当前位置:文档之家› 电力电子技术A实验讲义

电力电子技术A实验讲义

电力电子技术A实验讲义
电力电子技术A实验讲义

实验四三相半波可控整流电路的研究一.实验目的

了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻—电感性负载时的工作情况。

二.实验线路及原理

三相半波可控整流电路用三只晶闸管,与单相电路比较,输出电压脉动小,输出功率大,三相负载平衡。不足之处是晶闸管电流即变压器的二次电流在一个周期内只有1/3时间有电流流过,变压器利用率低。

实验线路见图4-1。

1) 电源控制屏位于MEL-002T;

2) L平波电抗器位于NMCL-331挂件;

3) 可调电阻R位于NMEL-03/4挂件

4) G给定(Ug)位于NMCL-31调速系统控制单元中;

5) Uct位于NMCL-33F挂件;

6) 晶闸管位于NMCL-33F挂件。

图4-1

三.实验内容

1.研究三相半波可控整流电路供电给电阻性负载时的工作情况。

2.研究三相半波可控整流电路供电给电阻—电感性负载时的工作情况。

四.实验设备及仪表

1.教学实验台主控制屏2.触发电路及晶闸主回路组件

3.电阻负载组件4.示波器

五.注意事项

整流电路与三相电源连接时,一定要注意相序。

六.实验方法

1. 三相半波可控整流电路带电阻性负载。

合上主电源,接上电阻性负载R。

⑴改变给定电压U g,观察在不同触发移相角α(30°、60°)时,可控整流电路的输出电压U d的波形,并记录相应的U d、I d值。

⑵改变给定电压U g,当α=30°时,记录晶闸管A、K间端电压U VT=f(t)的波形。

2. 三相半波可控整流电路带电阻—电感性负载。

接入的电抗器L=700mH。

⑴改变给定电压U g,观察在不同触发移相角α(30°、60°)时,可控整流电路的输出电压U d的波形,并记录相应的U d、I d值。

⑵改变给定电压U g,当α=30°时,记录晶闸管的端电压U VT=f(t)(电阻性负载、电阻—电感性负载)、I d=f(t)(电阻—电感性负载)的波形。

实验方法的具体内容,可参照表4进行。

七. 实验报告

分析、记录上述“实验方法”中的数据、波形等。

八、触发电路的调试方法

按图接线,未上主电源之前,检查晶闸管的脉冲是否正常。

⑴用示波器观察触发电路及晶闸管主回路的双脉冲观察孔,应有间隔均匀,幅度相同的双脉冲。触发脉冲均为双脉冲双脉冲之间间隔60°。

⑵检查相序,用示波器观察触发电路及晶闸管主回路中同步电压观察口“1”超前“2”120°。观察脉冲观察孔,“1”脉冲超前“2”脉冲60°(及“1”号脉冲的第二个脉冲波与“2”号脉冲的第一个脉冲波相重叠)则相序正确,否则,应调整输入电源(任意对换三相插头中的两相电源)。示波器必须共地,地线接实验箱中黑色“┻”标。

(3)用示波器观察每只晶闸管的控制极,阴极,应有幅度为1V—2V的脉冲。

表4实验内容

注:在上述表格中:

“图”表示需测量该参数的波形;

“无图”表示不需测量该参数的波形;

表中的空格表示需填入所测参数的数据。

实验五三相桥式半控整流电路实验一.实验目的

了解三相桥式半控可控整流电路的工作原理,研究该整流电路在电阻性负载、电阻—电感性负载以及反电势负载时的工作情况。

二.实验内容

1.三相桥式半控整流供电给电阻负载。

2.三相桥式半控整流供电给电阻-电感性负载。

3.三相桥式半控整流供电给反电势负载。

三.实验线路及原理

在中等容量的整流装置或要求不可逆的电力拖动中,可采用比三相全控桥式整流电路更简单、经济的三相桥式半控整流电路。它由共阴极接法的三相半波可控整流电路与共阳极接法的三相半波不可控整流电路串联而成,因此这种电路兼有可控与不可控两者的特性。共阳极组三个整流二极管总是自然换流点换流,使电流换到比阴极电位更低的一相中去,而共阴极组三个晶闸管则要在触发后才能换到阳极电位高的一相中去。输出整流电压Ud的波形是三组整流电压波形之和,改变共阴极组晶闸管的控制角α,可获得0~2.34×u2的直流可调电压。

具体线路可参见图5-1。

1) 电源控制屏位于MEL-002T;

2) 平波电抗器L位于NMCL-331挂件;

3) 可调电阻R位于NMEL-03/4挂件;

4) G给定(Ug)位于NMCL-31调速系统控制单元中;

5) Uct位于NMCL-33F挂件;

6) 晶闸管、二极管位于NMCL-33F挂件;

7) M电机采用M01/3。

四.实验设备及仪器

1.教学实验台主控制屏2.触发电路及晶闸主回路组件

3.负载组件4.示波器

图5-1

五.注意事项

1.反电势负载时,在电动机起动前,必须预先做好以下几点:

(1)先加上电动机的励磁电流,然后才可使整流装置工作。

(2)起动前,必须置给定电压Ug(由RP1控制)于零位,使整流装置的输出电压U d最小,合上主电路后,才可逐渐加大控制电压。

2.主电路的相序不可接错,否则容易烧毁晶闸管。

六.实验方法

1.三相半控桥式整流电路供电给电阻负载

⑴调节U g,观察记录在不同触发移相角α(30°、90°)时,可控整流电路的输出电压U d的波形,并测量记录相应的U d、I d值。

⑵改变给定电压U g,当α=30°时,记录晶闸管A、K间端电压U VT=f(t)的波形。

2.三相半控桥式整流电路供电给电阻—电感性负载

接入的电抗器L=700mH。

⑴改变给定电压U g,观察在不同触发移相角α(30°、90°)时,可控整流电路的输出电压U d的波形,并记录相应的U d、I d值。

⑵改变给定电压U g,当α=30°时,记录晶闸管的端电压U VT=f(t)、I d=f(t)(电阻—电感性负载)的波形。

3.三相半控桥式整流电路供电给反电势负载

置电感量较大时(L=700mH),从零开始逐步调节U g,使直流电动机的转速在1200 r/min左右,记录此时U d的值与波形。

实验方法的具体内容,可参照表5进行。

七. 实验报告

1. 分析、记录上述“实验方法”中的数据、波形等。

2.比较本整流装置在电阻性负载和电阻电感性负载下工作时U d的波形。

3.思考题

本实验电路工作于电动机负载时,能否突加一阶跃控制电压(突加给定)?为什么?

表5实验内容

注:在上述表格中:

“图”表示需测量该参数的波形;

“无图”表示不需测量该参数的波形;

表中的空格表示需填入所测参数的数据。

实验六单相交流调压电路实验

一.实验目的

1.加深理解单相交流调压电路的工作原理。

2.加深理解交流调压感性负载时对移相范围要求。

二.实验内容

1.单相交流调压器带电阻性负载。

2.单相交流调压器带电阻—电感性负载。

三.实验线路及原理

本实验采用锯齿波移相触发器,该触发器适用于双向晶闸管或两只反并联晶闸管电路的交流相位控制,具有控制方式简单的优点。

晶闸管交流调压器的主电路,由两只反向晶闸管组成。

见图6-1。

1)电源控制屏位于MEL-002T;

2)晶闸管VT、锯齿触发电路位于NMCL-05D挂件;

3)可调电阻R位于NMEL-03/4挂件;

4)平波电抗器L位于NMCL-331挂件;

5)G给定(Ug)位于NMCL-31调速系统控制单元中;

6)Uct位于锯齿触发电路中。

四.实验设备及仪器

1.教学实验台主控制屏2.负载组件组件

3.触发电路(锯齿波触发电路)组件4.示波器

五.注意事项

在电阻—电感负载下,当 时,若脉冲宽度不够,会使负载电流出现直流分量,从而损坏元件。为此主电路可通过变压器降压供电,这样即可看到电流波形不对称现象,又不会损坏设备。

六.实验方法

1、单相交流调压器带电阻性负载

⑴调节U g,观察记录在不同触发移相角α(60°、90°)时,单相交流调压电路的输出电压u d的波形,并测量记录相应的u d、i d值。

⑵改变给定电压U g,当α=60°时,记录晶闸管A、K间端电压u VT=f(t)的波形。

2、单相交流调压器带电阻—电感性负载

接入电阻—电感性负载,同时使电阻R为定值(阻抗角?一定)。

⑴调节U g,观察记录在不同触发移相角α(60°、90°)时,单相交流调压电路的输出电压u d的波形,并测量记录相应的u d、i d值。

⑵改变给定电压U g,当α=60°时,记录晶闸管A、K间端电压u VT=f(t)、

i d=f(t)(电阻—电感性负载)的波形。

通电后,调节“单相调压触发电路”上的电位器RP2,用双综示波器同时观察在不同α角(60°、90°)下负载电压和负载电流的波形并记录其数值。

实验方法的具体内容,可参照表6进行。

七.实验报告

1. 分析、记录上述“实验方法”中的数据、波形等。

2. 分析在电阻—电感性负载时,α角与?角相应关系的变化对调压器工作的影响。

《电力电子技术》综合复习资料

《电力电子技术》综合复习资料 一、填空题 1、晶闸管在其阳极与阴极之间加上电压的同时,门极上加上电压,晶闸管就导通。 2、只有当阳极电流小于电流时,晶闸管才会由导通转为截止。 3、整流是指将变为的变换。 4、单相桥式可控整流电路中,晶闸管承受的最大反向电压为。 5、逆变角β与控制角α之间的关系为。 6、MOSFET的全称是。 7、功率开关管的损耗包括两方面,一方面是;另一方面是。 8、将直流电源的恒定电压,通过电子器件的开关控制,变换为可调的直流电压的装置称为器。 9、变频电路从变频过程可分为变频和变频两大类。 10、当晶闸管可控整流的负载为大电感负载时,负载两端的直流电压平均值会,解决的办法就是在负载的两端接一个。 11、就无源逆变电路的PWM控制而言,产生SPWM控制信号的常用方法是。 12、在电力电子器件驱动电路的设计中要考虑强弱电隔离的问题,通常主要采取的隔离

措施包括:和。 13、IGBT的全称是。 14、为了保证逆变器能正常工作,最小逆变角应为。 15、当电源电压发生瞬时与直流侧电源联,电路中会出现很大的短路电流流过晶闸管与负载,这称为或。 16、脉宽调制变频电路的基本原理是:控制逆变器开关元件的和时间比,即调节来控制逆变电压的大小和频率。 17、型号为KP100-8的元件表示管、它的额定电压为伏、额定电流为安。 二、判断题 1、给晶闸管加上正向阳极电压它就会导通。 2、普通晶闸管外部有三个电极,分别是基极、发射极和集电极。 3、在单相桥式半控整流电路中,带大电感负载,不带续流二极管时,输出电压波形中没有负面积。 4、GTO属于双极性器件。 5、电压型逆变电路,为了反馈感性负载上的无功能量,必须在电力开关器件上反并联反馈二极管。 6、对于三相全控桥整流电路,控制角α的计量起点为自然换相点。

电力电子技术A实验讲义

实验四三相半波可控整流电路的研究一.实验目的 了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻—电感性负载时的工作情况。 二.实验线路与原理 三相半波可控整流电路用三只晶闸管,与单相电路比较,输出电压脉动小,输出功率大,三相负载平衡。不足之处是晶闸管电流即变压器的二次电流在一个周期内只有1/3时间有电流流过,变压器利用率低。 实验线路见图4-1。 1) 电源控制屏位于MEL-002T; 2) L平波电抗器位于NMCL-331挂件; 3) 可调电阻R位于NMEL-03/4挂件 4) G给定(Ug)位于NMCL-31调速系统控制单元中; 5) Uct位于NMCL-33F挂件; 6) 晶闸管位于NMCL-33F挂件。 图4-1 三.实验内容

1.研究三相半波可控整流电路供电给电阻性负载时的工作情况。 2.研究三相半波可控整流电路供电给电阻—电感性负载时的工作情况。 四.实验设备与仪表 1.教学实验台主控制屏 2.触发电路与晶闸主回路组件 3.电阻负载组件 4.示波器 五.注意事项 整流电路与三相电源连接时,一定要注意相序。 六.实验方法 1. 三相半波可控整流电路带电阻性负载。 合上主电源,接上电阻性负载R。 ⑴改变给定电压U g,观察在不同触发移相角α(30°、60°)时,可控整流电路的输出电压U d的波形,并记录相应的U d、I d 值。 ⑵改变给定电压U g,当α=30°时,记录晶闸管A、K间端电压U VT=f(t)的波形。 2. 三相半波可控整流电路带电阻—电感性负载。 接入的电抗器L=700mH。 ⑴改变给定电压U g,观察在不同触发移相角α(30°、60°)时,可控整流电路的输出电压U d的波形,并记录相应的U d、I d 值。 ⑵改变给定电压U g,当α=30°时,记录晶闸管的端电压U VT=f(t)(电阻性负载、电阻—电感性负载)、I d=f(t)(电阻—电感性负载)的波形。 实验方法的具体内容,可参照表4进行。 七. 实验报告

电力电子技术实验指导书

实验一单结晶体管触发电路及示波器使用 班级学号姓名 同组人员 实验任务 一.实验目的 1.熟悉单结晶体管触发电路的工作原理及各元件的作用。 2.掌握单结晶体管触发电路的调试步骤和方法。 3.详细学习万用表及示波器的使用方法。 二.实验设备及仪器 1.教学实验台主控制屏 2.NMCL—33组件 3.NMCL—05E组件 4.MEL—03A组件 5.双踪示波器(自备) 6.万用表(自备) 7. 电脑、投影仪 三.实验线路及原理 将NMCL—05E面板左上角的同步电压输入接SMCL-02的U、V输出端,触发电路选择单结晶体管触发电路,如图1所示。 图1单结晶体管触发电路图 四.注意事项 双踪示波器有两个探头,可以同时测量两个信号,但这两个探头的地线都与示波器的外

壳相连接,所以两个探头的地线不能同时接在某一电路的不同两点上,否则将使这两点通过示波器发生电气短路。为此,在实验中可将其中一根探头的地线取下或外包以绝缘,只使用其中一根地线。当需要同时观察两个信号时,必须在电路上找到这两个被测信号的公共点,将探头的地线接上,两个探头各接至信号处,即能在示波器上同时观察到两个信号,而不致发生意外。 五.实验内容 1.实验预习 (1)画出晶闸管的电气符号图并标明各个端子的名称。 (2)简述晶闸管导通的条件。 (3)示波器在使用两个探针进行测量时需要注意的问题。 2. 晶闸管特性测试 请用万用表测试晶闸管各管脚之间的阻值,填写至下表。 + A K G - A K G 3.单结晶体管触发电路调试及各点波形的观察 按照实验接线图正确接线,但由单结晶体管触发电路连至晶闸管VT1的脉冲U GK不接(将NMCL—05E面板中G、K接线端悬空),而将触发电路“2”端与脉冲输出“K”端相连,以便观察脉冲的移相范围。 合上主电源,即按下主控制屏绿色“闭合”开关按钮。这时候NMCL—05E内部的同步变压器原边接有220V,副边输出分别为60V(单结晶触发电路)、30V(正弦波触发电路)、7V(锯齿波触发电路),通过直键开关选择。 合上NMCL—05E面板的右下角船形开关,用示波器观察触发电路单相半波整流输出(“1”),梯形电压(“3”),梯形电压(“4”),电容充放电电压(“5”)及单结晶体管输出电压(“6”)和脉冲输出(“G”、“K”)等波形,并绘制在下图相应位置。

电路理论实验讲义

实验一电路元器件伏安特性的测试 一、实验目的 1、认识常用电路元件。 2、掌握线性电阻、非线性电阻元件伏安特性的测绘。 3、掌握仪器、仪表的使用方法。 二、实验仪器 1、RXDI-1A电路原理实验箱1台 2、万用表1台 三、实验原理 任何一个二端元件的特性可用该元件上的端电压U与通过该元件的电流I 之间的函数关系I=f(U)来表示,即用I-U平面上的一条曲线来表示,这条曲线称为该元件的伏安特性曲线。 图1 1、线性电阻器的伏安特性曲线是一条通过坐标原点的直线,图1中a曲线所示,该直线的斜率的倒数等于该电阻器的电阻值。 2、一般的半导体二极管是一个非线性电阻元件,其伏安特性如图1中b所示。正向压降很小(一般的锗管约为0.2~0.3V,硅管约为0.5~0.7V),正向电流随正向压降的升高而急骤上升,而反向电压从零一直增加到十几伏至几十伏时,其反向电流增加很小,粗略地可视为零。可见,二极管具有单向导电性,如果反向电压加得过高,超过管子的极限值,则会导致管子击穿损坏。 3、稳压二极管是一种特殊的半导体二极管,其正向特性与普通二极管类似,但

其反向特性特别,如图1中c所示。在反向电压开始增加时,其反向电流几乎为零,但当反向电压增加到某一数值时(称为管子的稳压值,有各种不同稳压值的稳压管)电流将突然增加,以后它的端电压将维持恒定,不再随外加的反向电压升高而增大。注意:流过二极管或稳压二极管的电流不能超过管子的极限值,否则管子会被烧坏。 四、实验内容及步骤 1、测定线性电阻器的伏安特性 按图2接线,调节直流稳压电源的输出电压U,从0V开始缓慢地增加,记下相应的电压表和电流表的读数。 图2 图3 2、测定半导体二极管IN4007的伏安特性 按图3接线,R为限流电阻,测二极管的正向特性时,其正向电流不得超过35mA,正向压降可在0~0.75V之间取值。特别0.5~0.75V之间应多取几个测量点。测反向特性实验时,只需将图3中的二极管D反接,且其反向电压可加至24V。 3、测定稳压二极管的伏安特性 将图3中的二极管IN4007换成稳压二极管2CW55,重复实验内容2的测量。 4、根据各实验数据(数据见表1、表2、表3、表4、表5),分别在方格纸上绘制出光滑的伏安特性曲线。(其中二极管和稳压管的正、反向特性均要求画在同一张图中,正、反向电压可取为不同的比例尺),根据实验结果,总结、归纳被测各元件的特性,做必要的误差分析。 五、实验数据及结果 表1线性电阻特性实验数据 U(V) I(mA)

电力电子技术仿真实验指导书

《电力电子技术实验》指导书 合肥师范学院电子信息工程学院

实验一电力电子器件 仿真过程: 进入MATLAB环境,点击工具栏中的Simulink选项。进入所需的仿真环境,如图所示。点击File/New/Model新建一个仿真平台。点击左边的器件分类,找到Simulink和SimPowerSystems,分别在他们的下拉选项中找到所需的器件,用鼠标左键点击所需的元件不放,然后直接拉到Model平台中。 图 实验一的具体过程: 第一步:打开仿真环境新建一个仿真平台,根据表中的路径找到我们所需的器件跟连接器。

提取出来的器件模型如图所示: 图 第二步,元件的复制跟粘贴。有时候相同的模块在仿真中需要多次用到,这时按照常规的方法可以进行复制跟粘贴,可以用一个虚线框复制整个仿真模型。还有一个常用方便的方法是在选中模块的同时按下Ctrl键拖拉鼠标,选中的模块上会出现一个小“+”好,继续按住鼠标和Ctrl键不动,移动鼠标就可以将模块拖拉到模型的其他地方复制出一个相同的模块,同时该模块名后会自动加“1”,因为在同一仿真模型中,不允许出现两个名字相同的模块。 第三步,把元件的位置调整好,准备进行连接线,具体做法是移动鼠标到一个器件的连接点上,会出现一个“十字”形的光标,按住鼠标左键不放,一直到你所要连接另一个器件的连接点上,放开左键,这样线就连好了,如果想要连接分支线,可以要在需要分支的地方按住Ctrl键,然后按住鼠标左键就可以拉出一根分支线了。 在连接示波器时会发现示波器只有一个接线端子,这时可以参照下面示波器的参数调整的方法进行增加端子。在调整元件位置的时候,有时你会遇到有些元件需要改变方向才更方便于连接线,这时可以选中要改变方向的模块,使用Format菜单下的Flip block 和Rotate

数字电子技术实验讲义(试用)

数字电子技术实验 简要讲义 适用专业:电气专业 编写人:于云华、何进 中国石油大学胜利学院机械与控制工程学院 2015.3

目录 实验一:基本仪器熟悉使用和基本逻辑门电路功能测试 (3) 实验二:小规模组合逻辑电路设计 (4) 实验三:中规模组合逻辑电路设计 (5) 实验四:触发器的功能测试及其应用 (7) 实验五:计数器的功能测试及其应用 (8) 实验六:计数、译码与显示综合电路的设计 (9)

实验一:基本仪器熟悉使用和常用门电路逻辑功能测试 (建议实验学时:2学时) 一、实验目的: 1、熟悉实验仪器与设备,学会识别常用数字集成芯片的引脚分配; 2、掌握门电路的逻辑功能测试方法; 3、掌握简单组合逻辑电路的设计。 二、实验内容: 1、测试常用数字集成逻辑芯片的逻辑功能:74LS00,74LS02,74LS04,74LS08,74LS20,74LS32,74LS86等(预习时查出每个芯片的逻辑功能、内部结构以及管脚分配)。 2、采用两输入端与非门74LS00实现以下逻辑功能: ① F=ABC ② F=ABC③ F=A+B ④ F=A B+A B 三、实验步骤:(学生根据自己实验情况简要总结步骤和内容)主要包括: 1、实验电路设计原理图;如:实现F=A+B的电路原理图: 2、实验真值表; 3、实验测试结果记录。如: 输入输出 A B F3 00灭

四、实验总结: (学生根据自己实验情况,简要总结实验中遇到的问题及其解决办法)注:本实验室提供的数字集成芯片有: 74LS00, 74LS02,74LS04,74LS08,74LS20,74LS32,74LS74,74LS90,74LS112, 74LS138,74LS153, 74LS161 实验二:小规模组合逻辑电路设计 (建议实验学时:3学时) 一、实验目的: 1、学习使用基本门电路设计、实现小规模组合逻辑电路。 2、学会测试、调试小规模组合逻辑电路的输入、输出逻辑关系。 二、实验内容: 1、用最少的门电路设计三输入变量的奇偶校验电路:当三个输入端有奇数个1时,输出为高,否则为低。(预习时画出电路原理图,注明所用芯片型号) 2、用最少的门电路实现1位二进制全加器电路。(预习时画出电路原理图,注明所用芯片型号) 3、用门电路实现“判断输入者与受血者的血型符合规定的电路”,测试其功能。要求如下:人类由四种基本血型:A、B、AB、O 型。输血者与受血者的血型必须符合下述原则: O型血可以输给任意血型的人,但O型血的人只能接受O型血; AB型血只能输给AB型血的人,但AB血型的人能够接受所有血型的血; A 型血能给A型与AB型血的人;但A型血的人能够接受A型与O型血; B型血能给B型与AB型血的人,而B型血的人能够接受B型与O型血。 试设计一个检验输血者与受血者血型是否符合上述规定的逻辑电路,如果符合规定电路,输出高电平(提示:电路只需要四个输入端,它们组成一组二进制数码,每组数码代表一对输血与受血的血型对)。 约定“00”代表“O”型 “01”代表“A”型 “10”代表“B”型 “11”代表“AB”型(预习时画出电路原理图,注明所用芯片型号) 三、实验步骤:(学生根据自己实验情况简要总结步骤和内容),与实验一说明类似。

电力电子实验指导书(2013) 2

实验一三相桥式全控整流实验 一.实验目的 1.熟悉MCL-18, MCL-33组件。 2.熟悉三相桥式全控整流及有源逆变电路的接线及工作原理。 3.了解集成触发器的调整方法及各点波形。 二.实验内容 1.三相桥式全控整流电路 2.观察整流下或模拟电路故障现象时的波形。 三.实验线路及原理 实验线路下图所示。主电路由三相全控变流电路桥给直流电机供电。可实现直流电动机的调压调速。触发电路为数字集成电路,可输出经高频调制后的双窄脉冲链。 四.实验设备及仪器 1.MCL系列教学实验台主控制屏。 2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。 3. 电机导轨及测速发电机(或光电编码器) 4.二踪示波器 5.万用表 五.实验方法 1.按图接线,未上主电源之前,检查晶闸管的脉冲是否正常。 (1)打开MCL-18电源开关,给定电压有电压显示。 (2)用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,相互间隔60o的幅度相同的双脉冲。 (3)检查相序,用示波器观察“1”,“2”单脉冲观察孔,“1”脉冲超前“2”脉冲600,则相序正确,否则,应调整输入电源。 (4)用示波器观察同步变压器电压和触发脉冲波形,观察移相控制过程并记录波形。其中一个探头接脉冲信号另一个接同步电压信号,两探头共15V地线。 U 注:将I组桥式触发脉冲的六个开关均拨到“接通”。GT和AP1已内部连线无需接线。将 blf 接地。 (5)将给定器输出Ug接至MCL-33面板的Uct端,调节偏移电压Ub,在Uct=0时,使 =150o。 2.三相桥式全控整流电路供电直流电动机调压调速实验 (1)按上图接线,UVW电源线按实验板指定颜色接入保存相序正确,经指导教师检查后方可送电。送电前注意将给定电位器逆时针转到底,保证给定为0V或负给定。 (2)送电顺序合上电源总开关后先送控制电源,再按启动按扭送主回路电源。停机时前将给定电压降至零,按先停主电源后停控制电源顺序停电。 (3)调节Uct,移相控制整流电压,缓慢升速,用示波器观察记录转速为400、800、1200转/分时,整流电压u d=f(t),晶闸管两端电压u VT=f(t)的波形,并记录相应的Ud和交流输入电压U2数值,计算相应的移相控制角数值。

电力电子技术总复习

电力电子技术总复习-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

《电力电子技术》综合复习资料 一、填空题 1、开关型DC/DC变换电路的3个基本元件是、和。 2、逆变角β与控制角α之间的关系为。 3、GTO的全称是。 4、直流斩波电路按照输入电压与输出电压的高低变化来分类有斩波电路;斩波电路; ----斩波电路。 5、变频电路从变频过程可分为变频和变频两大类。 6、晶闸管的工作状态有正向状态,正向状态和反向状态。 7、只有当阳极电流小于电流时,晶闸管才会由导通转为截止。 8、从晶闸管开始承受正向电压起到晶闸管导通之间的电角度称为角。 9、GTR的全称是。 10、在电流型逆变器中,输出电压波形为波,输出电流波形为波。 11、GTO的关断是靠门极加出现门极来实现的。 12、普通晶闸管的图形符号是,三个电极分别是,和。 13、整流指的是把能量转变成能量。 14脉宽调制变频电路的基本原理是:控制逆变器开关元件的和时间比,即调节来控制逆变电压的大小和频率。 15、型号为KP100-8的元件表示管、它的额定电压为伏、额定电流为安。 16、在电力电子器件驱动电路的设计中要考虑强弱电隔离的问题,通常主要采取的隔离措施包括:和。 二、判断题 1、KP2—5表示的是额定电压200V,额定电流500A的普通型晶闸管。 2、给晶闸管加上正向阳极电压它就会导通。 3、普通晶闸管外部有三个电极,分别是基极、发射极和集电极。 4、逆变电路分为有源逆变电路和无源逆变电路两种。 5、只要让加在晶闸管两端的电压减小为零,晶闸管就会关断。 6、普通晶闸管内部有两个PN结。 7、逆变失败,是因主电路元件出现损坏,触发脉冲丢失,电源缺相,或是逆变角太小造成的。 8、应急电源中将直流电变为交流电供灯照明,其电路中发生的“逆变”称有源逆变。

《电力电子技术》实验指导书

实验三单相半波可控整流电路实验 一、实验目的 (1)掌握单结晶体管触发电路的调试步骤和方法。 (2)掌握单相半波可控整流电路在电阻负载及电阻电感性负载时的工作。 (3)了解续流二极管的作用。 二、实验所需挂件及附件 三、实验线路及原理

单结晶体管触发电路的工作原理及线路图已在1-3节中作过介绍。将DJK03挂件上的单结晶体管触发电路的输出端“G”和“K”接到DJK02挂件面板上的反桥中的任意一个晶闸管的门极和阴极,并将相应的触发脉冲的钮子开关关闭(防止误触发),图中的R负载用DK04滑线变阻器接成并联形式。二极管VD1和开关S1均在DJK06挂件上,电感L d在DJK02面板上,有100mH、200mH、700mH三档可供选择,本实验中选用700mH。直流电压表及直流电流表从DJK02挂件上得到。 图3-3单相半波可控整流电路 四、实验容 (1)单结晶体管触发电路的调试。 (2)单结晶体管触发电路各点电压波形的观察并记录。 (3)单相半波整流电路带电阻性负载时U d/U2= f(α)特性的测定。 (4)单相半波整流电路带电阻电感性负载时续流二极管作用的观察。 五、预习要求 (1)阅读电力电子技术教材中有关单结晶体管的容,弄清单结晶体管触发电路的工作原理。

(2)复习单相半波可控整流电路的有关容,掌握单相半波可控整流电路接电阻性负载和电阻电感性负载时的工作波形。 (3)掌握单相半波可控整流电路接不同负载时U d、I d的计算方法。 六、思考题 (1)单结晶体管触发电路的振荡频率与电路中电容C1的数值有什么关系? (2)单相半波可控整流电路接电感性负载时会出现什么现象?如何解决? 七、实验方法 (1)单结晶体管触发电路的调试 将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V,用两根导线将200V交流电压接到DJK03的“外接220V”端,按下“启动”按钮,打开DJK03电源开关,用双踪示波器观察单结晶体管触发电路中整流输出的梯形波电压、锯齿波电压及单结晶体管触发电路输出电压等波形。调节移相电位器RP1,观察锯齿波的周期变化及输出脉冲波形的移相围能否在30°~170°围移动? (2)单相半波可控整流电路接电阻性负载 触发电路调试正常后,按图3-3电路图接线。将滑线变阻器调在最大阻值位置,按下“启动”按钮,用示波器观察负载电压U d、晶闸管VT两端电压U VT的波形,调节电位器RP1,观察α=30°、60°、90°、120°、150°时U d、U VT的波形,并测量直流输出电压U和电源电压U2,记录于下表中。

模拟电路实验讲义..

实验一 单级交流放大电路 一、实验目的 1、 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2、 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 3、 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图1-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u 0,从而实现了电压放大。 图1-1 共射极单管放大器实验电路 在图1-1电路中,当流过偏置电阻R B1和R B2 的电流远大于晶体管T 的 基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算 CC B2 B1B1 B U R R R U +≈ U CE =U CC -I C (R C +R E ) 电压放大倍数 C E BE B E I R U U I ≈-≈

be L C V r R R β A // -= 输入电阻 R i =R B1 // R B2 // r be 输出电阻 R O ≈R C 由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。一个优质放大器,必定是理论设计与实验调整相结合的产物。因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。 放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。 1、 放大器静态工作点的测量与调试 1) 静态工作点的测量 测量放大器的静态工作点,应在输入信号u i =0的情况下进行, 即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。一般实验中,为了避免断开集电极,所以采用测量电压U E 或U C ,然后算出I C 的方法,例如,只要测出U E ,即可用 E E E C R U I I = ≈算出I C (也可根据C C CC C R U U I -=,由U C 确定I C ), 同时也能算出U BE =U B -U E ,U CE =U C -U E 。 为了减小误差,提高测量精度,应选用内阻较高的直流电压表。 2) 静态工作点的调试 放大器静态工作点的调试是指对管子集电极电流I C (或U CE )的调整与测试。静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时u O 的负半周将被削底,如图1-2(a)所示;如工作点偏低则易产生截止失真,即u O 的正半周被缩顶(一般截止失真不如饱和失真明显),如图1-2(b)所示。这些情况都不符合不失真放大

电力电子技术(王兆安第五版)课后习题全部答案

电力电子技术答案 2-1与信息电子电路中的二极管相比,电力二极管具有怎样的结构特点才使得其具有耐受高压和大电流的能力?答:1.电力二极管大都采用垂直导电结构,使得硅片中通过电流的有效面积增大,显著提高了二极管的通流能力。 2.电力二极管在P区和N区之间多了一层低掺杂N区,也称漂移区。低掺杂N区由于掺杂浓度低而接近于无掺杂的纯半导体材料即本征半导体,由于掺杂浓度低,低掺杂N区就可以承受很高的电压而不被击穿。 2-2.使晶闸管导通的条件是什么?答:使晶闸管导通的条件是:晶闸管承受正向阳极电压,并在门极施加触发电流(脉冲)。或:uAK>0且uGK>0。 2-3. 维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断?答:维持晶闸管导通的条件是使晶闸管的电流大于能保持晶闸管导通的最小电流,即维持电流。 要使晶闸管由导通变为关断,可利用外加电压和外电路的作用使流过晶闸管的电流降 到接近于零的某一数值以下,即降到维持电流以下,便可使导通的晶闸管关断。 2-4图2-27中阴影部分为晶闸管处于通态区间的电流波形,各波形的电流 最大值均为I m ,试计算各波形的电流平均值I d1 、I d2 、I d3 与电流有效值I 1 、I 2 、I 3 。 解:a) I d1= Im 2717 .0 )1 2 2 ( 2 Im ) ( sin Im 2 1 4 ≈ + = ?π ω π π π t I 1= Im 4767 .0 2 1 4 3 2 Im ) ( ) sin (Im 2 1 4 2≈ + = ? π ? π π π wt d t b) I d2= Im 5434 .0 )1 2 2 ( 2 Im ) ( sin Im 1 4 = + = ?wt d t π π ? π I 2= Im 6741 .0 2 1 4 3 2 Im 2 ) ( ) sin (Im 1 4 2≈ + = ? π ? π π π wt d t c) I d3= ?= 2 Im 4 1 ) ( Im 2 1π ω π t d I 3= Im 2 1 ) ( Im 2 1 2 2= ?t dω π π 2-5上题中如果不考虑安全裕量,问100A的晶阐管能送出的平均电流I d1、 I d2、I d3 各为多少?这时,相应的电流最大值I m1 、I m2 、I m3 各为多少? 解:额定电流I T(AV) =100A的晶闸管,允许的电流有效值I=157A,由上题计算 结果知

电力系统分析实验讲义(稳态)汇编

电力系统分析(上)实验讲义

学习-----好资料 实验一:节电导纳矩阵的形成 .实验目的 掌握节点导纳矩阵形成的方法 .实验学时:2学时 n 个独立节点的网络,n 个节点方程 Y B ^ ll 0式中的Y B 即为节点导纳矩阵 具体说,Y ii 就等于与节点i 相连的所有支路导纳的和。 2.互导纳 j Y ji 丁 丫》=丫门=—yj \ i ,Uj 舟护 即给节点i 加单位电压,其余节点全部接地,由节点 j 注入网络的电流。 节点导纳矩阵的特点: (1) 直观易得 阶数:等于除参考节点外的节点数 n ;对角元:等于该节点所连导纳的总和; 非对角元Yij :等于连接节点i 、j 支路导纳的负值。 (2) 稀疏矩阵,非对角元素中有大量的零元素。 (3) 对称矩阵。 3 .非标准变比变压器 在包括变压器的输电线路中,变压器线圈匝数比为标准变比时,变压器的高、 低压两侧的电压和电流值用线圈匝数比来换算是不成问题的。但是变压器线圈匝数 比为不等于标准变比时需要加以注意。 图中山^2, 是按标准变比换算出来的变压器高、低压侧的电压和电流,理 想变压器的线圈匝数比k : 1表示变压器线圈匝数比对标准变比的比值 由图可得: ”1十 .实验原理与方法 1 .自导纳

对于用导纳表示的二形等值网络,从1-1'端口看进去的节点自导纳为: 论(1 -k)Y r =齐,和k 等于1时相同。 从2-2'端口看进去的节点自导纳为: 丫22二kY T ?k(k-1)Y T 二k 2 V r ,是标准变比时导纳的 k 2倍 互导纳Y ,2二丫2i kY 「是标准变比时导纳的k 倍。 由以上可见,当有非标准变比变压器时,可按如下次序形成节点导纳矩阵。 (1) 先不考虑非标准变比(认为k=1),求导纳矩阵。 (2) 再把接入非标准变比变 压器的节点的自导纳加上 (k 2-1)Y r ,其中Y T 是 从变压器相连接的另一端节点来看变压器的漏抗的倒数。 (3) 由接入非标准变比变压器的对端节点来看自导纳不变。 (4) 变压器两节点间的互导纳加上-(k -1)Y T 4.系统变更时的修正 (1) 从原有的节点上引出新的支路(输电线路或变压器),在这一支路另一端设新 的节点。 (2) 在原有的支路上并联新的支路。 (3) 在没有支路直接相连的两个原有节点间附加新的支路。 (4) 原有变压器的变比或者分接头位置发生变化时。 下面分别讨论这几种变更情况。 (1) 从原节点i 增加新的节点j 和新的阻抗为z 的支路时,节电导纳矩阵的阶次 增加一 阶。自导纳和互导纳变化如下: 1 Y j =Y ji … z Y i =Y i (0 )+1 z U l kU 2 TU I 三5 4?3U Z T Z T kU , k 2 U Z T 上面的电压电流关系用-形等值网络表示有两种: a) (a) 1 1 Z o Z Z o

电力电子实验指导书完全版范本

电力电子实验指导 书完全版

电力电子技术实验指导书 目录 实验一单相半波可控整流电路实验........................... 错误!未定义书签。实验二三相桥式全控整流电路实验........................... 错误!未定义书签。实验三单相交流调压电路实验 .................................. 错误!未定义书签。实验四三相交流调压电路实验 .................................. 错误!未定义书签。实验装置及控制组件介绍 ............................................ 错误!未定义书签。

实验一单相半波可控整流电路实验 一、实验目的 1.熟悉单结晶体管触发电路的工作原理及各元件的作用; 2.对单相半波可控整流电路在电阻负载及电阻电感负载时的工作做全 面分析; 3.了解续流二极管的作用; 二、实验线路及原理 熟悉单结晶体管触发电路的工作原理及线路图,了解各点波形形状。将单结晶体管触发电路的输出端“G”和“K”端接至晶闸管的门极和阴极, 即构成如图1-1所示的实验线路。 图1-1 单结晶体管触发的单相半波可控整流电路 三、实验内容 1.单结晶体管触发电路的调试; 2.单结晶体管触发电路各点电压波形的观察; 3.单相半波整流电路带电阻性负载时Ud/U2=f(α)特性的测定; 4.单相半波整流电路带电阻电感性负载时续流二极管作用的观察;

四、实验设备 1.电力电子实验台 2.RTDL09实验箱 3.RTDL08实验箱 4.RTDL11实验箱 5.RTDJ37实验箱 6.示波器; 7.万用表; 五、预习要求 1.了解单结晶体管触发电路的工作原理,熟悉RTDL09实验箱; 2.复习单相半波可控整流电路的有关内容,掌握在接纯阻性负载和阻 感性负载时,电路各部分的电压和电流波形; 3.掌握单相半波可控整流电路接不同负载时Ud、Id的计算方法。 六、思考题 1.单相桥式半波可控整流电路接阻感性负载时会出现什么现象?如何 解决? 七、实验方法 1.单相半波可控整流电路接纯阻性负载 调试触发电路正常后,合上电源,用示波器观察负载电压Ud、晶闸管VT两端电压波形U VT,调节电位器RP1,观察α=30o、60o、90o、120o、150o、180o时的Ud、U VT波形,并测定直流输出电压Ud 和电源电压U2,记录于下表1-1中。

电子电路综合实验讲义全

实验选题一:烟雾报警器的设计实现 一、设计任务 烟雾报警有很多应用的地方,一些特定的地方对烟雾浓度也有一定限制,比如厨房、天然气存储的地方,还有吸烟的场所。现在要设计的课题就是需要监测指定环境内的烟雾浓度,并显示浓度的等级,系统根据不同的等级选择是否开启排风机,改善室内空气质量,并对高等级的烟雾浓度进行报警。 二、设计要求及其指标 要对浓度分级显示,并根据等级选择开启排风扇,对最高浓度报警。具体的要求就是: 1.能够检测指定环境内烟雾浓度并将烟雾浓度分为三级加以显示。 2.当浓度超过第二等级时系统自动开启风扇排风。 3.当浓度超过最高等级时系统发出声音警报。 4.当浓度超过最高等级时系统发出语音提示警报。 三、设计思路 1、浓度等级就是利用QM-N5讲烟雾浓度转化为模拟电压信号; 2、然后将模电信号转化为数字信号,这样就能进行等级划分,将不同浓度 划分为三个等级; 3、并用数码管显示出来; 4、烟雾浓度大于或等于2级时,控制风扇排风; 5、三级浓度时控制蜂鸣器报警; 6、语音录放芯片录音,并在三级烟雾浓度时,控制其放音。

这个上面的等级显示不一定非得是这里标的0、1、2。学生在做的时候可以自由选择显示,但是必须实现相应的功能。 四、所需准备的知识 首先需要查阅资料熟悉器件技术指标、器件原理、器件管脚和接法。 对烟雾浓度分级部分计算理论值。 输出控制部分熟悉CD4052的原理,并分析实验中如何实现输出控制,分析其逻辑实现。 显示部分分析编码器、反相器、数码管的连接。 风扇和蜂鸣器部分掌握三极管驱动的原理和继电器的原理。 语音报警部分使用的芯片管脚比较多,需要熟悉管脚接法和如何进行语音播报。 五、参考资料 1、罗杰;谢自美.电子线路设计实验测试.电子工业出版社

南京工业大学电力电子技术复习资料题及标准答案

南京工业大学 电力电子技术复习 一、选择题的部分(每小题10分,共20分) 1、单相半控桥整流电路的两只晶闸管的触发脉冲依次应相差A度。 A、180°, B、60°, c、360°, D、120° 2、α为C度时,三相半波可控整流电路,电阻性负载输出的电压波形,处于连续和断续的临界状态。 A,0度, B,60度, C,30度, D,120度, 3、晶闸管触发电路中,若改变 B 的大小,则输出脉冲产生相位移动,达到移相控制的目的。 A、同步电压, B、控制电压, C、脉冲变压器变比。 4、可实现有源逆变的电路为A。 A、三相半波可控整流电路, B、三相半控桥整流桥电路, C、单相全控桥接续流二极管电路, D、单相半控桥整流电路。 5、在一般可逆电路中,最小逆变角βmin选在下面那一种范围合理A。 A、30o-35o, B、10o-15o, C、0o-10o, D、0o。 6、在下面几种电路中,不能实现有源逆变的电路有哪几种BCD。 A、三相半波可控整流电路。 B、三相半控整流桥电 路。 C、单相全控桥接续流二极管电路。 D、单相半控桥整流电路。 7、在有源逆变电路中,逆变角的移相范围应选B为最好。 A、=90o∽180o, B、=35o∽90o, C、=0o∽90o,

8、晶闸管整流装置在换相时刻(例如:从U相换到V相时)的输出电压等于C。 A、U相换相时刻电压u U , B、V相换相时刻电 压u V , C、等于u U +u V 的一半即: 9、三相全控整流桥电路,如采用双窄脉冲触发晶闸管时,下图中哪一种双窄脉 冲间距相隔角度符合要求。请选择B。 10、晶闸管触发电路中,若使控制电压U C =0,改变C的大小,可使 直流电动机负载电压U d =0,使触发角α=90o。达到调定移相控制范围,实现整流、逆变的控制要求。 B、同步电压, B、控制电压, C、偏移 调正电压。 11、下面哪种功能不属于变流的功能(C) A、有源逆变 B、交流调压 C、变压器降压 D、直流斩波 12、三相半波可控整流电路的自然换相点是( B ) A、交流相电压的过零点; B、本相相电压与相邻相电压正、负半周的交点处; C、比三相不控整流电路的自然换相点超前30°; D、比三相不控整流电路的自然换相点滞后60°。 13、如某晶闸管的正向阻断重复峰值电压为745V,反向重复峰值电压为825V, 则该晶闸管的额定电压应为(B) A、700V B、750V C、800V D、850V

计算机科学技术《模拟电路实验讲义》

实验一常用电子仪器的使用 一、实验目的 1、学习电子电路实验中常用的电子仪器——示波器、函数信号发生器、直流稳压电源、交流毫伏表、频率计等的主要技术指标、性能及正确使用方法。 2、初步掌握用双踪示波器观察正弦信号波形和读取波形参数的方法。 二、实验原理 在模拟电子电路实验中,经常使用的电子仪器有示波器、函数信号发生器、直流稳压电源、交流毫伏表及频率计等。它们和万用电表一起,可以完成对模拟电子电路的静态和动态工作情况的测试。 实验中要对各种电子仪器进行综合使用,可按照信号流向,以连线简捷,调节顺手,观察与读数方便等原则进行合理布局,各仪器与被测实验装置之间的布局与连接如图1-1所示。接线时应注意,为防止外界干扰,各仪器的共公接地端应连接在一起,称共地。信号源和交流毫伏表的引线通常用屏蔽线或专用电缆线,示波器接线使用专用电缆线,直流电源的接线用普通导线。 图1-1 模拟电子电路中常用电子仪器布局图 1、示波器 示波器是一种用途很广的电子测量仪器,它既能直接显示电信号的波形,又能对电信号进行各种参数的测量。现着重指出下列几点: 1)、寻找扫描光迹 将示波器Y轴显示方式置“Y 1”或“Y2”,输入耦合方式置“GND”,开机预热后,若在显示屏上不出现光点和扫描基线,可按下列操作去找到扫描线:①适当调节亮度旋钮。 ②触发方式开关置“自动”。③适当调节垂直<)、水平<)“位移”旋钮,使扫描光迹位于屏幕中央。<若示波器设有“寻迹”按键,可按下“寻迹”按键,判断光迹偏移基线的方向。) 2)、双踪示波器一般有五种显示方式,即“Y1”、“Y2”、“Y1+Y2”三种单 踪显示方式和“交替”“断续”二种双踪显示方式。“交替”显示一般适宜于输入信号频率较高时使用。“断续”显示一般适宜于输入信号频率较底时使用。 3)、为了显示稳定的被测信号波形,“触发源选择”开关一般选为“内”触发,使扫描触发信号取自示波器内部的Y通道。

15电力电子实验指导书

《电力电子技术》 实 验 指 导 书

实验一锯齿波同步移相触发电路实验 一、实验目的 (1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 (2)掌握锯齿波同步移相触发电路的调试方法。 二、实验所需挂件及附件 三、实验线路及原理 锯齿波同步移相触发电路的原理图参见挂件说明。锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见挂件说明和电力电子技术教材中的相关内容。 四、实验内容 (1)锯齿波同步移相触发电路的调试。 (2)锯齿波同步移相触发电路各点波形的观察和分析。 五、预习要求 (1)阅读电力电子技术教材中有关锯齿波同步移相触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。 (2)掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。 六、思考题 (1)锯齿波同步移相触发电路有哪些特点? (2)锯齿波同步移相触发电路的移相范围与哪些参数有关? (3)为什么锯齿波同步移相触发电路的脉冲移相范围比正弦波同步移相触发电路的移相范围要大? 七、实验方法 (1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为

220V 10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。 ①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。 ②观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。 ③调节电位器RP1,观测“2”点锯齿波斜率的变化。 ④观察“3”~“6”点电压波形和输出电压的波形,记下各波形的幅值与宽 度,并比较“3”点电压U 3和“6”点电压U 6 的对应关系。 (2)调节触发脉冲的移相范围 将控制电压U ct 调至零(将电位器RP2顺时针旋到底),用示波器观察同步电压 信号和“6”点U 6的波形,调节偏移电压U b (即调RP3电位器),使α=170°,其波 形如图2-1所示。 图2-1锯齿波同步移相触发电路 (3)调节U ct (即电位器RP2)使α=60°,观察并记录U 1 ~U 6 及输出“G、K” 脉冲电压的波形,标出其幅值与宽度,并记录在下表中(可在示波器上直接读出,读数时应将示波器的“V/DIV”和“t/DIV”微调旋钮旋到校准位置)。 (4)

物理系电力电子技术实验讲义

电力电子技术实验讲义内蒙古大学物理科学学院应用物理专业

目录 实验一安全规程与实验规程 (2) 实验二单结晶体管触发电路实验 (7) 实验三SCR、GTO、MOSFET、GTR、IGBT (9) 实验四直流斩波电路的性能研究(六种典型线路) (12)

实验一安全规程与实验规程 一、实验目的: 1、掌握安全规程及实验规程、安全用电知识、操作规范,以确保实验过程中的人身安全。 2、熟悉实验设备的主电路。 二、实验所需挂件及附件: 三、实验内容: 1、安全规程及实验规程的教育。 2、主电路图各组成部分的观察与连接。 四、预习要求: 阅读电力电子技术教材中有关安全操作的内容。 五、思考题: 该实验的操作要求与以前的弱电实验有什么不同? 六、实验报告: 1、画出实验主电路图。 2、写出实验安全操作规程。

附录: 一、实验安全规程 为了顺利完成电力电子技术及电机控制实验,确保实验时人身安全及设备可靠运行要严格遵守如下安全操作规程: 1、在实验过程中,绝对不允许双手同时接到隔离变压器的两个输出端,将人体当作负载使用。 2、为了提高学生的安全用电常识,任何接线和拆线都必须在切断电源后方可进行。 3、为了提高试验过程中的效率,学生独立完成接线或改接线路后,应仔细再次核对线路,并使组内其他同学引起注意后方可接通电源。 4、如果在实验过程中发生告警,应仔细检查线路以及电位器的调节位置,确定无误后,方可重新进行实验。 5、在实验过程中应注意所接仪表的最大量程,选择合适的负载完成试验,以免损坏仪表、电源或负载。 6、电源控制屏以及各挂件所使用的保险丝规格和型号是经我们反复试验选定的,不得私自改变其型号和规格,否则可能会引起不可预料的后果。 7、在加电流、转速闭环前一定要确保反馈极性是否正确,应构成负反馈。 8、除作阶跃启动试验外,系统启动前负载电阻必须放在最大阻值,给定电位器必须退回至零位后,才允许合闸启动并慢慢增加给定,以免元件和设备过载损坏。 9、在直流电机启动时,要先开励磁电源,后加电枢电压。完成实验时,要先关电枢电压,再关励磁电源。 二、DJK01电源控制屏 电源控制屏主要为实验提供各种电源,如三相交流电源、直流励磁电源。同时为实验提供所需的仪表,如直流电压、电流表,交流电压、电流表。屏上还设有定时器兼报警记录仪,供教师考核学生实验之用。在控制屏正面的大凹槽内,设有两根不锈钢管,可挂置实验所需挂件,凹槽底部设有12芯、10芯、4芯、3芯等插座,有源挂件的电源从这些插座提供。在控制屏两边设有单相三极220V电源插座及三相四极380V 电源插座,此外还设有供实验台照明用的40W日光灯。 1、三相电网电压指示 三相电网电压指示主要用于检测输入的电网电压是否有缺相,操作交流电压表下面的切换开关,观测三相电网各线间电压是否平衡。 2、定时器兼报警记录仪 平时作为时钟使用,具有设定实验时间、定时报警、切断电源等功能,它还可以自动记录由于接线操作错误所导致的告警次数。(具体操作方法详见DJDK-1型电力电子技术及电机控制实验装置使用说明书) 3、控制部分

相关主题
文本预览
相关文档 最新文档