哈工大_结构力学(王焕定第二版)影响线一章答案
- 格式:docx
- 大小:1.06 MB
- 文档页数:17
习题7-1 试确定图示结构的位移法基本未知量数目,并绘出基本结构。
(a) (b) (c)1个角位移3个角位移,1个线位移4个角位移,3个线位移(d) (e) (f)3个角位移,1个线位移2个线位移3个角位移,2个线位移(g) (h)(i)7- 327- 33一个角位移,一个线位移 一个角位移,一个线位移 三个角位移,一个线位移7-2 试回答:位移法基本未知量选取的原则是什么?为何将这些基本未知位移称为关键位移?是否可以将静定部分的结点位移也选作位移法未知量?7-3 试说出位移法方程的物理意义,并说明位移法中是如何运用变形协调条件的。
7-4 试回答:若考虑刚架杆件的轴向变形,位移法基本未知量的数目有无变化?如何变化?7-5 试用位移法计算图示结构,并绘出其内力图。
(a)解:(1)确定基本未知量和基本结构有一个角位移未知量,基本结构见图。
lll7- 34Z 1M 图(2)位移法典型方程11110pr Z R +=(3)确定系数并解方程iql Z ql iZ ql R i r p 24031831,821212111==-∴-==(4)画M 图M 图(b)4m4m 4m7- 35解:(1)确定基本未知量1个角位移未知量,各弯矩图如下1Z =1M 图32EIp M 图(2)位移法典型方程11110pr Z R +=(3)确定系数并解方程 1115,352p r EI R ==- 153502EIZ -=114Z EI=(4)画M 图()KNm M ⋅图(c)6m6m9m7- 36解:(1)确定基本未知量一个线位移未知量,各种M 图如下1M 图243EI 243EI 1243EI p M 图F R(2)位移法典型方程11110pr Z R +=(3)确定系数并解方程 1114,243p pr EI R F ==- 140243p EIZ F -=12434Z EI=(4)画M 图7- 3794M 图(d)解:(1)确定基本未知量一个线位移未知量,各种M 图如下11Z1111r 252/25EA a 简化a2a a2aa F P7- 38图1pR pp M(2)位移法典型方程11110pr Z R +=(3)确定系数并解方程 11126/,55p pr EA a R F ==-126055p EA Z F a -=13a Z EA=(4)画M 图图M(e)l7- 39解:(1)确定基本未知量两个线位移未知量,各种M 图如下图1=11211 EA r l r ⎛⇒=⎝⎭1M221EA r l ⎛=⎝⎭图12 0p p p R F R ⇒=-=p M p(2)位移法典型方程1111221211222200p p r Z r Z R r Z r Z R ++=++=(3)确定系数并解方程7- 4011122122121,1,0p p p EA r r r l EA r l R F R ⎛=== ⎝⎭⎛=+ ⎝⎭=-=代入,解得12p p lZ F EAlZ F EA=⋅=⋅(4)画M 图图M p7-6 试用位移法计算图示结构,并绘出M 图。
结构力学王焕定答案引言结构力学是工程学中一门重要的学科,它研究各种结构的力学性能和稳定性。
在结构设计和分析中,结构力学的基本原理和方法是必不可少的工具。
在结构力学领域,王焕定教授被公认为权威人物,他的研究和贡献对于该领域的发展起到了重要的推动作用。
本文将以王焕定教授的研究成果为基础,回答一些常见的结构力学问题。
1. 王焕定教授简介王焕定教授是中国工程院院士,同济大学结构工程系的教授。
他的研究领域主要是结构力学和抗震工程。
他在结构优化设计、结构动力学和结构抗震性能等方面做出了杰出的贡献。
他的研究成果不仅在国内具有广泛的应用,也对同行在国际上产生了积极的影响。
2. 结构力学基本原理结构力学的基本原理是力学的基础。
在结构设计和分析中,掌握这些基本原理是非常重要的。
以下是一些结构力学的基本原理:2.1. 受力分析结构受力分析是结构力学的起点。
它通过力的平衡原理和受力分解的方法,确定结构在不同载荷下的受力状态。
在受力分析中,常常使用静力学和力矩平衡原理来解决受力问题。
2.2. 应变和应力应变和应力是结构物力学性能的重要指标。
应变表示物体在外力作用下相对变形程度的大小,而应力表示单位面积上的力的大小。
结构力学中常常关注材料的线弹性行为,通过应力应变关系分析材料的变形和破坏情况。
2.3. 刚度和变形刚度是结构物抵抗变形的能力。
结构在受到外力作用时,常常会发生变形。
刚度常常用杨氏模量和截面惯性矩等指标来表征,它是结构力学分析中十分重要的参数。
刚度与自由度的数量相关联,它可以对结构的强度和稳定性进行评估。
2.4. 稳定性和挠度稳定性和挠度是结构力学的重要概念。
结构在不同载荷作用下,可能会发生不稳定破坏现象。
稳定性分析能够判断结构在外力作用下的抗承载能力,而挠度分析能够评估结构的变形程度。
结构的稳定性和挠度分析是结构设计和评估的重要内容。
3. 结构力学问题的解答王焕定教授通过多年的研究和实践,积累了丰富的经验和知识。
结构力学王焕定答案引言结构力学是一门研究物体变形和受力行为的学科,是工程学中的重要基础学科。
结构力学的研究可以帮助我们了解结构物在受力时的行为,为工程设计和分析提供理论依据。
本文将介绍结构力学领域权威专家王焕定的相关问题答案。
问题1:简单支座和铰支座的区别是什么?答案:简单支座和铰支座是结构中常见的两种支座形式。
简单支座是指支座在所有方向上均能提供垂直支撑的一种支座形式,通常由一个平面或球面来提供支撑,可以阻止结构在任何方向上的平移和旋转。
铰支座则是指结构中的连接点允许在某些方向上发生旋转的一种支座形式,它只提供垂直支撑,不能阻止结构在平面内的移动。
简单支座所提供的支撑主要是通过摩擦力来实现的,而铰支座是通过连接点的旋转来实现的。
由于简单支座可以阻止结构在水平方向上的移动,因此它通常用于需要限制水平位移的结构中,如桥梁的支座。
而铰支座则适用于允许结构发生旋转或位移的情况,如房屋的支撑结构。
两种支座形式在结构分析和设计中起着不同的作用。
问题2:如何计算弹性变形?答案:弹性变形是指物体在受力作用下所发生的可逆形变。
它可以通过应力和材料的弹性模量来计算。
弹性模量是描述材料抵抗弹性变形的特征参数,记作E。
弹性变形可以用胡克定律来描述,即应变与应力成正比。
弹性变形的计算公式为:ε = σ / E其中,ε表示应变,σ表示应力,E表示材料的弹性模量。
在实际工程中,经常需要计算结构体的弹性变形。
例如,在计算梁的弯曲变形时,可以根据梁的几何形状、受力情况和材料的弹性模量来计算弯曲应变和弯曲角度。
这对于工程设计和结构分析来说非常重要。
问题3:什么是结构物的静力平衡?描述其应用领域。
答案:结构物的静力平衡是指结构物在受到外力作用时,所有受力部分的合力和合力矩均为零的一种平衡状态。
在结构力学中,静力平衡是分析和设计结构物的基本要求之一。
结构物的静力平衡可以应用于各种工程领域。
例如,在建筑结构设计中,静力平衡可以用来确定各个构件的受力情况,以确保结构的安全性和稳定性。
结构力学影响线习题及答案收集于网络,如有侵权请联系管理员删除影响线及其应用一、判断题:1、图示结构M C 影响线已作出如图(a )所示,其中竖标E y 表示P = 1在E 时,C 截面的弯矩值。
M C 影 响 线y E(a )12mAB6m60kNC(b )2、图(b )所示梁在给定移动荷载作用下,支座B 反力最大值为110 kN 。
二、作图、计算题:3、作图示梁中R A 、M E 的影响线。
2aa a ABCDEa4、单位荷载在梁DE 上移动,作梁AB 中R B 、M C 的影响线。
aa2a收集于网络,如有侵权请联系管理员删除5、作图示结构R B 、Q B 右影响线。
4m4m2m2m6、作图示梁的M K 、Q E 影响线。
aaaa aaaaKEF 27、单位荷载在刚架的横梁上移动,作M A 的影响线(右侧受拉为正)。
8、图示结构P = 1在DG 上移动,作M C 和Q C 右的影响线。
4m9、作图示结构的M B 影响线。
4m 2m10、作图示结构:(1)当P = 1在AB上移动时,M A影响线;(2)当P = 1在BD上移动时,MA影响线。
ll11、作图示结构的M C、Q F影响线。
设M C以左侧受拉为正。
l/2l/2l/2l/212、单位荷载在桁架上弦移动,求N a的影响线。
d d d13、单位荷载在桁架上弦移动,求N a的影响线。
d d d收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除14、作图示桁架的V 3影响线。
a aaa15、单位荷载在DE 上移动,求主梁R A 、M C 、Q C 的影响线。
16、作图示结构Q C 右的影响线。
lllllll17、作出图示梁M A 的影响线,并利用影响线求出给定荷载下的M A 值。
2m2m1m18、P = 1沿AB 及CD 移动。
作图示结构M A 的影响线,并利用影响线求给定荷载作用下M A 的值。
收集于网络,如有侵权请联系管理员删除2m2m4m40kN/mA19、作图示梁的Q C 的影响线,并利用影响线求给定荷载作用下Q C 的值。
第1章 绪论(无习题)第2章 平面体系的几何组成分析习题解答习题 是非判断题(1) 若平面体系的实际自由度为零,则该体系一定为几何不变体系。
( )(2) 若平面体系的计算自由度W =0,则该体系一定为无多余约束的几何不变体系。
( ) (3) 若平面体系的计算自由度W <0,则该体系为有多余约束的几何不变体系。
( ) (4) 由三个铰两两相连的三刚片组成几何不变体系且无多余约束。
( )(5) 习题(5) 图所示体系去掉二元体CEF 后,剩余部分为简支刚架,所以原体系为无多余约束的几何不变体系。
( )习题 (5)图(6) 习题(6)(a)图所示体系去掉二元体ABC 后,成为习题(6) (b)图,故原体系是几何可变体系。
( )(7) 习题(6)(a)图所示体系去掉二元体EDF 后,成为习题(6) (c)图,故原体系是几何可变体系。
( )习题 (6)图【解】(1)正确。
(2)错误。
0W 是使体系成为几何不变的必要条件而非充分条件。
(3)错误。
(4)错误。
只有当三个铰不共线时,该题的结论才是正确的。
(5)错误。
CEF 不是二元体。
(6)错误。
ABC 不是二元体。
(7)错误。
EDF 不是二元体。
习题 填空(1) 习题(1)图所示体系为_________体系。
B DACEF(a)(b)(c)D习题(1)图(2) 习题(2)图所示体系为__________体系。
习题2-2(2)图(3) 习题(3)图所示4个体系的多余约束数目分别为_______、________、__________、__________。
习题(3)图(4) 习题(4)图所示体系的多余约束个数为___________。
习题(4)图(5) 习题(5)图所示体系的多余约束个数为___________。
习题(5)图(6) 习题(6)图所示体系为_________体系,有_________个多余约束。
习题(6)图(7) 习题(7)图所示体系为_________体系,有_________个多余约束。
习题及参考答案【习题2】【习题3】【习题4】【习题5】【习题6】【习题8】【习题9】【习题10】【习题11】【习题12】【习题13】【习题14】【参考答案】习题22-1~2-14试对图示体系进行几何组成分析,如果是具有多余联系的几何不变体系,则应指出多余联系的数目。
题2-1图题2-2图题2-3图题2-4图题2-5图题2-6图题2-7图题2-8图题2-9图题2-10图题2-11图题2-12图 题2-13图 题2-14图习题33-1 试作图示多跨静定梁的M 及Q 图。
(b)(a)20kN40kN20kN/m40kN题3-1图3-2 试不计算反力而绘出梁的M 图。
(b)5kN/m40kN(a)题3-2图习题44-1 作图示刚架的M 、Q 、N 图。
(c)(b)(a)20kN /m2kN /m题4-1图4-2 作图示刚架的M 图。
P(e)(d)(a)(b)(c)20k N /m4kN题4-2图4-3 作图示三铰刚架的M 图。
(b)(a)题4-3图4-4 作图示刚架的M 图。
(a)题4-4图4-5 已知结构的M 图,试绘出荷载。
(b)(a)题4-5图4-6 检查下列刚架的M 图,并予以改正。
(e)(g)(h)P(d)(c)(a)(b)(f)题4-6图习题55-1 图示抛物线三铰拱轴线方程x x l lfy )(42-=,试求D 截面的内力。
题5-1图5-2 带拉杆拱,拱轴线方程x x l lfy )(42-=,求截面K 的弯矩。
C题5-2图 题5-3图5-3 试求图示带拉杆的半圆三铰拱截面K 的内力。
习题66-1 判定图示桁架中的零杆。
(c)(b)题6-1图6-2 用结点法计算图示桁架中各杆内力。
(b)题6-2 图6-3 用截面法计算图示桁架中指定各杆的内力。
(b)题6-3图6-4 试求图示组合结构中各链杆的轴力并作受弯杆件的M 、Q 图。
(a)题6-4图6-5 用适宜方法求桁架中指定杆内力。
(c)(b)(a)题6-6图习题88-1 试作图示悬臂梁的反力V B 、M B 及内力Q C 、M C 的影响线。
1-1 答:(a) 可看成11个刚片,F 、J 两个固定铰支座,想当四根链杆,再加上A 、E 处三个链杆,总计7根链杆。
B 、C 、D 、G 、H 、I 共6个连接三个刚片的复刚结点,相当于12个单铰。
因此,由计算公式()()20710h b +⋅+++=−33 113312W m g =⋅−⋅=×−×(单纯由W 的结果不能判断其是否能作为结构。
但是,显而易见,即使将ABCDEFGHIJ 整个看成一个刚片(当成一根梁),有A 、E 处三个链杆即构成“简支梁”,是静定的。
因此,W < 0体系属有多余约束的几何不变体系,是可以做结构用的,是有10个多余联系的几何不变体系(超静定结构)。
(b) 可看成1个刚片FJ 和 A 、B 、C 、D 、E 5点10根链杆(包括A 、E 处三个链杆)组成, F 、J 处两个单铰相当4根链杆,因此总链杆数为14。
由计算自由度公式可得 )()3232 =312500141W m j g h b =⋅+⋅−⋅+⋅+×+×−++=−W j单纯由W 的结果不能判断其是否能作为结构。
但是,利用减二元体规则可知体系几何不变,是有一个多余约束的超静定结构。
(c) 本题有6个结点,由31根链杆相连。
由计算自由度公式可得2216311b =⋅−332W =×−×3524332W =×−×−×=−210200W =×−=由此可确定此体系是几何可变体系,不能作为结构。
1-2 答::(a) 三个刚片:AD 、BDEF 、FC ,刚片间有两个单铰: D 、F , 三个刚结点:A 、B 、C 。
2334−×=−此体系几何不变,有4个多余约束,是超静定结构。
(b) 5个刚片:AD 、DE 、EBF 、FG 、GC ,4个单铰: D 、E 、F 、G ,三个刚结点:A 、B 、C 。
5-1 用静力法作图示梁的支杆反力F N1、F N2、F N3及力M K 、F Q K 、F N K 的影响线。
解:取隔离体如图(a)所示∑M A =0F N3 = 52l (x−32l)∑F x =0F N1 =F N2∑F y = 0F N1 = 52 (4−x l )x<3l 时取隔离体如图(e)所示M K = F N3lF Q K =−F N3F N K =0x >3l 时取隔离体如图(f)所示M K = F N3l −1×(x−3l)=−x+l8 2F Q K =1−F N3 = − x5 5lF N K =0由求出的影响系数方程可作出影响线如图所示。
5-2 用静力法作图示梁的F By 、M A 、M K 和F Q K 的影响线。
解:取隔离体如图(a)所示∑F y =0F By =1∑M B =0M A =x x <l/2时, 取隔离体如图(f)所示M K =l/2F Q K =−1x >l/2时, 取隔离体如图(e)所示M K =l −xF Q K =0由影响系数方程可作出影响线如图所示。
5-3 用静力法作图示斜梁的F Ay、F Ax、F By 、M C 、F Q C 和F N C 的影响线。
(1)解:∑M A =0F By = x/l∑F y =0F Ay =1−x/l∑F x =0F Ax =0x<a,取右侧∑M c =0 M C= bx/l∑F r =0 F Q C =−x l cosα∑Fβ=0 F N C = x l sinαx>a,取左侧∑M c =0 M C = a(1−x/l)∑F r =0 F Q C = (1−x l )cosαx ∑Fβ=0 F N C =−(1−l )sinα由影响系数方程可作出影响线如图所示。
5-3(2)解:∑M A =0F By = x l tanαx∑F y = 0F Ay =− l tanα∑F x =0 F Ax =−1x<a,取右侧∑M c =0 M C = b l x tanα∑F r =0 F Q C =−x l sinα∑Fβ= 0 F N C = x l sinα⋅tanαx>a,取左侧∑M c =0 M C = tanα⋅a(1−x/l)∑F r =0 F Q C = sinα−x l sinα∑Fβ= 0 F N C = cosα+ x l tanα⋅sinα由影响系数方程可作出影响线如图所示。
第一章平面体系的几何组成分析一判断题1. 图示体系是几何不变体系。
(×)题1图题2图题3图题4图2. 图示体系为几何可变体系。
(×)3. 图示体系是几何不变体系。
(×)4. 图示体系是几何不变体系。
(√)5. 图示体系是几何不变体系。
(×)题5图题6图题19图题20图6. 图示体系为几何不变有多余约束。
(×)7. 几何瞬变体系产生的运动非常微小并很快就转变成几何不变体系,因而可以用作工程结构。
(×)8. 两刚片或三刚片组成几何不变体系的规则中,不仅指明了必需的约束数目,而且指明了这些约束必需满足的条件。
(√)9. 在任意荷载下,仅用静力平衡方程即可确定全不反力和内力的体系是几何不变体系。
(√)10. 计算自由度W小于等于零是体系几何不变的充要条件。
(×)11. 几何可变体系在任何荷载作用下都不能平衡。
(×)12. 三个刚片由三个铰相联的体系一定是静定结构。
(×)13. 有多余约束的体系一定是超静定结构。
(×)14. 有些体系为几何可变体系但却有多余约束存在。
(√)15. 平面几何不变体系的三个基本组成规则是可以相互沟通的。
(√)16. 三刚片由三个单铰或任意六根链杆两两相联,体系必为几何不变。
(×)17. 两刚片用汇交于一点的三根链杆相联,可组成几何不变体系。
(×)18. 若体系计算自由度W<0,则它一定是几何可变体系。
(×)19. 在图示体系中,去掉其中任意两根支座链杆后,所余下都是几何不变的。
(×)20. 图示体系按三刚片法则分析,三铰共线,故为几何瞬变体系。
(×)21. 有多余约束的体系一定是几何不变体系。
(×)22. 几何不变体系的计算自由度一定等于零。
(×)23. 几何瞬变体系的计算自由度一定等于零。
(×)24. 图中链杆1和2的交点O可视为虚铰。
第1章绪论(无习题)之阳早格格创做第2章仄里体系的机动领会习题解问习题利害推断题(1) 若仄里体系的本质自由度为整,则该体系一定为几许稳定体系.( )(2) 若仄里体系的估计自由度W=0,则该体系一定为无多余拘束的几许稳定体系.( )(3) 若仄里体系的估计自由度W<0,则该体系为有多余拘束的几许稳定体系.( )(4) 由三个铰二二贯串的三刚刚片组成几许稳定体系且无多余拘束.( )(5) 习题2.1(5) 图所示体系去掉二元体CEF后,结余部分为简收刚刚架,所以本质系为无多余拘束的几许稳定体系.( )习题 2.1(5)图(6) 习题2.1(6)(a)图所示体系去掉二元体ABC后,成为习题2.1(6) (b)图,故本质系是几许可变体系.( )(7) 习题2.1(6)(a)图所示体系去掉二元体EDF后,成为习题2.1(6) (c)图,故本质系是几许可变体系.( )习题 2.1(6)图习题挖空(1) 习题2.2(1)图所示体系为_________体系.习题2.2(1)图(2) 习题2.2(2)图所示体系为__________体系.习题 2-2(2)图(3) 习题2.2(3)图所示4个体系的多余拘束数目分别为_______、________、__________、__________.习题 2.2(3)图(4) 习题 2.2(4)图所示体系的多余拘束个数为___________.习题 2.2(4)图(5) 习题 2.2(5)图所示体系的多余拘束个数为___________.习题 2.2(5)图(6) 习题 2.2(6)图所示体系为_________体系,有_________个多余拘束.习题 2.2(6)图(7) 习题 2.2(7)图所示体系为_________体系,有_________个多余拘束.习题 2.2(7)图对付习题2.3图所示各体系举止几许组成领会.第3章静定梁与静定刚刚架习题解问习题利害推断题(1) 正在使用内力图特性画制某受直杆段的直矩图时,必须先供出该杆段二端的端直矩.()(2) 区段叠加法仅适用于直矩图的画制,不适用于剪力图的画制.()(3) 多跨静定梁正在附属部分受横背荷载效率时,必会引起基础部分的内力.()(4) 习题3.1(4)图所示多跨静定梁中,CDE战EF部分均为附属部分.()习题3.1(4)图习题挖空(1)习题3.2(1)图所示受荷的多跨静定梁,其定背通联C所传播的直矩M C的大小为______;截里B的直矩大小为______,____侧受推.习题3.2(1)图(2) 习题3.2(2)图所示风载效率下的悬臂刚刚架,其梁端直矩M AB=______kN·m,____侧受推;左柱B截里直矩M B=______kN·m,____侧受推.习题3.2(2)图习题做图所示单跨静定梁的M图战F图.Q(a) (b)(c) (d)(e) (f)习题做图所示单跨静定梁的内力图.(c) 习题做图所示斜梁的内力图.习题做图所示多跨梁的内力图.(a)(a)习题改正图所示刚刚架的直矩图中的过失部分.(a) (b) (c)(d) (e) (f)习题做图所示刚刚架的内力图.(a)(b)第4章静定拱习题解问习题4.1利害推断题(1) 三铰拱的火仄推力不但是与三个铰的位子有关,还与拱轴线的形状有关.()(2) 所谓合理拱轴线,是指正在任性荷载效率下皆能使拱处于无直矩状态的轴线. ( )(3) 改变荷载值的大小,三铰拱的合理拱轴线形状也将爆收改变. ( )习题4.2挖空(1) 习题3.2(3)图所示三铰拱的火仄推力F H 等于.习题3.2(3)图习题4.3供图所示三铰拱收反力战指定截里K 的内力.已知轴线圆程24()f y x l x l =-.第5章 静定仄里桁架习题解问习题5.1 利害推断题(1) 利用结面法供解桁架结构时,可从任性结面启初. ( ) 习题5.2挖空(1)习题3.2(4)图所示桁架中有根整杆.习题3.2(4)图习题5.3 试用结面法供图所示桁架杆件的轴力.(a) (b)习题5.4 推断图所示桁架结构的整杆.(a) (b)(c)习题5.5 用截里法供解图所示桁架指定杆件的轴力.(a)(b)第6章 结构的位移估计习题解问习题6.1 利害推断题(1) 变形骸真功本理仅适用于弹性体系,不适用于非弹性体系.( )(2) 真功本理中的力状态战位移状态皆是真设的.( )(3) 功的互等定理仅适用于线弹性体系,不适用于非线弹性体系.( )(4) 反力互等定理仅适用于超静定结构,不适用于静定结构.( )(5) 对付于静定结构,有变形便一定有内力.( )(6) 对付于静定结构,有位移便一定有变形.( )(7) 习题4.1(7)图所示体系中各杆EA 相共,则二图中C 面的火仄位移相等.( )(8) M P 图,M 图如习题4.1(8)图所示,EI =常数.下列图乘截止是精确的:4)832(12l l ql EI ⨯⨯⨯ ( )(9) M P 图、M (9)图所示,下列图乘截止是精确的:033202201111)(1y A EI y A y A EI ++ ( )(10) (10)图所示结构的二个仄稳状态中,有一个为温度变更,此时功的互等定理不可坐.( )习题 4.1(7)图习题 4.1(8)图 习题4.1(9)图习题 4.1(10)图习题6.2挖空题(1) 习题4.2(1)图所示刚刚架,由于收座B 下重所引起D 面的火仄位移D H =______. (2) 真功本理有二种分歧的应用形式,即_______本理战_______本理.其中,用于供位移的是_______本理.(3) 用单位荷载法估计位移时,假制状态中所加的荷载应是与所供广义位移相映的________.(4) 图乘法的应用条件是:__________且M P 与M 图中起码有一个为直线图形.(5) 已知刚刚架正在荷载效率下的M P 图如习题4.2(5)图所示,直线为二次扔物线,横梁的抗直刚刚度为2EI ,横杆为EI ,则横梁中面K 的横背位移为________.(6) 习题4.2(6)图所示拱中推杆AB 比本安排少度短了,由此引起C 面的横背位移为________;引起收座A 的火仄反力为________.(7) 习题4.2(7)图所示结构,当C 面有F P =1(↓)效率时,D 面横背位移等于(↑),当E 面有图示荷载效率时,C 面的横背位移为________.(8) 习题 4.2(8)图(a )所示连绝梁收座B 的反力为)(1611R ↑=B F ,则该连绝梁正在收座B 下重B =1时(如图(b )所示),D 面的横背位移D δ=________.习题 4.2(1)图 习题 4.2(5)图习题 4.2(6)图 习题 4.2(7)图习题 4.2(8)图习题6.3C V .EI 为常数.1)供C V习题4.3(1)图2)供C V习题4.3(2)图3)供C V习题4.3(3)图4)供A习题4.3(4)图习题6.4 分别用积分法战图乘法供习题4.4(a)图所示刚刚架C 面的火仄位移C H .已知EI =常数.习题6.5 习题4.5(a)图所示桁架各杆截里均为A =2×103m 2,E ×108kN/m 2,F P =30kN ,d =2m.试供C 面的横背位移V C .第7章 力法习题解问习题7.1利害推断题(1)习题5.1(1)图所示结构,当收座A 爆收转化时,D q l l B A C lA B lD C A BC22ql 2ql 281ql 2(b)图M P M 图(c)(a)xx1l各杆均爆收内力.()习题5.1(1)图习题5.1(2)图(2)习题 5.1(2)图所示结构,当内中侧均降下t1℃时,二杆均只爆收轴力.()(3)习题 5.1(3)图(a)战(b)所示二结构的内力相共.()习题5.1(3)图(4)习题 5.1(3)图(a)战(b)所示二结构的变形相共.()习题7.2 挖空题(1)习题5.2(1) 图(a)所示超静定梁的收座A爆收转角,若选图(b)所示力法基础结构,则力法圆程为_____________,代表的位移条件是______________,其中=_________;若选图(c)所示力法基础结构时,力法圆1c程为____________,代表的位移条件是______________,其中1c=_________.习题5.2(1)图(2)习题5.2(2)图(a)所示超静定结构,当基础体系为图(b)时,力法圆程为____________________,=________;当基础体系为图(c)时,力法圆程为1P____________________,1P=________.习题5.2(2)图(3)习题5.2(3)图(a)所示结构各杆刚刚度相共且为常数,AB杆中面直矩为________,____侧受推;图(b)所示结构M BC=________,____侧受推.习题5.2(3)图(4)连绝梁受荷载效率时,其直矩图如习题5.2(4)图所示,则D面的挠度为________,位移目标为____.习题5.2(4)图习题7.3试决定习题5.3图所示结构的超静定次数.图习题7.4用力法估计习题5.4图所示各超静定梁,并做出直矩图战剪力图.图习题7.5用力法估计习题5.5图所示各超静定刚刚架,并做出内力图.图习题7.6利用对付称性,估计习题5.12图所示各结构的内力,并画直矩图.图习题7.7画出习题5.17图所示各结构直矩图的大概形状.已知各杆EI=常数.图第8章位移法习题解问习题8.1决定用位移法估计图所示结构的基础已知量数目,并画出基础结构.(除证明者中,其余杆的EI为常数.)(a) (b) (c) (d)图习题8.2利害推断(1)位移法基础已知量的个数与结构的超静定次数无关.()(2)位移法可用于供解静定结构的内力.()(3)用位移法估计结构由于收座移动引起的内力时,采与与荷载效率时相共的基础结构.()(4)位移法只可用于供解连绝梁战刚刚架,不克不迭用于供解桁架.()习题8.3用位移法估计习题6.6图所示连绝梁,做直矩图战剪力图,EI=常数.(1)(2)习题8.4用位移法估计结构,做直矩图,EI=常数.(1)(2)第9章渐近法习题解问习题9.1利害推断题(1)力矩调配法不妨估计所有超静定刚刚架的内力.()(2)习题7.1(2)图所示连绝梁的蜿蜒刚刚度为EI,杆少为l,杆端直矩M BC<M.()习题7.1(2)图习题7.1(3)图(3)习题7.1(3)图所示连绝梁的线刚刚度为i,欲使A端爆收逆时针单位转角,需施加的力矩M A>3i.()习题9.2挖空题(1)习题7.2(1)图所示刚刚架EI=常数,各杆少为l,杆端直矩M AB =________.(2)习题7.2(2)图所示刚刚架EI=常数,各杆少为l,杆端直矩M AB =________.(3)习题7.2(3)图所示刚刚架各杆的线刚刚度为i,欲使结面B爆收逆时针的单位转角,应正在结面B施加的力矩M B =______.习题7.2(1)图习题7.2(2)图习题7.2(3)图(4)用力矩调配法估计习题7.2(4)图所示结构(EI=常数)时,传播系数C BA =________,C BC =________.习题7.2(4)图习题9.3用力矩调配法估计习题7.3图所示连绝梁,做直矩图战剪力图,并供收座B的反力.(1)(2)习题9.4用力矩调配法估计习题7.4图所示连绝梁,做直矩图.(1)(2)习题9.5用力矩调配法估计习题7.5图所示刚刚架,做直矩图.(1)(2)第11章效率线及其应用习题解问习题11.1利害推断题(1)习题8.1(1)图示结构BC杆轴力的效率线应画正在BC杆上.()习题8.1(1)图习题8.1(2)图(2) 习题8.1(2)图示梁的M C效率线、F Q C效率线的形状如图(a)、(b)所示.(3) 习题8.1(3)图示结构,利用M C效率线供牢固荷载F P1、F P2、F P3效率下M C的值,可用它们的合力F R去代替,即M C= F P1y1+ F P2y2+ F P3y3=F R y.( )习题8.1(3)图(4) 习题8.1(4)图中的(a)所示主梁F Q C左的效率线如图(b)所示.( )习题8.1(4)图(5)习题8.1(5)图示梁F R A的效率线与F Q A左的效率线相共.( )习题8.1(5)图(6) 简收梁的直矩包络图为活载效率下各截里最大直矩的连线.( )习题11.2挖空题(1) 用静力法做效率线时,其效率线圆程是.用机动法做静定结构的效率线,其形状为机构的.(2) 直矩效率线横目标量目是.(3)习题8.2(3)图所示结构,F P=1沿AB移动,M D的效率线正在B面的横标为,F Q D的效率线正在B面的横标为.习题8.2(3)图(4) 习题8.2(4)图所示结构,F P=1沿ABC移动,则M D 效率线正在B面的横标为.习题8.2(4)图(5)习题8.2(5)图所示结构,F P=1沿AC移动,截里B的轴力F N B的效率线正在C面的横标为.习题8.2(5)图习题11.3单项采用题(1)习题8.3(1)图所示结构中收座A左侧截里剪力效率线的形状为( ).习题8.3(1)图(2) 习题8.3(2)图所示梁止家列荷载效率下,反力F R A的最大值为( ).(a) 55kN (b) 50kN (c) 75kN (d) 90kN习题8.3(2)图(3)习题8.3(3)图所示结构F Q C效率线(F P=1正在BE上移动)BC、CD段横标为( ).(a) BC,CD均不为整; (b) BC,CD均为整;(c) BC为整,CD不为整;(d) BC不为整,CD为整.习题8.3(3)图(4)习题8.3(4)图所示结构中,收座B左侧截里剪力效率线形状为( ).习题8.3(4)图(5)习题8.3(5)图所示梁止家列荷载效率下,截里K的最大直矩为( ).(a) 15kN·m(b) 35 kN·m(c) 30 kN·m(d) kN·m习题8.3(5)图习题11.4做习题8.4(a)图所示悬臂梁F R A、M C、F Q C的效率线.习题11.5做习题8.5(a)图所示结构中F N BC、M D的效率线,F P =1正在AE上移动.习题11.6做习题8.6(a)图所示伸臂梁的M A、M C、F Q A 左、F Q A左的效率线.习题11.7做习题8.7(a)图所示结构中截里C的M C、F Q C的效率线.习题11.8(a)图所示静定多跨梁的F R B、M E、F Q B左、F Q B左、F Q C的效率线.习题11.9(a)图所示牢固荷载效率下截里K的内力M K战F Q K左.习题11.10(a)图所示连绝梁M K、M B、F Q B左、F Q B左效率线的形状.若梁上有随意安插的均布活荷载,请画出使截里K爆收最大直矩的荷载安插.第2章仄里体系的机动领会习题解问习题利害推断题(1) 若仄里体系的本质自由度为整,则该体系一定为几许稳定体系.( )(2) 若仄里体系的估计自由度W=0,则该体系一定为无多余拘束的几许稳定体系.( )(3) 若仄里体系的估计自由度W<0,则该体系为有多余拘束的几许稳定体系.( )(4) 由三个铰二二贯串的三刚刚片组成几许稳定体系且无多余拘束.( )(5) 习题2.1(5) 图所示体系去掉二元体CEF后,结余部分为简收刚刚架,所以本质系为无多余拘束的几许稳定体系.( )习题 2.1(5)图(6) 习题2.1(6)(a)图所示体系去掉二元体ABC后,成为习题2.1(6) (b)图,故本质系是几许可变体系.( )(7) 习题2.1(6)(a)图所示体系去掉二元体EDF后,成为习题2.1(6) (c)图,故本质系是几许可变体系.( )习题 2.1(6)图【解】(1)精确.(2)过失.0W 是使体系成为几许稳定的需要条件而非充分条件.(3)过失.(4)过失.惟有当三个铰不共线时,该题的论断才是精确的.(5)过失.CEF不是二元体.(6)过失.ABC不是二元体.(7)过失.EDF不是二元体.习题挖空(1) 习题2.2(1)图所示体系为_________体系.习题2.2(1)图(2) 习题2.2(2)图所示体系为__________体系.习题 2-2(2)图(3) 习题2.2(3)图所示4个体系的多余拘束数目分别为_______、________、__________、__________.习题 2.2(3)图(4) 习题 2.2(4)图所示体系的多余拘束个数为___________.习题 2.2(4)图(5) 习题 2.2(5)图所示体系的多余拘束个数为___________.习题 2.2(5)图(6) 习题 2.2(6)图所示体系为_________体系,有_________个多余拘束.习题 2.2(6)图(7) 习题 2.2(7)图所示体系为_________体系,有_________个多余拘束.习题 2.2(7)图【解】(1)几许稳定且无多余拘束.安排二边L形杆及大天分别动做三个刚刚片.(2)几许常变.中间三铰刚刚架与大天形成一个刚刚片,其与左边倒L形刚刚片之间惟有二根链杆相联,缺少一个拘束.(3)0、1、2、3.末尾一个启关的圆环(大概框)里里有3个多余拘束.(4)4.表层可瞅做二元体去掉,下层多余二个铰.(5)3.下层(包罗大天)几许稳定,为一个刚刚片;与表层刚刚片之间用三个铰相联,多余3个拘束.(6)里里几许稳定、0.将左上角火仄杆、左上角铰交三角形战下部铰交三角形分别动做刚刚片,根据三刚刚片准则领会.(7)里里几许稳定、3.中围启关的正圆形框为有3个多余拘束的刚刚片;里里铰交四边形可选一对付仄止的对付边瞅做二个刚刚片;根据三刚刚片准则即可领会.对付习题2.3图所示各体系举止几许组成领会.【解】(1)如习题解2.3(a)图所示,刚刚片AB与刚刚片I 由铰A战收杆①相联组成几许稳定的部分;再与刚刚片BC 由铰B战收杆②相联,故本质系几许稳定且无多余拘束.习题解2.3(a)图(2)刚刚片Ⅰ、Ⅱ、Ⅲ由不共线三铰A、B、(Ⅰ,Ⅲ)二二相联,组成几许稳定的部分,如习题解2.3(b)图所示.正在此部分上增加二元体C-D-E,故本质系几许稳定且无多余拘束.习题解2.3(b)图(3)如习题解2.3(c)图所示,将左、左二端的合形刚刚片瞅成二根链杆,则刚刚片Ⅰ、Ⅱ、Ⅲ由不共线三铰(Ⅰ,Ⅱ)、(Ⅱ,Ⅲ)、(Ⅰ,Ⅲ)二二相联,故体系几许稳定且无多余拘束.习题解2.3(c)图(4)如习题解2.3(d)图所示,刚刚片Ⅰ、Ⅱ、Ⅲ由不共线的三铰二二相联,产死大刚刚片;该大刚刚片与天基之间由4根收杆贯串,有一个多余拘束.故本质系为有一个多余拘束的几许稳定体系.习题解2.3(d)图(5)如习题解2.3(e)图所示,刚刚片Ⅰ、Ⅱ、Ⅲ组成几许稳定且无多余拘束的体系,为一个大刚刚片;该大刚刚片与天基之间由仄止的三根杆①、②、③相联,故本质系几许瞬变.习题解2.3(e)图(6)如习题解2.3(f)图所示,由三刚刚片准则可知,刚刚片Ⅰ、Ⅱ及天基组成几许稳定且无多余拘束的体系,设为夸大的天基.刚刚片ABC与夸大的天基由杆①战铰C相联;刚刚片CD与夸大的天基由杆②战铰C相联.故本质系几许稳定且无多余拘束.习题解2.3(f)图第3章静定梁与静定刚刚架习题解问习题利害推断题(1) 正在使用内力图特性画制某受直杆段的直矩图时,必须先供出该杆段二端的端直矩.()(2) 区段叠加法仅适用于直矩图的画制,不适用于剪力图的画制.()(3) 多跨静定梁正在附属部分受横背荷载效率时,必会引起基础部分的内力.()(4) 习题3.1(4)图所示多跨静定梁中,CDE战EF部分均为附属部分.()习题3.1(4)图【解】(1)精确;(2)过失;(3)精确;(4)精确;EF为第二条理附属部分,CDE为第一条理附属部分;习题挖空(1)习题3.2(1)图所示受荷的多跨静定梁,其定背通联C所传播的直矩M C的大小为______;截里B的直矩大小为______,____侧受推.习题3.2(1)图(2) 习题3.2(2)图所示风载效率下的悬臂刚刚架,其梁端直矩M AB=______kN·m,____侧受推;左柱B截里直矩M B=______kN·m,____侧受推.习题3.2(2)图【解】(1)M C = 0;M C = F P l,上侧受推.CDE部分正在该荷载效率下自仄稳;(2)M AB=288kN·m,左侧受推;M B=32kN·m,左侧受推;习题做图所示单跨静定梁的M图战F图.Q(a) (b)(c) (d)(e) (f)【解】M图(单位:kN·m)F Q图(单位:kN)(a)M图F Q图(b)M图F Q 图(c)M图F Q图(d)M图F Q图(e)M图(单位:kN·m)F Q图(单位:kN)(f)习题做图所示单跨静定梁的内力图.(c) 【解】M图(单位:kN·m)F Q图(单位:kN)(c)习题做图所示斜梁的内力图.【解】M图(单位:kN·m)F Q图(单位:kN)F N图(单位:kN)习题做图所示多跨梁的内力图.(a)【解】M图(单位:kN·m)F Q图(单位:kN)(a)习题3.7 改正图所示刚刚架的直矩图中的过失部分.(a) (b) (c)(d) (e) (f)【解】(a) (b) (c)(d) (e) (f)习题做图所示刚刚架的内力图.(a)(b)【解】M图(单位:kN·m)F Q图(单位:kN)F N图(单位:kN)(a)M图(单位:kN·m)F Q图(单位:kN)F N图(单位:kN)(b)第4章静定拱习题解问习题4.1利害推断题(1) 三铰拱的火仄推力不但是与三个铰的位子有关,还与拱轴线的形状有关.()(2) 所谓合理拱轴线,是指正在任性荷载效率下皆能使拱处于无直矩状态的轴线. ()(3) 改变荷载值的大小,三铰拱的合理拱轴线形状也将爆收改变. ( ) 【解】(1)过失.从公式0H /C F M f =可知,三铰拱的火仄推力与拱轴线的形状无关;(2)过失.荷载爆收改变时,合理拱轴线将爆收变更; (3)过失.合理拱轴线与荷载大小无关; 习题4.2挖空(1) 习题3.2(3)图所示三铰拱的火仄推力F H 等于.习题3.2(3)图【解】(1)F P /2;习题4.3供图所示三铰拱收反力战指定截里K 的内力.已知轴线圆程24()fy x l x l=-.【解】H H 16kN A B F F ==;VA 8kN()F =↑;V 24kN()B F =↑ 15kN m K M =-⋅;Q 1.9kN K F =;N 17.8kN K F =-第5章 静定仄里桁架习题解问习题5.1 利害推断题(1) 利用结面法供解桁架结构时,可从任性结面启初. ( ) 【解】(1)过失.普遍从仅包罗二个已知轴力的结面启初. 习题5.2挖空(1)习题3.2(4)图所示桁架中有根整杆.习题3.2(4)图【解】(1)11(仅横背杆件中有轴力,其余均为整杆). 习题5.3 试用结面法供图所示桁架杆件的轴力.(a) (b)【解】 (1)提示:根据整杆判别规则有:N13N430F F ==;根据等力杆判别规则有:N24N46F F =.而后分别对付结面2、3、5列力仄稳圆程,即可供解局部杆件的内力. (2) 提示:根据整杆判别规则有:N18N17N16N27N36N450F F F F F F ======;根据等力杆判别规则有:N12N23N34F F F ==;N78N76N65F F F ==.而后与结面4、5列力仄稳圆程,即可供解局部杆件的内力.习题5.4 推断图所示桁架结构的整杆.(a) (b) (c)【解】(a) (b) (c)提示:(c)题需先供出收座反力后,截与Ⅰ.Ⅰ截里以左为断绝体,由30M =∑,可得N120F =,而后再举止整杆推断. 习题5.5 用截里法供解图所示桁架指定杆件的轴力.(a)(b)【解】(1) N P 32a F F =-;N P 12b F F =;N Pc F F =提示:截与Ⅰ.Ⅰ截里可得到N b F 、N c F ;根据整杆推断规则,杆26、杆36为整杆,则通过截与Ⅱ.Ⅱ截里可得到N a F . (2)N 0a F =;N P b F =;N 0c F =提示:截与Ⅰ.Ⅰ截里可得到N b F ;由结面1可知N 0a F =;截与Ⅱ.Ⅱ截里,与圆圈以内为摆脱体,对付2面与矩,则N 0c F =.第6章 结构的位移估计习题解问习题6.1 利害推断题(1) 变形骸真功本理仅适用于弹性体系,不适用于非弹性体系.( )(2) 真功本理中的力状态战位移状态皆是真设的.( )(3) 功的互等定理仅适用于线弹性体系,不适用于非线弹性体系.( )(4) 反力互等定理仅适用于超静定结构,不适用于静定结构.( )(5) 对付于静定结构,有变形便一定有内力.( ) (6) 对付于静定结构,有位移便一定有变形.( ) (7) 习题4.1(7)图所示体系中各杆EA 相共,则二图中C 面的火仄位移相等.( )(8) M P 图,M 图如习题4.1(8)图所示,EI =常数.下列图乘截止是精确的:4)832(12l l ql EI ⨯⨯⨯ ( )(9) M P 图、M (9)图所示,下列图乘截止是精确的:033202201111)(1y A EI y A y A EI ++ ( )(10) (10)图所示结构的二个仄稳状态中,有一个为温度变更,此时功的互等定理不可坐.( ) 习题 4.1(7)图习题 4.1(8)图 习题 4.1(9)图习题 4.1(10)图【解】(1)过失.变形骸真功本理适用于弹性战非弹性的所有体系.(2)过失.惟有一个状态是真设的. (3)精确.(4)过失.反力互等定理适用于线弹性的静定战超静定结构.(5)过失.譬如静定结构正在温度变更效率下,有变形但是不内力.(6)过失.譬如静定结构正在收座移动效率下,有位移但是稳定形.(7)精确.由桁架的位移估计公式可知.(8)过失.由于与0y 的M 图为合线图,应分段图乘.(9)精确. (10)精确.习题6.2挖空题(1) 习题4.2(1)图所示刚刚架,由于收座B 下重所引起D 面的火仄位移D H =______.(2) 真功本理有二种分歧的应用形式,即_______本理战_______本理.其中,用于供位移的是_______本理.(3) 用单位荷载法估计位移时,假制状态中所加的荷载应是与所供广义位移相映的________.(4) 图乘法的应用条件是:__________且M P 与M 图中起码有一个为直线图形.(5) 已知刚刚架正在荷载效率下的M P 图如习题4.2(5)图所示,直线为二次扔物线,横梁的抗直刚刚度为2EI ,横杆为EI ,则横梁中面K 的横背位移为________.(6) 习题4.2(6)图所示拱中推杆AB 比本安排少度短了,由此引起C 面的横背位移为________;引起收座A 的火仄反力为________.(7) 习题4.2(7)图所示结构,当C 面有F P =1(↓)效率时,D 面横背位移等于(↑),当E 面有图示荷载效率时,C 面的横背位移为________.(8) 习题 4.2(8)图(a )所示连绝梁收座B 的反力为)(1611R ↑=B F ,则该连绝梁正在收座B 下重B =1时(如图(b )所示),D 面的横背位移Dδ=________.习题 4.2(1)图 习题 4.2(5)图习题 4.2(6)图 习题 4.2(7)图习题 4.2(8)图【解】(1)()3∆→.根据公式R ΔF c =-∑估计.(2)真位移、真力;真力 . (3)广义单位力.(4)EI 为常数的直线杆.(5)48.875()EI↓.先正在K 面加单位力并画M 图,而后利用图乘法公式估计.(6)1.5cm ↑;0.C 面的横背位移用公式NΔF l =∆∑估计;制制缺面不会引起静定结构爆收反力战内力.(7)()a∆↑.由位移互等定理可知,C 面效率单位力时,E面沿M 目标的位移为21a∆δ=-.则E 面效率单位力M =1时,C面爆收的位移为12a∆δ=-.(8)11()16↓.对付(a )、(b )二个图示状态,应用功的互等定理可得截止.C V .EI为常数.【解】1)供C V习题4.3(1)图(1) 积分法画M P 图,如习题4.3(1)(b)图所示.正在C 面加横背单位力F P =1,并画M 图如习题4.3(1)(c)图所示.由于该二个直矩图对付称,可估计一半,再将截止乘以2.AC 段直矩为12M x =,P P 12M F x =则(2) 图乘法 2)供C V习题4.3(2)图(1) 积分法画M P 图,如习题4.3(2)(b)图所示.正在C 面加横背单位力并画M 图,如习题4.3(2)(c)图所示.以C 面为坐标本面,x 轴背左为正,供得AC 段(0≤x ≤2)直矩为M x =,2P 10(2)M x =⨯+则(2) 图乘法由估计位移的图乘法公式,得3)供C V习题4.3(3)图(1) 积分法画M P 图,如习题4.3(3)(b)图所示.正在C 面加横背单位力并画M 图,如习题4.3(3)(c)图所示.根据图中的坐标系,二杆的直矩(按下侧受推供)分别为 AB 杆12M x =-,2P 142ql M x qx =-CB 杆M x =,P 2ql M x =则(2)图乘法 4)供A习题4.3(4)图(1)积分法画M P 图,如习题4.3(4)(b)图所示.正在A 面加单位力奇并画M 图,如习题4.3(4)(c)图所示.以A 为坐标本面,x 轴背左为正,直矩表白式(以下侧受推为正)为113M x l=-,2P 3122M qlx qx =-则358ql EI=( ) (2) 图乘法由估计位移的图乘法公式,得358ql EI=( ) 分别用积分法战图乘法供习题 4.4(a)图所示刚刚架C 面的火仄位移C H .已知EI =常数.【解】1)积分法P M 、M图分别如习题 4.4(b )、(c )图所示,修坐坐标系如(c )图所示.各杆的直矩用x 表示,分别为 CD 杆M x =,P 12M qlx =AB 杆M x =,2P 12M qlx qx =-代进公式估计,得2)图乘法习题 4.5(a)图所示桁架各杆截里均为A =2×103m 2,E ×108kN/m 2,F P =30kN ,d =2m.试供C 面的横背位移V C ∆.D ql lBAC lA B lD CABD C22ql 2ql281ql 2(b)图M P M 图(c)(a)xx1ll【解】画NP F 图,如习题4.5(b)图所示.正在C 面加横背单位力,并画N F 图,如习题4.5(c)图所示. 由桁架的位移估计公式N NP F F Δl EA=∑,供得 第7章 力法习题解问利害推断题(1)习题5.1(1)图所示结构,当收座A 爆收转化时,各杆均爆收内力.( )习题5.1(1)图习题5.1(2)图(2)习题 5.1(2)图所示结构,当内中侧均降下t 1℃时,二杆均只爆收轴力.( )(3)习题 5.1(3)图(a)战(b)所示二结构的内力相共.( )习题5.1(3)图(4)习题 5.1(3)图(a)战(b)所示二结构的变形相共.( )【解】(1)过失.BC 部分是静定的附属部分,爆收刚刚体位移,而无内力.(2)过失.刚刚结面会沿左上圆爆收线位移,从而引起所连梁柱的蜿蜒.(3)精确.二结构中梁二跨的抗直刚刚度比值均为1:1,果此二结构内力相共.(4)过失.二结构内力相共,但是图(b)结构的刚刚度是图(a)的一倍,所以变形惟有图(a)的一半.习题7.2 挖空题(1)习题5.2(1) 图(a)所示超静定梁的收座A 爆收转角,若选图(b)所示力法基础结构,则力法圆程为_____________,代表的位移条件是______________,其中1c =_________;若选图(c)所示力法基础结构时,力法圆程为____________,代表的位移条件是______________,其中1c =_________.习题5.2(1)图(2)习题5.2(2)图(a)所示超静定结构,当基础体系为图(b)时,力法圆程为____________________,1P =________;当基础体系为图(c)时,力法圆程为____________________,1P =________.习题5.2(2)图(3)习题5.2(3)图(a)所示结构各杆刚刚度相共且为常数,AB 杆中面直矩为________,____侧受推;图(b)所示结构M BC =________,____侧受推.习题5.2(3)图(4)连绝梁受荷载效率时,其直矩图如习题5.2(4)图所示,则D 面的挠度为________,位移目标为____.习题5.2(4)图【解】(1)1111c 0X δ∆+=,沿X 1的横背位移等于整,-2l ;1111c X δ∆θ+=,沿X 1的转角等于,0.(2)11111P X X k δ∆+=-,458ql EI -;1111P 0X δ∆+=,3242ql q EI k+. (3)28ql ,下侧;2M ,下侧.可利用对付称性简化估计. (4)52EI,背下.选三跨简收梁动做基础结构,正在其上D 面加横背单位力并画M 图,图乘即可.试决定习题5.3图所示结构的超静定次数.图【领会】结构的超静定次数等于其估计自由度的千万于值,大概者使用“排除多余拘束法”直交领会.【解】(a )1;(b )2;(c )5;(d )3.用力法估计习题5.4图所示各超静定梁,并做出直矩图战剪力图.图【解】(1)本结构为1次超静定结构.采用基础体系如习题解5.4(1)图(a)所示,基础圆程为1111P 0X δ∆+=.系数战自由项分别为114EI δ=,1P 54EI∆=- 解得113.5kN m X =⋅.直矩图战剪力图分别如习题解5.4(1)图(d)战(e)所示. 习题解5.4(1)图用力法估计习题5.5图所示各超静定刚刚架,并做出内力图.图【解】(3)本结构为2次超静定结构.采用基础体系如习题解5.5(3)图(a)所示,基础圆程为系数战自由项分别为112503EI δ=,12210δδ==,226083EI δ=,1P 625EI ∆=,2P 20003EI∆= 解得17.5kN X =-,2 3.29kN X =-.内力图分别如习题解 5.5(3)图(e)~(g)所示. 习题解5.5(3)图利用对付称性,估计习题5.12图所示各结构的内力,并画直矩图.图【解】(2)将本结构所受普遍荷载领会为对付称战阻挡。
结构力学课后习题答案结构力学是一门研究结构在外力作用下的内力、变形和稳定性的学科。
课后习题是帮助学生巩固理论知识和提高解题技巧的重要环节。
以下是一些结构力学课后习题的参考答案,供学习者参考:第一章:结构力学基础1. 静定结构与超静定结构的区别:静定结构是指在已知外力作用下,其内力和位移可以通过静力平衡方程和几何关系唯一确定的结构。
超静定结构则是指静力平衡方程和几何关系不足以唯一确定其内力和位移的结构。
2. 弯矩图的绘制方法:绘制弯矩图首先需要确定结构的支反力,然后通过截面平衡条件,逐步求出各截面的弯矩值,并将其绘制成图形。
第二章:静定梁的内力分析1. 简支梁的内力计算:对于简支梁,可以通过静力平衡条件和截面平衡条件来计算梁的内力,包括剪力和弯矩。
2. 悬臂梁的内力计算:悬臂梁的内力计算需要考虑梁端的外力和力矩,通过静力平衡条件求解。
第三章:静定桁架的内力分析1. 节点法的应用:节点法是通过在桁架的节点上施加平衡条件来求解节点的反力,进而求得杆件的内力。
2. 截面法的应用:截面法是通过选取桁架的某一截面,对该截面进行平衡分析,求得截面两侧杆件的内力。
第四章:静定拱的内力分析1. 三铰拱的内力计算:三铰拱的内力计算通常需要利用静力平衡条件和几何关系,计算出拱的反力和弯矩。
2. 双铰拱和无铰拱的内力特点:双铰拱和无铰拱的内力计算更为复杂,需要考虑更多的平衡条件和几何关系。
第五章:超静定结构的内力分析1. 力法的应用:力法是通过建立力的平衡方程来求解超静定结构的内力,通常需要引入多余未知力。
2. 位移法的应用:位移法是通过建立位移的平衡方程来求解超静定结构的内力,通常需要引入位移未知数。
第六章:结构的稳定性分析1. 欧拉临界载荷的计算:欧拉临界载荷是指细长杆件在轴向压力作用下失稳的临界载荷,可以通过欧拉公式计算。
2. 非线性稳定性分析:对于非线性问题,稳定性分析需要考虑材料的非线性特性和几何非线性,通常需要采用数值方法求解。
结构力学影响线习题答案结构力学影响线是结构力学中的一个重要概念,它描述了结构在受到局部荷载作用时,结构某一点或某一截面内力变化的图形。
以下是一些结构力学影响线习题的答案示例:# 习题一:简支梁影响线绘制问题描述:给定一个简支梁,长度为L,梁上作用一个集中荷载P,求梁中点的弯矩影响线。
解答:1. 集中荷载P在梁上移动时,对中点产生的弯矩M(x)是一个关于x的函数。
2. 当荷载位于梁中点时,弯矩最大,为PL/4。
3. 当荷载靠近支点时,弯矩减小,趋向于0。
4. 影响线图形是一个抛物线,其方程可以表示为 \( M(x) =\frac{P}{4} \cdot \left(\frac{L}{2} - x\right)^2 \)。
# 习题二:连续梁影响线分析问题描述:一个三跨连续梁,跨度分别为L1, L2, L3,中间支点处受到一个集中荷载P,求中间支点处的剪力影响线。
解答:1. 集中荷载P在梁上移动时,对中间支点产生的剪力V(x)是一个关于x的函数。
2. 当荷载位于中间支点时,剪力为0。
3. 当荷载位于梁的端点时,剪力最大,为P。
4. 影响线图形是一个三角形,其顶点位于中间支点,底边位于梁的端点。
# 习题三:框架结构影响线求解问题描述:一个二维平面框架结构,由两根柱和一根梁组成,梁上作用一个集中荷载P,求柱底的弯矩影响线。
解答:1. 集中荷载P在梁上移动时,对柱底产生的弯矩M(x)是一个关于x的函数。
2. 当荷载位于梁的中点时,柱底弯矩最大,可以通过静力平衡和几何关系计算得出。
3. 当荷载靠近柱底时,柱底弯矩减小,趋向于0。
4. 影响线图形可以通过静力法或能量法进行绘制。
请注意,以上习题答案仅为示例,实际习题答案需要根据具体的结构参数和荷载条件进行详细计算。
在解决实际问题时,还需要考虑结构的边界条件、材料性质以及荷载类型等因素。
第1章1-1分析图示体系的几何组成。
解 原体系依次去掉二元体后,得到一个两铰拱(图(a-1))。
因此,原体系为几何不变体系,且有一个多余约束。
1-1 (b)解 原体系依次去掉二元体后,得到一个三角形。
因此,原体系为几何不变体系,且无多余约束。
(a )(a-1)(b )(b-1)(b-2)1-1 (c)(c-2) (c-3)解 原体系依次去掉二元体后,得到一个三角形。
因此,原体系为几何不变体系,且无多余约束。
1-1 (d)(d-1) (d-2) (d-3)解 原体系依次去掉二元体后,得到一个悬臂杆,如图(d-1)-(d-3)所示。
因此,原体系为几何不变体系,且无多余约束。
注意:这个题的二元体中有的是变了形的,分析要注意确认。
(d )(c-1)1-1 (e)解 原体系去掉最右边一个二元体后,得到(e-1)所示体系。
在该体系中,阴影所示的刚片与支链杆C 组成了一个以C 为顶点的二元体,也可以去掉,得到(e-2)所示体系。
在图(e-2)中阴影所示的刚片与地基只用两个链杆连接,很明显,这是一个几何可变体系,缺少一个必要约束。
因此,原体系为几何可变体系,缺少一个必要约束。
1-1 (f)解 原体系中阴影所示的刚片与体系的其它部分用一个链杆和一个定向支座相连,符合几何不变体系的组成规律。
因此,可以将该刚片和相应的约束去掉只分析其余部分。
很明显,余下的部分(图(f-1))是一个几何不变体系,且无多余约束。
因此,原体系为几何不变体系,且无多余约束。
1-1 (g)解 原体系中阴影所示的刚片与体系的其它部分用三个链杆相连,符合几何不变体系的组成规律。
因此,可以将该刚片和相应的约束去掉,只分析其余部分。
余下的部分(图(g-1))在去掉一个二元体后,只剩下一个悬臂杆(图(g-2))。
因此,原体系为几何不变体系,且无多余约束。
(e )(e-1)ABCAB (e-2)(f )(f-1) (g ) (g-1) (g-2)1-1 (h)解 原体系与基础用一个铰和一个支链杆相连,符合几何不变体系的组成规律。
第1章绪论(无习题)第2章平面体系的机动分析习题解答习题2.1是非判断题(1) 若平面体系的实际自由度为零,则该体系一定为几何不变体系。
( )(2) 若平面体系的计算自由度W=0,则该体系一定为无多余约束的几何不变体系。
( )(3) 若平面体系的计算自由度W<0,则该体系为有多余约束的几何不变体系。
( )(4) 由三个铰两两相连的三刚片组成几何不变体系且无多余约束。
( )(5) 习题2.1(5) 图所示体系去掉二元体CEF后,剩余部分为简支刚架,所以原体系为无多余约束的几何不变体系。
( )习题2.1(5)图(6) 习题2.1(6)(a)图所示体系去掉二元体ABC后,成为习题2.1(6) (b)图,故原体系是几何可变体系。
( )(7) 习题2.1(6)(a)图所示体系去掉二元体EDF后,成为习题2.1(6) (c)图,故原体系是几何可变体系。
()(a)(b)(c)习题2.1(6)图习题2.2填空(1) 习题2.2(1)图所示体系为_________体系。
习题2.2(1)图(2) 习题2.2(2)图所示体系为__________体系。
习题2-2(2)图(3) 习题2.2(3)图所示4个体系的多余约束数目分别为_______、________、__________、__________。
习题2.2(3)图(4) 习题2.2(4)图所示体系的多余约束个数为___________。
习题 2.2(4)图(5) 习题2.2(5)图所示体系的多余约束个数为___________。
习题 2.2(5)图(6) 习题2.2(6)图所示体系为_________体系,有_________个多余约束。
习题 2.2(6)图(7) 习题2.2(7)图所示体系为_________体系,有_________个多余约束。
习题 2.2(7)图习题2.3 对习题2.3图所示各体系进行几何组成分析。
(a)(b)(c)(d)(e)(f)(h)(g)(i)(j)(k)(l)习题2.3图第3章 静定梁与静定刚架习题解答习题3.1 是非判断题(1) 在使用力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。
5-1 用静力法作图示梁的支杆反力F N1、F N2、F N3及内力M K 、F Q K 、F N K 的影响线。
解:取隔离体如图(a)所示∑M A =0F N3 = 52l (x−32l)∑F x =0F N1 =F N2∑F y = 0F N1 = 52 (4−x l )x<3l 时取隔离体如图(e)所示M K = F N3lF Q K =−F N3F N K =0x >3l 时取隔离体如图(f)所示M K = F N3l −1×(x−3l) =−x+l8 2F Q K =1−F N3 = − x5 5lF N K =0由求出的影响系数方程可作出影响线如图所示。
5-2 用静力法作图示梁的F By 、M A 、M K 和F Q K 的影响线。
解:取隔离体如图(a)所示∑F y =0F By =1∑M B =0M A =x x<l/2时, 取隔离体如图(f)所示M K =l/2F Q K =−1x >l/2时, 取隔离体如图(e)所示M K =l −xF Q K =0由影响系数方程可作出影响线如图所示。
5-3 用静力法作图示斜梁的F Ay、F Ax、F By 、M C 、F Q C 和F N C 的影响线。
(1)解:∑M A =0F By = x/l∑F y =0F Ay =1−x/l∑F x =0F Ax =0x<a,取右侧∑M c=0 M C = bx/l∑F r =0 F Q C =−x l cosα∑Fβ=0 F N C = x l sinαx>a,取左侧∑M c =0 M C = a(1−x/l)∑F r =0 F Q C = (1−x l )cosαx ∑Fβ=0 F N C =−(1−l )sinα由影响系数方程可作出影响线如图所示。
5-3(2)解:∑M A =0F By = x l tanαx∑F y = 0F Ay =− l tanα∑F x =0 F Ax =−1x<a,取右侧∑M c =0 M C = bl x tanα∑F r =0 F Q C =−x l sinα∑Fβ= 0 F N C = x l sinα⋅tanαx>a,取左侧∑M c =0 M C = tanα⋅a(1−x/l)∑F r =0 F Q C = sinα−x l sinα∑Fβ= 0 F N C = cosα+ x l tanα⋅sinα由影响系数方程可作出影响线如图所示。
5-4 用静力法作图示刚架F Q1、M2(以左侧受拉为正)、F N2、M3、和F Q3的影响线。
F P =1在BC 上移动。
解:取1 点左侧作隔离体,如图(g) 所l ∑F y = 0 F Q1 = 0x <l∑F y = 0 F Q1 =−1取2 点上侧做隔离体,如图(h)所示∑M2 = 0 M2 = x−2l∑F y =0F N2 =−1取3 点上侧做隔离体,如图(i)所示∑M3 = 0 M3 = x−3l∑F=0F Q3 =−1由影响系数方程可作出影响线如图所示。
5-5 用静力法作图示刚架F Ax、F Ay、F Q R E 和F Q L E 的影响线。
F P =1在DF上移动。
解:x <l时∑M C=0FBy =FBx∑M A =02lF By = 2l F Bx +1⋅x联立求解,得F By = F Bx = 2x/3lF Ax = F Bx = 2x/3lF Q R E = 0,F Q L E =−2x/3lx >l∑M C =02F Ay =F Ax∑M B =0 F Ax 2l +2lF Ay =1×(2l −x)联立求解,得F Ax1F Ay = (2l −x)3l1 xF By =1−F Ay = +3 3ll < x <2l FQ LE=−FBy=−(1+ x )3 3lF Q R E = 0x >2l F Q LE =1− F By =1−(1 + x ),F Q RE =1 3 3l由影响系数方程可作出影响线如图所示。
5-6 用静力法作图示刚架M J 、F N J 、M K 和F Q K 的影响线。
F P =1在CE 上移动。
解:首先做出F By 的影响线x <4mF By = 0xx >4m F By = −22作M K 、F Q K 的影响线x <2m M K =0,F Q K = 0 4m >x >2m M K =2−x ,F Q K =1 x >4m取隔离体如图(f )所示M K =−(F By −1)×2 = 6−x ,F Q K =1−F By =3−x /2作M J 、F N J 影响线 取隔离体如图(g )、(h)所示 x <4mM J = x ,F N J =−1 x >4mM J = (1−F By )×4 =12− x ,F Q K = F By −1= x /2−3由影响系数方程可作出影响线如图所示。
5-7 作三铰拱 D 截面M D 、F Q D 、F N D 影响线。
4 f拱轴方程 y = l 2 x (l − x )解::1)做M D 影响线M D =M D 0 −F H y DF H = M C 0 / f做出M D 0 、M C 0 和F H 影响线如图(b)、(c)、(d)所示。
y D =×3×(9−3) = 2 通过叠加可得M D 影响线如图(e)所示。
2) 作F Q D 、F N D 影响线 F Q D = F Q 0D cos ϕD −F H sin ϕDF N D =−F Q 0D sin ϕD − F H cos ϕD 做出F Q 0D 影响线如图(f)所示,4 f y ′(3) = 0.3337 y ′(x ) = 2 (l − 2x )lϕD =18.432D cos ϕD = 0.9487,sin ϕD = 0.3162通过叠加可得F Q D和F N D 影响线如图(f)、(g)所示。
5-8 作静定多跨梁F By 、M K 、F Q R K 和F Q L K 影响线。
解:(1)作出荷载在主梁上移动时的影响线,如图(a)、(b)、(d)所示;(2) 作出荷载在次梁上移动时的影响线,如图(e)、(f)、(g)、(h)所示(红线为间接荷载影响线,黑线为直接荷载影响线)。
5-9 分别就F P=1 在上弦颌下弦移动作图示桁架指定杆件的内力影响线。
解:(1)荷载上行时做出支座反力影响线如图(a)、(b)所示。
F N1: x=0时,F N1 =0;x>d时,取Ⅰ-Ⅰ截面右侧为隔离体∑M C = 0F N1 =−2F AyF N2 : x> 2d 时,取Ⅱ-Ⅱ截面左侧为隔离体∑M C = 0F N2 =−2F Ay ;x<d时,取Ⅱ-Ⅱ截面右侧为隔离体∑M C =0F N2 =−F ByF N3 : x>d 时,取Ⅰ-Ⅰ截面左侧为隔离体∑F y =0 F N2 = 5F Ay ; x =0 时,F N2 =0F N 4: x >2d 或x =0时,F N4 =0; x = d 时,用结点法得F N4 =− 2F N 5: x <d 或x >d 时,F N5 =0 ; x =2d 时,用结点法得F N5 =−1(2)荷载下行时 FN 1 、F N 2 、F N 3、F N 4的影响线与荷载上行时相同。
FN 5 : 用结点法得 F N5 =0;做出的各条影响线如图所示。
5-10 用静力法作图示组合结构的指定量值的影响线。
解:取整体为隔离体∑MA= 0 F Bx = x /2F N BC = F Bx = x /2∑MA= 0 F By =1− x / 4 取 BD 杆段作为隔离体如图(b)所示,x > 2m 时 M D = F By × 2 = 2 − x / 2F Q D = F By =1−x/ 4x < 2m时M D =F By × 2 −1×(2 −x) = x/ 2F Q D = F By −1 = −x/ 4做出的各条影响线如图所示。
5-11 作图示结构F By 、M C 、F Q R C 和F Q L C 影响线。
(a) 解:取隔离体如图(f)所示∑M D = 0 F N CD = x/2l取隔离体如图(g)所示∑M A = 0 F By = F N CD /2 = x/4l由截面法可得M C = F By ⋅4l = x/ 4F Q R C =−F By=−x/4lF Q L C = F N CD −F By = x/4l做出的影响线如图所示。
5-11(b) 解:x < 2l 时,与题5-11(a)相同;x > 2l 时,与简支梁相同。
利用题5-11(a)的结果和简支梁的影响线可作出影响线如图所示。
5-12 图示简支梁上有单位力偶移动荷载m =1,试作F Ay 、F By 、F Q C 、M C 影响线。
解:∑MA = 0 F By =1/l ∑F y = 0 F Ay = −F By = −1/l x <a M C =F By ⋅b = b /l x >a M C = F Ay ⋅a = a /lF Q C = −1/l作出影响线如图所示。
5-13 试用机动法重作习题 5-2 的各项影响线。
5-15 试用机动法作图示多跨静定梁M F 和F Q G 的影响线。
解:解:5-14试用机动法重作习题 5-8 的各项影响线。
5-16试求图示吊车梁在两台吊车移动过程中,跨中央截面的最大弯矩。
F P1 = F P2 = F P3 = F P4 = 324.5kN 。
解:做出跨中央截面弯矩M K 的影响线如图b 所示,由影响线可判断出M K 的最不利荷载位置为图c。
M K max = F P1 ×0.1+ F P2 × 2.5 + F P3 ×1.775= 324.5× (0.1+ 2.5 +1.775) = 1419.69kN.m5-17两台吊车的轮压和轮距如图(a)所示,试求B柱的最大压力。
F P1 = F P2 = 478.5kN,F P3 = F P4 = 324.5kN 。
解:做出F By 影响线如图b 所示,图c 为使F By 取得最大值的荷载位置。
F By = F P 1 ×0.2 + F P 2 ×1+ F P 3 × 0.758= 478.5×0.2 + 478.5×1+ 324.5×0.758 = 820.17kN解:做出F N a 影响线F By = x /5dx < 4d 取结点B 为隔离体,如图所示,∑F y = 0 F N a = − 5F Byx = 5d F N a = 05-18 试求在图示移动荷载作用下,桁架杆件 a 的内力最小值。