在(0,1)上单调递增的函数是( C )(A)y=|log3x| (B)y=x3(C)y=e|x| (D)y=cos |x|解析:对于A选项,函数定义域是(0,+∞),故是非奇非偶函数;对于B 选项,函数y=x3是一个奇函数,不正确;对于C选项,函数的定义域是R,是偶函数,且当x∈(0,+∞)时,函数是增函数,故在(0,1)上单调递增,选项C正确;对于D选项,函数y=cos |x|是偶函数,在(0,1)上单调递减,不正确.故选C.2.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(-2,0)时,f(x)=2x2,则f(2 019)等于( B )(A)-2 (B)2 (C)-98 (D)98解析:由f(x+4)=f(x)知,f(x)是周期为4的周期函数,f(2 019)=f(504×4+3)=f(3)=f(-1).由-1∈(-2,0)得f(-1)=2,所以f(2 019)=2.故选B.3.(2018·石家庄一模)已知f(x)为偶函数,且当x∈[0,2)时,f(x)=2sin x,当x∈[2,+∞)时,f(x)=log2x,则f(-)+f(4)等于( D )(A)-+2 (B)1(C)3 (D)+2解析:因为f(-)=f()=2sin =,f(4)=log24=2,所以f(-)+f(4)=+2.4.设函数f(x)=,则下列结论错误的是( D )(A)|f(x)|是偶函数(B)-f(x)是奇函数(C)f(x)·|f(x)|是奇函数(D)f(|x|)·f(x)是偶函数解析:f(-x)==-f(x),所以函数f(x)是奇函数,|f(-x)|=|f(x)|,函数|f(x)|是偶函数,-f(x)是奇函数,f(x)·|f(x)|为奇函数,f(|x|)是偶函数,所以f(|x|)·f(x)是奇函数,所以错的是D.故选D.5.(2018·河北“五个一”名校联盟二模)设函数f(x)是定义在R上的奇函数,且f(x)=则g(-8)等于( A )(A)-2 (B)-3 (C)2 (D)3解析:法一当x<0时,-x>0,且f(x)为奇函数,则f(-x)=log3(1-x),所以f(x)=-log3(1-x).因此g(x)=-log3(1-x),x<0,故g(-8)=-log39=-2.法二由题意知,g(-8)=f(-8)=-f(8)=-log39=-2.故选A.6.(2018·南昌模拟)若定义域为R的函数f(x)在(4,+∞)上为减函数,且函数y=f(x+4)为偶函数,则( D )(A)f(2)>f(3) (B)f(2)>f(5)(C)f(3)>f(5) (D)f(3)>f(6)解析:因为y=f(x+4)为偶函数,所以f(-x+4)=f(x+4),因此y=f(x)的图象关于直线x=4对称,所以f(2)=f(6),f(3)=f(5).又y=f(x)在(4,+∞)上为减函数,所以f(5)>f(6),所以f(3)>f(6).故选D.7.若f(x)=ln(e3x+1)+ax是偶函数,则a= .解析:由于f(-x)=f(x),所以ln(e-3x+1)-ax=ln(e3x+1)+ax,化简得2ax+3x=0(x∈R),则2a+3=0.所以a=-.答案:-8.已知f(x)是定义在R上的偶函数,且f(x+2)=-,当2≤x≤3时,f(x)=x,则f(105.5)= .解析:f(x+4)=f[(x+2)+2]=-=f(x).故函数的周期为4,所以f(105.5)=f(4×27-2.5)=f(-2.5)=f(2.5),因为2≤2.5≤3,由题意,得f(2.5)=2.5,所以f(105.5)=2.5.答案:2.59.设函数f(x)=ln(1+|x|)-,则使得f(x)>f(2x-1)成立的x的取值范围是.解析:由f(x)=ln(1+|x|)-,知f(x)为R上的偶函数,于是f(x)> f(2x-1),即为f(|x|)>f(|2x-1|).当x≥0时,f(x)=ln(1+x)-,所以f(x)为[0,+∞)上的增函数,则由f(|x|)>f(|2x-1|)得|x|>|2x-1|,两边平方,整理得3x2-4x+1<0,解得<x<1.答案:(,1)能力提升(时间:15分钟)10.(2018·吉林省实验中学模拟)已知f(x)是定义在R上的偶函数,且f(x+4)=f(x),当x∈[-2,0]时,f(x)=-2x,则f(1)+f(4)等于( D ) (A)(B)1 (C)-1 (D)-解析:因为f(x)是定义在R上的偶函数,且f(x+4)=f(x),所以f(x)是以4为周期的周期函数,又因为x∈[-2,0]时,f(x)=-2x,所以f(1)+f(4)=f(-1)+f(0)=-2-1-20=--1=-.故选D.11.(2018·山东、湖北部分重点中学模拟)已知定义在R上的函数f(x)在[1,+∞)上单调递减,且f(x+1)是偶函数,不等式f(m+2)≥f(x-1)对任意的x∈[-1,0]恒成立,则实数m的取值范围是( A )(A)[-3,1](B)[-4,2](C)(-∞,-3]∪[1,+∞)(D)(-∞,-4]∪[2,+∞)解析:f(x+1)是偶函数,所以f(-x+1)=f(x+1),所以f(x)的图象关于x=1对称,由f(m+2)≥f(x-1)得|(m+2)-1|≤|(x-1)-1|,所以|m+1|≤2,解得-3≤m≤1.故选A.12.(2017·安徽马鞍山三模)函数f(x)的定义域为R,若f(x+1)与f(x-1)都是奇函数,则f(5)等于( B )(A)-1 (B)0 (C)1 (D)5解析:因为函数f(x+1),f(x-1)都是奇函数,所以f(1)=f(-1)=0,函数f(x)既关于(1,0)对称,又关于(-1,0)对称, 即f(2-x)=-f(x),f(-2-x)=-f(x),那么f(2-x)=f(-2-x),即f(2+x)=f(-2+x),所以f(x)=f(x+4),因此函数的周期是4,f(5)=f(1)=0.故选B.13.已知奇函数f(x)=则f(-2)的值等于.解析:因为函数f(x)为奇函数,所以f(0)=0,则30-a=0,所以a=1,所以当x≥0时,f(x)=3x-1,则f(2)=32-1=8,因此f(-2)=-f(2)=-8.答案:-814.已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为.解析:因为当0≤x<2时,f(x)=x3-x,又f(x)是R上最小正周期为2的周期函数,且f(0)=0,则f(6)=f(4)=f(2)=f(0)=0.又f(1)=0,所以f(3)=f(5)=f(1)=0,故函数y=f(x)的图象在区间[0,6]上与x轴的交点有7个.答案:715.(2018·湖北荆州中学质检)若函数f(x)=为奇函数,g(x)=则不等式g(x)>1的解集为.解析:因为f(x)=为奇函数且定义域为R,所以f(0)=0,即=0,解得a=-1,所以g(x)=所以当x>0时,由-ln x>1,解得x∈(0,);当x≤0时,由e-x>1,解得x∈(-∞,0),所以不等式g(x)>1的解集为(-∞,0)∪(0,).答案:(-∞,0)∪(0,)第4节幂函数与二次函数【选题明细表】基础巩固(时间:30分钟)1.幂函数f(x)=(m2-4m+4)·在(0,+∞)上为增函数,则m的值为( B )(A)1或3 (B)1 (C)3 (D)2解析:由题意知解得m=1.2.(2018·山东济宁一中检测)下列命题正确的是( D )(A)y=x0的图象是一条直线(B)幂函数的图象都经过点(0,0),(1,1)(C)若幂函数y=x n是奇函数,则y=x n是增函数(D)幂函数的图象不可能出现在第四象限解析:A中,当α=0时,函数y=xα的定义域为{x|x≠0,x∈R},其图象为一条直线上挖去一点,A错;B中,y=x n,当n<0时,图象不过原点,B不正确.C中,当n<0,y=x n在(-∞,0),(0,+∞)上为减函数,C错误.幂函数图象一定过第一象限,一定不过第四象限,D正确.3.(2018·郑州检测)若函数f(x)=x2+ax+b的图象与x轴的交点为(1,0)和(3,0),则函数f(x)( A )(A)在(-∞,2]上递减,在[2,+∞)上递增(B)在(-∞,3)上递增(C)在[1,3]上递增(D)单调性不能确定解析:由已知可得该函数图象的对称轴为x=2,又二次项系数为1>0,所以f(x)在(-∞,2]上是递减的,在[2,+∞)上是递增的.4.设a=(),b=(),c=(),则a,b,c的大小关系是( B )(A)a<c<b (B)b<c<a(C)b<a<c (D)c<b<a解析:令函数f(x)=,易知函数f(x)=在(0,+∞)上为增函数,又>,所以a=()>()=c,令函数g(x)=()x,易知函数g(x)=()x在(0,+∞)上为减函数,又>,所以b=()<()=c.综上可知,b<c<a,故选B.5.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1,给出下面四个结论:①b2>4ac;②2a-b=1;③a-b+c=0;④5a<b.其中正确的是( B )(A)②④(B)①④(C)②③(D)①③解析:因为图象与x轴交于两点,所以b2-4ac>0,即b2>4ac,①正确;对称轴为x=-1,即-=-1,2a-b=0,②错误;结合图象,当x=-1时,y=a-b+c>0,③错误;由对称轴为x=-1知,b=2a,又函数图象开口向下,所以a<0,所以5a<2a,即5a<b,④正确.故选B.6.若关于x的不等式x2-4x-2-a>0在区间(1,4)内有解,则实数a的取值范围是( A )(A)(-∞,-2) (B)(-2,+∞)(C)(-6,+∞) (D)(-∞,-6)解析:不等式x2-4x-2-a>0在区间(1,4)内有解等价于a<(x2-4x-2)max, 令f(x)=x2-4x-2,x∈(1,4),f(x)<f(4)=-2,所以a<-2.7.二次函数f(x)=2x2+bx+c满足{x|f(x)=x}={1},则f(x)在区间[-2,2]上的最大值为( C )(A)4 (B)8 (C)16 (D)20解析:由题方程2x2+bx+c=x仅有一个根1,即2x2+(b-1)x+c=0仅有一个根.得b=-3,c=2.f(x)=2x2-3x+2,对称轴为x=,f(x)max=f(-2)=16.故选C.8.(2018·武汉模拟)若函数f(x)=(x+a)(bx+2a)(常数a,b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)= .解析:由f(x)是偶函数知f(x)的图象关于y轴对称,所以b=-2,所以f(x)=-2x2+2a2,又f(x)的值域为(-∞,4],所以2a2=4,故f(x)=-2x2+4.答案:-2x2+49.(2018·泉州质检)若二次函数f(x)=ax2-x+b(a≠0)的最小值为0,则a+4b的取值范围是.解析:依题意,知a>0,且Δ=1-4ab=0,所以4ab=1,且b>0.故a+4b≥2=2.当且仅当a=4b,即a=1,b=时等号成立.所以a+4b的取值范围是[2,+∞).答案:[2,+∞)能力提升(时间:15分钟)10.在同一坐标系内,函数y=x a(a≠0)和y=ax+的图象可能是( B )解析:若a<0,由y=x a的图象知排除C,D选项,由y=ax+的图象知选项B有可能;若a>0,由y=x a的图象知排除A,B选项,但y=ax+的图象均不适合.综上选B.11.(2018·秦皇岛模拟)已知函数f(x)=ax2+bx+c(a≠0),且2是f(x)的一个零点,-1是f(x)的一个极小值点,那么不等式f(x)>0的解集是( C )(A)(-4,2)(B)(-2,4)(C)(-∞,-4)∪(2,+∞)(D)(-∞,-2)∪(4,+∞)解析:依题意,f(x)是二次函数,其图象是抛物线,开口向上,对称轴为x=-1,方程ax2+bx+c=0的一个根是2,另一个根是-4.因此f(x)= a(x+4)(x-2)(a>0),于是f(x)>0,解得x>2或x<-4.12.(2018·浙江“超级全能生”模拟)已知在(-∞,1]上递减的函数f(x)=x2-2tx+1,且对任意的x1,x2∈[0,t+1],总有|f(x1)-f(x2)|≤2,则实数t的取值范围是( B )(A)[-,] (B)[1,](C)[2,3] (D)[1,2]解析:由于f(x)=x2-2tx+1的图象的对称轴为x=t.又y=f(x)在(-∞,1]上是减函数,所以t≥1.则在区间[0,t+1]上,f(x)max=f(0)=1,f(x)min=f(t)=t2-2t2+1=-t2+1,要使对任意的x1,x2∈[0,t+1],都有|f(x1)-f(x2)|≤2,只需1-(-t2+1)≤2,解得-≤t≤.又t≥1,所以1≤t≤.13.已知二次函数f(x)满足f(2+x)=f(2-x),且f(x)在[0,2]上是增函数,若f(a)≥f(0),则实数a的取值范围是.解析:由题意可知函数f(x)的图象开口向下,对称轴为x=2(如图),若f(a)≥f(0),从图象观察可知0≤a≤4.答案:[0,4]14.如果函数f(x)=ax2+2x-3在区间(-∞,4)上单调递增,则实数a的取值范围是.解析:当a=0时,f(x)=2x-3在(-∞,4)上单调递增.当a≠0时,若f(x)在(-∞,4)上单调递增.则解之得-≤a<0.综上可知,实数a的取值范围是[-,0].答案:[-,0]15.已知函数f(x)=ax2+bx+c(a>0,b,c∈R).(1)若函数f(x)的最小值是f(-1)=0,且c=1,F(x)=求F(2)+F(-2)的值;(2)若a=1,c=0,且|f(x)|≤1在区间(0,1]上恒成立,试求b的取值范围.解:(1)由已知c=1,a-b+c=0,且-=-1,解得a=1,b=2,所以f(x)=(x+1)2.所以F(x)=所以F(2)+F(-2)=(2+1)2+[-(-2+1)2]=8.(2)由a=1,c=0,得f(x)=x2+bx,从而|f(x)|≤1在区间(0,1]上恒成立等价于-1≤x2+bx≤1在区间(0,1]上恒成立,即b≤-x且b≥--x在(0,1]上恒成立.又-x的最小值为0,--x的最大值为-2.所以-2≤b≤0.故b的取值范围是[-2,0].第5节指数与指数函数【选题明细表】基础巩固(时间:30分钟)1.函数y=a x-(a>0,且a≠1)的图象可能是( D )解析:若a>1时,y=a x-是增函数;当x=0时,y=1-∈(0,1),A,B不满足;若0<a<1时,y=a x-在R上是减函数;当x=0时,y=1-<0,C错,D项满足.故选D.2.(2018·湖南永州第三次模拟)下列函数中,与函数y=2x-2-x的定义域、单调性与奇偶性均一致的是( B )(A)y=sin x (B)y=x3(C)y=()x (D)y=log2x解析:y=2x-2-x在(-∞,+∞)上是增函数且是奇函数,y=sin x不单调,y=log2x定义域为(0,+∞),y=()x是减函数,三者不满足,只有y=x3的定义域、单调性、奇偶性与之一致.3.函数f(x)=a x-1(a>0,a≠1)的图象恒过点A,下列函数中图象不经过点A的是( A )(A)y= (B)y=|x-2|(C)y=2x-1 (D)y=log2(2x)解析:由题意,得点A(1,1),将点A(1,1)代入四个选项,y=的图象不过点A(1,1).4.设x>0,且1<b x<a x,则( C )(A)0<b<a<1 (B)0<a<b<1(C)1<b<a (D)1<a<b解析:因为x>0时,1<b x,所以b>1.因为x>0时,b x<a x,所以x>0时,()x>1.所以>1,所以a>b.所以1<b<a.5.函数f(x)=a x-b的图象如图所示,其中a,b为常数,则下列结论正确的是( D )(A)a>1,b<0(B)a>1,b>0(C)0<a<1,b>0(D)0<a<1,b<0解析:由f(x)=a x-b的图象可以观察出,函数f(x)=a x-b在定义域上单调递减,所以0<a<1.函数f(x)=a x-b的图象是在f(x)=a x的基础上向左平移得到的,所以b<0.6.已知f(x)=2x+2-x,f(m)=3,且m>0,若a=f(2m),b=2f(m),c=f(m+2),则a,b,c的大小关系为( D )(A)c<b<a (B)a<c<b(C)a<b<c (D)b<a<c解析:因为f(m)=2m+2-m=3,m>0,所以2m=3-2-m>2,b=2f(m)=2×3=6,a=f(2m)=22m+2-2m=(2m+2-m)2-2=7,c=f(m+2)=2m+2+2-m-2=4·2m+·2-m>8,所以b<a<c.故选D.7.下列说法正确的序号是.①函数y=的值域是[0,4);②(a>0,b>0)化简结果是-24;③+的值是2π-9;④若x<0,则=-x.解析:由于y=≥0(当x=2时取等号),又因为4x>0,所以16-4x<16得y<,即y<4,所以①正确;②中原式====-24,正确;由于+=|π-4|+π-5=4-π+π-5=-1,所以③不正确.由于x<0,所以④正确.答案:①②④8.不等式<4的解集为.解析:因为<4,所以<22,所以x2-x<2,即x2-x-2<0,解得-1<x<2.答案:{x|-1<x<2}9.(2018·鸡西模拟)已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[-1,0],则a+b= .解析:若a>1,则f(x)=a x+b在[-1,0]上是增函数,所以则a-1=0,无解.当0<a<1时,则f(x)=a x+b在[-1,0]上是减函数,所以解得因此a+b=-.答案:-能力提升(时间:15分钟)10.若函数f(x)=a|2x-4|(a>0,且a≠1),满足f(1)=,则f(x)的单调递减区间是( B )(A)(-∞,2] (B)[2,+∞)(C)[-2,+∞) (D)(-∞,-2]解析:由f(1)=,得a2=,解得a=或a=-(舍去),即f(x)=()|2x-4|.由于y=|2x-4|在(-∞,2]上递减,在[2,+∞)上递增,所以f(x)在(-∞,2]上递增,在[2,+∞)上递减.11.(2018·湖南郴州第二次教学质量检测)已知函数f(x)=e x-,其中e是自然对数的底数,则关于x的不等式f(2x-1)+f(-x-1)>0的解集为( B )(A)(-∞,-)∪(2,+∞) (B)(2,+∞)(C)(-∞,)∪(2,+∞) (D)(-∞,2)解析:易知f(x)=e x-在R上是增函数,且f(-x)=e-x-=-(e x-)=-f(x),所以f(x)是奇函数.由f(2x-1)+f(-x-1)>0,得f(2x-1)>f(x+1),因此2x-1>x+1,所以x>2.12.(2018·衡阳三中模拟)当x∈(-∞,-1]时,不等式(m2-m)·4x-2x<0恒成立,则实数m的取值范围是( D )。
第5节指数与指数函数【选题明细表】知识点、方法题号指数幂运算6,7指数函数的图象1,3,5指数函数的性质2,4,8,9,10,12 指数函数的图象与性质的综合应用11,13,14,15根底稳固(时间:30分钟)1.函数y =a x -(a>0,且a≠1)的图象可能是( D )解析:假设a>1时,y =a x -是增函数;当x =0时,y =1 -∈(0,1),A,B不满足;假设0<a<1时,y =a x -在R上是减函数;当x =0时,y =1 -<0,C错,D项满足.应选D.2.(2021·湖南永州第三次模拟)以下函数中,与函数y =2x -2 -x的定义域、单调性与奇偶性均一致的是( B )(A)y =sin x (B)y =x3(C)y =()x (D)y =log2x解析:y =2x -2 -x在( -∞, +∞)上是增函数且是奇函数,y =sin x不单调,y =log2x定义域为(0, +∞),y =()x是减函数,三者不满足,只有y =x3的定义域、单调性、奇偶性与之一致.3.函数f(x) =a x -1(a>0,a≠1)的图象恒过点A,以下函数中图象不经过点A的是( A )(A)y = (B)y =|x -2|(C)y =2x -1 (D)y =log2(2x)解析:由题意,得点A(1,1),将点A(1,1)代入四个选项,y =的图象不过点A(1,1).4.设x>0,且1<b x<a x,那么( C )(A)0<b<a<1 (B)0<a<b<1(C)1<b<a (D)1<a<b解析:因为x>0时,1<b x,所以b>1.因为x>0时,b x<a x,所以x>0时,()x>1.所以>1,所以a>b.所以1<b<a.5.函数f(x) =a x -b的图象如下列图,其中a,b为常数,那么以下结论正确的选项是( D )(A)a>1,b<0(B)a>1,b>0(C)0<a<1,b>0(D)0<a<1,b<0解析:由f(x) =a x -b的图象可以观察出,函数f(x) =a x -b在定义域上单调递减,所以0<a<1.函数f(x) =a x -b的图象是在f(x) =a x的根底上向左平移得到的,所以b<0.6.f(x) =2x +2 -x,f(m) =3,且m>0,假设 a =f(2m),b =2f(m),c =f(m +2),那么a,b,c的大小关系为( D )(A)c<b<a (B)a<c<b(C)a<b<c (D)b<a<c解析:因为f(m) =2m +2 -m =3,m>0,所以2m =3 -2 -m>2,b =2f(m) =2×3 =6,a =f(2m) =22m +2 -2m =(2m +2 -m)2 -2 =7,c =f(m +2) =2m +2 +2 -m -2 =4·2m +·2 -m>8,所以b<a<c.应选D.7.以下说法正确的序号是.①函数y =的值域是[0,4);②(a>0,b>0)化简结果是 -24;③ +的值是2π -9;④假设x<0,那么 = -x.解析:由于y =≥0(当x =2时取等号),又因为4x>0,所以16 -4x<16得y<,即y<4,所以①正确;②中原式 = = = = -24,正确;由于 + =|π -4| +π -5 =4 -π +π-5 = -1,所以③不正确.由于x<0,所以④正确.答案:①②④8.不等式<4的解集为.解析:因为<4,所以<22,所以x2 -x<2,即x2 -x -2<0,解得 -1<x<2.答案:{x| -1<x<2}9.(2021·鸡西模拟)函数f(x) =a x +b(a>0,a≠1)的定义域和值域都是[ -1,0],那么a +b = .解析:假设a>1,那么f(x) =a x +b在[ -1,0]上是增函数,所以那么a -1 =0,无解.当0<a<1时,那么f(x) =a x +b在[ -1,0]上是减函数,所以解得因此a +b = -.答案: -能力提升(时间:15分钟)10.假设函数f(x) =a|2x -4|(a>0,且a≠1),满足f(1) =,那么f(x)的单调递减区间是( B )(A)( -∞,2] (B)[2, +∞)(C)[ -2, +∞) (D)( -∞, -2]解析:由f(1) =,得a2 =,解得a =或a = -(舍去),即f(x) =()|2x -4|.由于y =|2x -4|在( -∞,2]上递减,在[2, +∞)上递增,所以f(x)在( -∞,2]上递增,在[2, +∞)上递减.11.(2021·湖南郴州第二次教学质量检测)函数f(x) =e x -,其中e 是自然对数的底数,那么关于x的不等式f(2x -1) +f( -x -1)>0的解集为( B )(A)( -∞, -)∪(2, +∞) (B)(2, +∞)(C)( -∞,)∪(2, +∞) (D)( -∞,2)解析:易知f(x) =e x -在R上是增函数,且f( -x) =e -x - = -(e x -) = -f(x),所以f(x)是奇函数.由f(2x -1) +f( -x -1)>0,得f(2x -1)>f(x +1),因此2x -1>x +1,所以x>2.12.(2021·衡阳三中模拟)当x∈( -∞, -1]时,不等式(m2 -m)·4x -2x<0恒成立,那么实数m的取值范围是( D )(A)( -2,1) (B)( -4,3)(C)( -3,4) (D)( -1,2)解析:因为(m2 -m)·4x -2x<0在x∈( -∞, -1]上恒成立,所以(m2 -m)<在x∈( -∞, -1]上恒成立,由于f(x) =在x∈( -∞, -1]上单调递减,所以f(x)≥2,所以m2 -m<2,所以 -1<m<2.应选D.13.设偶函数g(x) =a|x +b|在(0, +∞)上单调递增,那么g(a)与g(b -1)的大小关系是.解析:由于g(x) =a|x +b|是偶函数,知b =0,又g(x) =a|x|在(0, +∞)上单调递增,得a>1.那么g(b -1) =g( -1) =g(1),故g(a)>g(1) =g(b -1).答案:g(a)>g(b -1)14.函数f(x) =a x(a>0,a≠1)在区间[ -1,2]上的最||大值为8,最||小值为m.假设函数g(x) =(3 -10m)是单调增函数,那么 a= .解析:根据题意,得3 -10m>0,解得m<;当a>1时,函数f(x) =a x在区间[ -1,2]上单调递增,最||大值为a2 =8,解得a =2,最||小值为m =a -1 = =>,不合题意,舍去;当0<a<1时,函数f(x) =a x在区间[ -1,2]上单调递减,最||大值为a -1 =8,解得a =,最||小值为m =a2 =<,满足题意.综上,a =. 答案:15.函数f(x) =x2 -bx +c满足f(x +1) =f(1 -x),且f(0) =3,那么f(b x)与f(c x)的大小关系是.解析:由f(x +1) =f(1 -x)知y =f(x)的图象关于x =1对称,所以b =2.又f(0) =3,得c =3.那么f(b x) =f(2x),f(c x) =f(3x).当x≥0时,3x≥2x≥1,且f(x)在[1, +∞)上是增函数,所以f(3x)≥f(2x).当x<0时,0<3x<2x<1,且f(x)在( -∞,1]上是减函数,所以f(3x)>f(2x),从而有f(c x)≥f(b x).答案:f(c x)≥f(b x)。
第4节幂函数与二次函数【选题明细表】基础巩固(时间:30分钟)1.幂函数f(x)=(m2-4m+4)·在(0,+∞)上为增函数,则m的值为( B )(A)1或3 (B)1 (C)3 (D)2解析:由题意知解得m=1.2.(2018·山东济宁一中检测)下列命题正确的是( D )(A)y=x0的图象是一条直线(B)幂函数的图象都经过点(0,0),(1,1)(C)若幂函数y=x n是奇函数,则y=x n是增函数(D)幂函数的图象不可能出现在第四象限解析:A中,当α=0时,函数y=xα的定义域为{x|x≠0,x∈R},其图象为一条直线上挖去一点,A错;B中,y=x n,当n<0时,图象不过原点,B不正确.C中,当n<0,y=x n在(-∞,0),(0,+∞)上为减函数,C错误.幂函数图象一定过第一象限,一定不过第四象限,D正确.3.(2018·郑州检测)若函数f(x)=x2+ax+b的图象与x轴的交点为(1,0)和(3,0),则函数f(x)( A )(A)在(-∞,2]上递减,在[2,+∞)上递增(B)在(-∞,3)上递增(C)在[1,3]上递增(D)单调性不能确定解析:由已知可得该函数图象的对称轴为x=2,又二次项系数为1>0,所以f(x)在(-∞,2]上是递减的,在[2,+∞)上是递增的.4.设a=(),b=(),c=(),则a,b,c的大小关系是( B )(A)a<c<b (B)b<c<a(C)b<a<c (D)c<b<a解析:令函数f(x)=,易知函数f(x)=在(0,+∞)上为增函数,又>,所以a=()>()=c,令函数g(x)=()x,易知函数g(x)=()x在(0,+∞)上为减函数,又>,所以b=()<()=c.综上可知,b<c<a,故选B. 5.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1,给出下面四个结论:①b2>4ac;②2a-b=1;③a-b+c=0;④5a<b.其中正确的是( B )(A)②④(B)①④(C)②③(D)①③解析:因为图象与x轴交于两点,所以b2-4ac>0,即b2>4ac,①正确;对称轴为x=-1,即-=-1,2a-b=0,②错误;结合图象,当x=-1时,y=a-b+c>0,③错误;由对称轴为x=-1知,b=2a,又函数图象开口向下,所以a<0,所以5a<2a,即5a<b,④正确.故选B.6.若关于x的不等式x2-4x-2-a>0在区间(1,4)内有解,则实数a的取值范围是( A )(A)(-∞,-2) (B)(-2,+∞)(C)(-6,+∞) (D)(-∞,-6)解析:不等式x2-4x-2-a>0在区间(1,4)内有解等价于a<(x2-4x-2)max, 令f(x)=x2-4x-2,x∈(1,4),f(x)<f(4)=-2,所以a<-2.7.二次函数f(x)=2x2+bx+c满足{x|f(x)=x}={1},则f(x)在区间[-2,2]上的最大值为( C )(A)4 (B)8 (C)16 (D)20解析:由题方程2x2+bx+c=x仅有一个根1,即2x2+(b-1)x+c=0仅有一个根.得b=-3,c=2.f(x)=2x2-3x+2,对称轴为x=,f(x)max=f(-2)=16.故选C.8.(2018·武汉模拟)若函数f(x)=(x+a)(bx+2a)(常数a,b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)= .解析:由f(x)是偶函数知f(x)的图象关于y轴对称,所以b=-2,所以f(x)=-2x2+2a2,又f(x)的值域为(-∞,4],所以2a2=4,故f(x)=-2x2+4.答案:-2x2+49.(2018·泉州质检)若二次函数f(x)=ax2-x+b(a≠0)的最小值为0,则a+4b的取值范围是.解析:依题意,知a>0,且Δ=1-4ab=0,所以4ab=1,且b>0.故a+4b≥2=2.当且仅当a=4b,即a=1,b=时等号成立.所以a+4b的取值范围是[2,+∞).答案:[2,+∞)能力提升(时间:15分钟)10.在同一坐标系内,函数y=x a(a≠0)和y=ax+的图象可能是( B )解析:若a<0,由y=x a的图象知排除C,D选项,由y=ax+的图象知选项B 有可能;若a>0,由y=x a的图象知排除A,B选项,但y=ax+的图象均不适合.综上选B.11.(2018·秦皇岛模拟)已知函数f(x)=ax2+bx+c(a≠0),且2是f(x)的一个零点,-1是f(x)的一个极小值点,那么不等式f(x)>0的解集是( C )(A)(-4,2)(B)(-2,4)(C)(-∞,-4)∪(2,+∞)(D)(-∞,-2)∪(4,+∞)解析:依题意,f(x)是二次函数,其图象是抛物线,开口向上,对称轴为x=-1,方程ax2+bx+c=0的一个根是2,另一个根是-4.因此f(x)=a(x+4)(x-2)(a>0),于是f(x)>0,解得x>2或x<-4.12.(2018·浙江“超级全能生”模拟)已知在(-∞,1]上递减的函数f(x)=x2-2tx+1,且对任意的x1,x2∈[0,t+1],总有|f(x1)-f(x2)|≤2,则实数t的取值范围是( B )(A)[-,] (B)[1,](C)[2,3] (D)[1,2]解析:由于f(x)=x2-2tx+1的图象的对称轴为x=t.又y=f(x)在(-∞,1]上是减函数,所以t≥1.则在区间[0,t+1]上,f(x)max=f(0)=1,f(x)min=f(t)=t2-2t2+1=-t2+1,要使对任意的x1,x2∈[0,t+1],都有|f(x1)-f(x2)|≤2,只需1-(-t2+1)≤2,解得-≤t≤.又t≥1,所以1≤t≤.13.已知二次函数f(x)满足f(2+x)=f(2-x),且f(x)在[0,2]上是增函数,若f(a)≥f(0),则实数a的取值范围是.解析:由题意可知函数f(x)的图象开口向下,对称轴为x=2(如图),若f(a)≥f(0),从图象观察可知0≤a≤4.答案:[0,4]14.如果函数f(x)=ax2+2x-3在区间(-∞,4)上单调递增,则实数a的取值范围是.解析:当a=0时,f(x)=2x-3在(-∞,4)上单调递增.当a≠0时,若f(x)在(-∞,4)上单调递增.则解之得-≤a<0.综上可知,实数a的取值范围是[-,0].答案:[-,0]15.已知函数f(x)=ax2+bx+c(a>0,b,c∈R).(1)若函数f(x)的最小值是f(-1)=0,且c=1,F(x)=求F(2)+F(-2)的值;(2)若a=1,c=0,且|f(x)|≤1在区间(0,1]上恒成立,试求b的取值范围.解:(1)由已知c=1,a-b+c=0,且-=-1,解得a=1,b=2,所以f(x)=(x+1)2.所以F(x)=所以F(2)+F(-2)=(2+1)2+[-(-2+1)2]=8.(2)由a=1,c=0,得f(x)=x2+bx,从而|f(x)|≤1在区间(0,1]上恒成立等价于-1≤x2+bx≤1在区间(0,1]上恒成立,即b≤-x且b≥--x在(0,1]上恒成立.又-x的最小值为0,--x的最大值为-2.所以-2≤b≤0.故b的取值范围是[-2,0].。
第2节平面向量基本定理及其坐标表示
【选题明细表】
基础巩固(建议用时:25分钟)
1.(2018·四川内江一模)下列各组向量中,可以作为基底的是
( B )
(A)e1=(0,0),e2=(1,2)
(B)e1=(-1,2),e2=(5,7)
(C)e1=(3,5),e2=(6,10)
(D)e1=(2,-3),e2=(,-)
解析:对于A,C,D,e1∥e2,故不可作为基底,对于B,e1,e2是两个不共线向量,故可作为基底.故选B.
2.已知点A(0,1),B(3,2),向量=(-4,-3),则向量等于( A )
(A)(-7,-4) (B)(7,4) (C)(-1,4) (D)(1,4)
解析:根据题意得=(3,1),
所以=-=(-4,-3)-(3,1)=(-7,-4).
故选A.
3.如果e1,e2是平面α内两个不共线的向量,那么下列说法中不正确
的是( B )
①a=λe1+μe2(λ,μ∈R)可以表示平面α内的所有向量;
②对于平面α内任一向量a,使a=λe1+μe2的实数对(λ,μ)有无穷多个;
③若向量λ1e1+μ1e2与λ2e1+μ2e2共线,则=.
④若实数λ,μ使得λe1+μe2=0,则λ=μ=0.
(A)①②(B)②③
(C)③④(D)②④
解析:由平面向量基本定理可知,①④是正确的.对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是唯一的.对于③,当λ1λ2=0或μ1μ2=0时不一定成立,应为λ1μ2-λ2μ1=0.故选B.
4.设向量a=(1,-3),b=(-2,4),若表示向量4a,3b-2a,c的有向线段首尾相接能构成三角形,则向量c为( D )
(A)(1,-1) (B)(-1,1)
(C)(-4,6) (D)(4,-6)
解析:由题知4a=(4,-12),3b-2a=(-6,12)-(2,-6)=(-8,18),
由4a+(3b-2a)+c=0,知c=(4,-6),故选D.
5.已知向量a=(1,2),b=(2,-3).若向量c满足(c+a)∥b,c⊥(a+b),则c等于( D )
(A)(,) (B)(-,-)
(C)(,) (D)(-,-)
解析:不妨设c=(m,n),
则a+c=(1+m,2+n),a+b=(3,-1),
由(c+a)∥b,得-3(1+m)=2(2+n).①
对于c⊥(a+b),则有3m-n=0,②
联立①②,解得
故选D.
6.如图,向量e1,e2,a的起点与终点均在正方形网格的格点上,则向量a可用基底e1,e2表示为( B )
(A)e1+e2
(B)-2e1+e2
(C)2e1-e2
(D)2e1+e2
解析:以e1的起点为坐标原点,
e1所在直线为x轴建立平面直角坐标系,
由题意可得e1=(1,0),e2=(-1,1),a=(-3,1),
因为a=xe1+ye2=x(1,0)+y(-1,1)=(x-y,y),
则
解得
故a=-2e1+e2.
7.(2018·衡水中学月考)在△ABC中,点D在BC边上,且
=2,=r+s,则r+s等于( D )
(A)(B)(C)-3 (D)0
解析:因为=2,
所以==(-)=-,
则r+s=+(-)=0,故选D.
8.已知a=(1,3),b=(-2,k),且(a+2b)∥(3a-b),则实数
k= .
解析:因为a=(1,3),b=(-2,k),
所以a+2b=(-3,3+2k),3a-b=(5,9-k).
因为(a+2b)∥(3a-b),
所以-3(9-k)-5(3+2k)=0,解得k=-6.
答案:-6
9.(2018·河北联盟二模)已知点A(1,0),B(1,),O为坐标原点,点C
在第二象限,且∠AOC=150°,=-4+λ,则λ= .
解析:因为点A(1,0),B(1,),
点C在第二象限,
=-4+λ,
所以C(λ-4,λ).
因为∠AOC=150°,所以∠COx=150°,
所以tan 150°==-,解得λ=1.
答案:1
能力提升(建议用时:25分钟)
10.(2018·河南八市质检)已知点M是△ABC的边BC的中点,点E在边AC上,且=2,则向量等于( C )
(A)+(B)+
(C)+(D)+
解析:如图,因为=2,
所以=+
=+
=+(-)
=+.故选C.
11.如图,在△OAB中,P为线段AB上的一点,=x+y,且=2,则( A )
(A)x=,y= (B)x=,y=
(C)x=,y= (D)x=,y=
解析:由题意知=+,
且=2,
所以=+=+(-)=+,
所以x=,y=.故选A.
12.在平面直角坐标系中,O为原点,A(-1,0),B(0,),C(3,0),动点D
满足||=1,则|++|的最大值是.
解析:法一设D(x,y),则由||=1,
得(x-3)2+y2=1,
从而可设x=3+cos α,y=sin α,α∈R.
而++=(x-1,y+),
则|++|=
=
=
=,
其中sin ϕ=,cos ϕ=.
显然当sin(α+ϕ)=1时,
|++|有最大值=+1.
法二++=+++,
设a=++=(2,),
则|a|=,从而++=a+,
则|++|=|a+|≤|a|+||=+1,
当a与同向时,|++|有最大值+1.
答案:+1
13.(2018·湖南长沙一模)在矩形ABCD中,AB=3,AD=2,P是矩形内部
一点(不含边界),且AP=1.若=x+y,则3x+2y的取值范围是.
解析:因为在矩形ABCD中,AB=3,AD=2,
如图,以A为原点,
AB所在直线为x轴,
AD所在直线为y轴,
建立平面直角坐标系,
则A(0,0),B(3,0),D(0,2),
所以=x+y=x(3,0)+y(0,2)=(3x,2y).
因为||=1,所以(3x)2+(2y)2=1.
令3x=cos θ,2y=sin θ,θ∈(0,),
则3x+2y=cos θ+sin θ=sin(θ+), 因为<θ+<π,
所以<sin(θ+)≤1,
1<3x+2y≤,
即3x+2y的取值范围是(1,].
答案:(1,]。