旋转导向系统和地质导向钻井简介剖析
- 格式:ppt
- 大小:1.95 MB
- 文档页数:4
浅谈威远构造地质导向与旋转导向四川威远是国家级页岩气资源开发区之一,页岩气水平井钻井是一个系统的施工作业,其中地质导向与旋转导向起着引导与实施对井眼轨迹的精确控制,探讨实钻中地质导向与旋转导向技术特点及多见的页岩卡钻和旋转导向工具无信号的问题,进一步提高钻井质量、效率和地质目标达标率。
标签:威远构造;地质导向;旋转导向1 区块介绍威远地区页岩气三维区块内地面地腹构造格局一致,构造简单,西北高东南低,轴线近东西向,龙马溪组优质页岩段发育在底部,井段为2534.00~2574.00m,厚度40.00m,最优储层位置为龙马溪组最底部,厚度6.00m[1]。
根据威远区块完钻井资料分析,钻进过程中钻遇漏层主要发生于表层和茅口组,超压层主要发生于长兴组、茅口组、栖霞组和龙马溪组部分井段,雷口坡组、嘉陵江组含有石膏层,但厚度较薄,沙溪庙组、凉高山组、自流井组、须家河组、飞仙关组、龙潭组和龙马溪组具有厚层泥岩、页岩,易发生垮塌。
2 地质导向与旋转导向技术概述一口水平井的鉆井实施,包括录井、导向、钻井、定向、钻井液等相关专业紧密结合在一起的系统施工。
在水平井钻井施工过程中地质导向技术起到指导作用,就好比指挥官,其根据多项资料及旋转导向随钻测量的参数,及时跟踪钻头钻进的地层位置情况,不断的修正深度和对井斜度数的控制,指导井眼轨迹顺利着陆后横穿最佳储层的走向,以保证实现开发地质目的;旋转导向熟悉工具工作性能,执行地质导向指令,及时调整井眼轨迹,在较高的应变能力下对井眼轨迹实行精度较高的连续控制。
旋转导向的钻井轨迹比常规井下马达导向钻具组合钻出的井眼更加规则、光滑,性能优越以减少起下钻次数,具有较快较稳的施工水平和边滑动边旋转的特点,对应地质导向的指令有指哪里打哪里的强大优势。
地质导向和旋转导向同时接手着陆井段,旋转导向在地质导向的指令下完成带随钻测量的定向井施工,完成造斜段和水平段作业。
地质导向利用邻井储层特征、厚度对比、地震资料与本井导向前实钻资料综合分析,准确预测入靶垂深,建立初始地质导向模型,考虑定向设备能力、井下安全等因素制定详细的着陆点方案和水平段控制措施,向现场施工方技术交底。
探讨石油定向井钻井中的旋转导向技术1. 引言1.1 石油定向井钻井的背景石油定向井钻井是指通过控制钻头在垂直方向以外的倾角和方向,使钻井井筒沿着特定轨迹或方向进行钻探的一种钻井技术。
与传统的直井钻井相比,定向井钻井可以更有效地开采油气资源,提高采收率,减少钻井成本,同时降低对地表环境的影响。
石油定向井钻井的背景可以追溯到20世纪初,当时人们对地下油气资源的开发需求不断增长,但直井钻探已经无法满足深层目标的要求。
石油行业开始探索各种定向井钻井技术,旨在提高钻探效率和成本效益。
随着技术的不断进步和发展,石油定向井钻井已经成为现代油田开发的重要手段之一。
通过精密的控制和引导,可以在地下准确地打击目标油气层,提高开采效率,降低生产成本。
石油定向井钻井已经成为石油行业中不可或缺的技术手段之一。
1.2 旋转导向技术的重要性旋转导向技术在石油定向井钻井中扮演着至关重要的角色。
这一技术通过控制钻头方向的旋转来实现井眼轨迹的控制,使钻井工程师能够准确地钻出设计好的井眼轨迹。
在石油勘探开发过程中,石油公司通常都需要在地下进行复杂的水平或斜向钻井,以获取储层中的石油或天然气。
而旋转导向技术的应用可以帮助石油公司实现更高效、更精准的钻井,提高勘探开发的成功率。
旋转导向技术的重要性主要体现在以下几个方面:通过旋转导向技术,钻井工程师可以实现更精确的井眼轨迹控制,避免了误差累积导致的偏离设计轨迹的情况,确保了钻井的质量和效率。
旋转导向技术能够有效地减少钻井作业中的钻头卡钻、碰撞、结蜕等问题,提高了钻井作业的安全性和稳定性。
旋转导向技术可以实现快速、准确地调整井眼轨迹,满足不同井眼设计要求,为石油公司提供了更多的钻井选择和灵活度。
旋转导向技术在石油定向井钻井中的重要性不言而喻,具有不可替代的作用。
2. 正文2.1 旋转导向技术的原理旋转导向技术的原理是通过在钻井过程中控制钻头的旋转方向和速度,从而实现在水平和斜井中钻向目标油层的技术。
探讨石油定向井钻井中的旋转导向技术
石油定向井钻井是一项关键的技术,它可以在地下岩层中定位和探测石油储层,并为石油开采提供准确的方向和轨迹。
在石油定向井钻井过程中,旋转导向技术起着重要的作用。
本文将探讨旋转导向技术在石油定向井钻井中的应用。
旋转导向技术是一种通过旋转钻杆来改变钻头方向和轨迹的方法,它能够增加井眼的弯曲程度,从而使钻头进一步定向。
旋转导向技术主要包括旋转底部驱动(MWD)和测量底部驱动(LWD)两种主要类型。
旋转底部驱动技术是一种通过安装在钻头下部的传感器来测量钻杆的旋转角度和方向的方法。
这些传感器能够测量井壁的压力、流量、温度等参数,并传输到地面设备上进行实时监测和分析。
通过这种方式,钻井工程师可以根据井壁的物理情况和岩层的性质来调整钻头的方向和轨迹,从而实现更精确的定向钻井。
除了测量底部驱动技术和测量底部驱动技术,还有其他一些辅助技术可以辅助旋转导向技术的实施。
方位传感器可以帮助钻井工程师确定钻杆的方位角度,从而提供更准确的定位数据。
流量控制阀可控制钻杆内部的流体流量,从而实现更好的动力和控制效果。
还有一些其他的传感器和控制装置,例如测量底部驱动系统和数据采集系统等,也可以用于优化旋转导向技术的实施。
旋转导向技术在石油定向井钻井中具有重要的作用。
通过测量底部驱动和测量底部驱动技术,钻井工程师可以实时监控钻头的运动和地层特性,从而调整钻头的方向和轨迹,实现更精确的定向钻井。
其他辅助技术也可以增强旋转导向技术的效果。
通过不断的研究和改进,旋转导向技术将继续为石油定向井钻井提供更高效、安全和可靠的解决方案。
动旋转导向钻井工具结构原理及特点
一、结构原理:
1.器身:器身是工具的主要结构,由一根中空管组成。
中空管通常由高强度合金钢材料制成,具有足够的强度和刚度,以承受旋转和转向的作用力。
2.钻头:钻头位于器身的下端,用于切削岩层。
钻头一般采用合金钢制造,表面覆盖硬质合金,以提高抗磨损性能。
3.钻领:钻领位于钻头的上部,用于连接导向系统和起下钻工具。
钻领一般由海洋合金钢材料制造,具有足够的强度和刚度,以承受导向系统的作用力。
4.导向系统:导向系统是动旋转导向钻井工具的关键部分,通过控制导向力和扭矩,使钻头能够沿着预定方向前进。
导向系统主要由测量装置和调整机构组成,测量装置用于测量钻井工具与井眼的位置关系,调整机构用于调整钻井工具的导向力和扭矩。
5.起下钻工具:起下钻工具用于传递旋转力和推进力,使钻头能够切削岩层。
二、特点:
1.高效性:动旋转导向钻井工具能够实现同钻井作业,既可以完成钻井又可以进行导向,提高了钻井效率。
2.精确性:动旋转导向钻井工具通过测量装置和调整机构实现精确的导向控制,能够准确定位和导向井眼,提高了钻井的准确性。
3.可控性:动旋转导向钻井工具能够通过调整导向力和扭矩,实现对钻头的精确控制,能够适应不同的地质条件和井眼要求。
4.安全性:动旋转导向钻井工具能够实现对井眼的实时监测和控制,减少了钻井事故的发生概率,提高了作业安全性。
5.经济性:动旋转导向钻井工具能够提高钻井效率和准确性,降低钻井成本,提高经济效益。
总体而言,动旋转导向钻井工具结构简单,操作方便,能够提高钻井效率和准确性,降低钻井成本,是目前广泛应用的一种钻井工具。
旋转导向系统介绍一、概述随着科学技术的发展,石油钻井的勘探仪器的信息化、自动化有了长远的进步,从20世纪80年代后期,在国际上开始研究旋转导向钻井技术,到90年代初期多家公司形成了商业化技术并最终实现了信息化和自动化钻井,旋转导向钻井技术作为目前发展的前沿钻井技术之一,代表着世界钻井技术发展的最高水平。
旋转导向钻井技术可以自动、灵活地调整井斜和方位,大大提高钻井速度和钻井安全性,精确控制井眼轨迹,完全适合目前开发特殊油藏的超深井、高难定向井、水平井、大位移井、智能井等特殊工艺井导向钻井的需要,极大的降低了石油勘探、钻井的成本。
目前该项技术主要被斯伦贝谢、贝克休斯和哈里伯顿公司所垄断,而国内旋转钻井技术仅处于初级阶段,未实现商业化。
二、系统组成1-固定钻铤 2-悬挂脉冲器 3-电池短节 4-测斜探管 5-无磁钻铤 6-无线接收短节7-无线发射短节 8-转换接头 9-旋转导向工具 10-钻头旋转导向钻井系统实质上是一个井下闭环变径稳定器与测量传输仪器(MWD/LWD)联合组成的工具系统。
同时配有地面—井下双向通讯系统,可根据井下传来的数据,在不起钻的情况下从地面发出指令改变井眼轨迹。
旋转自动导向闭环钻井系统包括由井下导向工具、MWD系统、地面监控系统组成,实现了全井闭环控制的双向通讯。
1. 井下导向工具导向工具采用推靠式,外壳不旋转,三个支腿(支撑力不低于2.5t)可独立控制;导向工具采用涡轮发电机供电(功率400-500W),发电机的交流电进行整流后,一部分为导向工具主控电路供电,另一部分再逆变为交流电通过无线方式传输到外壳中的执行电路;导向工具需要计算自身井斜及高边,以便控制支腿,停泵再开泵后,各支腿恢复到停泵前的状态;导向工具通过无线发射短节及无线接收短节向MWD系统索取仪器的方位信息后,根据地面指令调整三个支腿的收缩状态以实现导向功能。
2. MWD系统MWD系统通过脉冲器将测斜数据上传的同时,需要根据井下导向工具要求将导向信息同时上传到地面,并为井下导向工具提供仪器的方位参数以便于导向工具调整支腿状态。
旋转导向钻井技术介绍引言近十几年来,水平井、大位移井、多分支井等复杂结构井和“海油陆采”的迅速发展。
为了节约开发成本和提高石油产量,对那些受地理位置限制或开发后期的油田,通常通过开发深井、超深井、大位移井和长距离水平井来实现,进而造成复杂结构的井不断增多。
目前通行的滑动钻井技术已经不能满足现代钻井的需要。
于是,自20世纪80年代后期,国际上开始加强对旋转导向钻井技术的研究;到90年代初期,旋转导向钻井技术已呈现商业化。
国外钻井实践证明,在水平井、大位移井、大斜度井、三维多目标井中推广应用旋转导向钻井技术,既提高了钻井速度,也减少了钻井事故,从而降低了钻井成本。
旋转导向钻井技术是现代导向钻井技术的发展方向。
旋转导向钻井技术旋转导向钻井法是在用转盘旋转钻柱钻井时随钻实时完成导向功能。
钻进时的摩阻与扭阻小、钻速高、钻头进尺多、钻井时效高、建井周期短、井身轨迹平滑易调控。
此外,其极限井深可达15 km,钻井成本低。
旋转导向钻井技术的核心是旋转自动导向钻井统,如图1所示。
它主要由地面监控系统、地面与井下双向传输通讯系统和井下旋转自动导向钻井系统3部分组成。
1、地面监控系统旋转导向钻井系统的地面监控系统包括信号接收和传输子系统及地面计算存储分析模拟系统,有的还具有智能决策支持系统。
旋转导向钻井系统的主要功能通过闭环信息流监视并随钻调控井身轨迹,其关键技术是从地面发送到井下的下行控制指令系统。
2、地面与井下双向传输通讯系统目前已提出的信号传输方式有4种,即钻井液脉冲、绝缘导线、电磁波和声波。
通过比较分析,笔者发现这4种传输方式各有优缺点和应用局限,如表1所示。
3、井下旋转自动导向钻井系统井下旋转自动导向钻井系统是旋转自动导向系统的核心,它主要由3部分构成,即测量系统、导向机构、CPU和控制系统。
(1)测量系统测量系统主要用于监测井眼轨迹的井斜、方位及地层情况等基本参数,使钻井过程中井下地质参数、钻井参数和井眼参数能够实时测量、传输、分析和控制。