大学物理习题及解答10
- 格式:ppt
- 大小:337.00 KB
- 文档页数:15
普通物理试题1-10试题1一、填空题11. 7.在与匀强磁场B垂直的平面,有一长为L 的铜杆OP ,以角速度 绕端点O 作逆时针匀角速转动,如图13—11,则OP 间的电势差为 P O U U (221L B )。
3. 3.光程差 与相位差 的关系是(2 )25. 1.单色光在水中传播时,与在真空中传播比较:频率(不变 );波长( 变小 );传播速度( 变小 )。
(选填:变大、变小、不变。
)68.17-5. 波长为 的平行单色光斜入射向一平行放置的双缝,如图所示,已知入射角为θ缝宽为a ,双缝距离为b ,产生夫琅和费衍射,第二级衍射条纹出现的角位置是(sin 2sin 1b。
33. 9. 单色平行光垂直照射在薄膜上.经上下两表面反射的两束光发生干涉、如图所示, 若薄膜的厚度为e .且321n n n ,1 为入射光在1n 中的波长,则两束反射光的光程差为 ( 22112 n e n)。
二、选择题6. 2. 如图示,在一无限长的长直载流导线旁,有一形单匝线圈,导线与线圈一侧平行并在同一平面,问:下列几种情况中,它们的互感产生变化的有( B ,C ,D )(该题可有多个选择)(A) 直导线中电流不变,线圈平行直导线移动; (B) 直导线中电流不变,线圈垂直于直导线移动;(C) 直导线中电流不变,线圈绕AB 轴转动; (D) 直导线中电流变化,线圈不动12.16-1.折射率为n 1的媒质中,有两个相干光源.发出的光分别经r 1和r 2到达P 点.在r 2路径上有一块厚度为d ,折射率为n 2的透明媒质,如图所示,则这两条光线到达P 点所经过的光程是( C )。
(A )12r r(B ) d n n r r 2112(C ) d n n n r r 12112 (D ) d n n r r 1211283. 7.用白光垂直照射一平面衍射光栅、发现除中心亮纹(0 k )之外,其它各级均展开成一光谱.在同一级衍射光谱中.偏离中心亮纹较远的是( A )。
10-1 质量为10×10-3 kg 的小球与轻弹簧组成的系统,按20.1cos(8)3x t ππ=+(SI)的规律做谐振动,求: (1)振动的周期、振幅、初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等?(3)t2=5 s 与t1=1 s 两个时刻的位相差.解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A又 πω8.0==A v m 1s m -⋅ 51.2=1s m -⋅2.632==A a m ω2s m -⋅(2) N 63.0==m m a FJ 1016.32122-⨯==m mv E J 1058.1212-⨯===E E E k p 当p k E E =时,有p E E 2=,即 )21(212122kA kx ⋅=∴ m 20222±=±=A x(3) ππωφ32)15(8)(12=-=-=∆t t10-2 一个沿x 轴做简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表出.如果t =0时质点的状态分别是:(1)x0=-A ;(2)过平衡位置向正向运动;(3)过2Ax =处向负向运动; (4)过x =处向正向运动. 试求出相应的初位相,并写出振动方程.解:因为 ⎩⎨⎧-==0000sin cos φωφA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππφ+==t T A x )232cos(232πππφ+==t T A x )32cos(33πππφ+==t T A x)452cos(454πππφ+==t T A x10-3 一质量为10×10-3 kg 的物体做谐振动,振幅为24 cm ,周期为4.0 s ,当t =0时位移为+24 cm.求:(1)t =0.5 s 时,物体所在的位置及此时所受力的大小和方向;(2)由起始位置运动到x =12 cm 处所需的最短时间;(3)在x =12 cm 处物体的总能量.解:由题已知 s 0.4,m 10242=⨯=-T A ∴ 1s rad 5.02-⋅==ππωT又,0=t 时,0,00=∴+=φA x故振动方程为m )5.0cos(10242t x π-⨯=(1)将s 5.0=t 代入得0.17m m )5.0cos(102425.0=⨯=-t x πN 102.417.0)2(10103232--⨯-=⨯⨯⨯-=-=-=πωxm ma F方向指向坐标原点,即沿x 轴负向. (2)由题知,0=t 时,00=φ, t t =时 3,0,20πφ=<+=t v A x 故且∴ s 322/3==∆=ππωφt(3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为J 101.7)24.0()2(10102121214223222--⨯=⨯⨯⨯===πωA m kA E10-4 题10-4图为两个谐振动的x -t 曲线,试分别写出其谐振动方程.题10-4图解:由题10-4图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ即 1s rad 2-⋅==ππωT故 m )23cos(1.0ππ+=t x a由题10-4图(b)∵0=t 时,35,0,2000πφ=∴>=v A x 01=t 时,22,0,0111ππφ+=∴<=v x又 ππωφ253511=+⨯= ∴ πω65=故 m t x b )3565cos(1.0ππ+=11-4 已知波源在原点的一列平面简谐波,波动方程为y =Acos (Bt -Cx),其中A ,B ,C 为正值恒量.求:(1)波的振幅、波速、频率、周期与波长;(2)写出传播方向上距离波源为l 处一点的振动方程;(3)任一时刻,在波的传播方向上相距为d 的两点的位相差.解: (1)已知平面简谐波的波动方程)cos(Cx Bt A y -= (0≥x )将上式与波动方程的标准形式)22cos(λππυx t A y -= 比较,可知: 波振幅为A ,频率πυ2B =, 波长C πλ2=,波速C B u ==λυ, 波动周期B T πυ21==. (2)将l x =代入波动方程即可得到该点的振动方程)cos(Cl Bt A y -=(3)因任一时刻t 同一波线上两点之间的位相差为)(212x x -=∆λπφ 将d x x =-12,及C πλ2=代入上式,即得Cd =∆φ.11-5 沿绳子传播的平面简谐波的波动方程为y =0.05cos(10πt -4πx),式中x ,y 以m 计,t 以s 计.求:(1)波的波速、频率和波长;(2)绳子上各质点振动时的最大速度和最大加速度;(3)求x =0.2 m 处质点在t =1 s 时的位相,它是原点在哪一时刻的位相?这一位相所代表的运动状态在t =1.25 s 时刻到达哪一点?解: (1)将题给方程与标准式)22cos(x t A y λππυ-= 相比,得振幅05.0=A m ,频率5=υ1-s ,波长5.0=λm ,波速5.2==λυu 1s m -⋅.(2)绳上各点的最大振速,最大加速度分别为ππω5.005.010max =⨯==A v 1s m -⋅222max 505.0)10(ππω=⨯==A a 2s m -⋅(3)2.0=x m 处的振动比原点落后的时间为08.05.22.0==u x s 故2.0=x m ,1=t s 时的位相就是原点(0=x ),在92.008.010=-=t s 时的位相,即 2.9=φπ.设这一位相所代表的运动状态在25.1=t s 时刻到达x 点,则825.0)0.125.1(5.22.0)(11=-+=-+=t t u x x m。
习题10.1 两平行金属板A 、B ,带有等量异号电荷,相距为5.0mm,两板的面积都是150cm 2,电荷量的大小都是2.66×10-8C ,A 板带正电荷并接地,设地的电势为零,并忽略边缘效应,求B 板的电势及A B 间离A 板1.0mm 处的电势。
解:因平行板间电荷的散布的电场是匀强电场,有由高斯定理得)(100.20.50.1100.10.1,)(100.11015010854.8100.51066.201)1(23341238V V Ed Ed U mm A B A V V Q d d B QPB p PA BABAA B U sU U s⨯-=⨯⨯-=-=-=-=⨯-=⨯⨯⨯⨯⨯⨯-=︒-=E -=⋅E -=︒=︒=E ⎰⎰⎰-----处的电势为:板间离板的电势为:)得由(εεεσ 10.2 如下图,三块平行的金属板A 、B 和C ,面积都为200 cm 2,A 、B 相距4.0mm ,A 、C 相距2.0mm, B 和C 都接地。
若是使A 板带+ 3.0×10-7的电荷,略去边缘效应,问B 、C 两板上的感应电荷各是多少?以地的电势为零,A 板的电势为多少?解:因B ,C 两板都接地,故知B ,C 两板上只有向着A 的那里有感应电荷,设电荷的面密度别离为)(103.21020010854.8100.4100.1)(100.2)100.1(24)(100.1100.324210410987,,6e e e 5e 4320103412370077770E E V V sA C C C C C AB AC A B A B A C B A d Qd d E U QQd ddQ Q dd Qddd d d UU d d QQQ QQ ABBAB BABABAC AACABACBBACABCBAC AB C AB B AB AB AC C CBAC AB CAC AC ABABACBACABCBAB BACCAC AB C B⨯=⨯⨯⨯⨯⨯⨯==-=⋅=⨯-=⨯-⨯=⨯-=⨯⨯+-=+===∴-==-==-==-=+--=+∴=+=+--------εεσσσεσεσεσεεεσσσσσσσσσσσσσ板的电势为:)联立得:),(由()(两边乘以板的面积即得)()(得)(,则由间的距离为间的距离为,设)()(间的电场强度为:,指向量,从为垂直于板面的单位矢式中)(间的电场强度为:,由高斯定理得)(的关系为:得三块板上电荷量两间两边乘以鞭的面积,便)()()(理得,则由对称性和高斯定和则由度分别为的两面上电荷量的面密和板向着,和10.3 半径为10cm 的金属球A 带电1.0×10-8C 。
习题精解10-1 在平面简谐波的波射线上,A,B,C,D 各点离波源的距离分别是3,,,424λλλλ。
设振源的振动方程为cos 2y A t πω⎛⎫=+ ⎪⎝⎭ ,振动周期为T.(1)这4点与振源的振动相位差各为多少?(2)这4点的初相位各为多少?(3)这4点开始运动的时刻比振源落后多少? 解 (1) 122,2,2xxπϕπϕππλλ∆∆∆==∆==3432,222x x πϕπϕππλλ∆∆∆==∆== (2)112233440,,2223,222πππϕϕϕϕππϕϕπϕϕπ=-∆==-∆=-=-∆=-=-∆=-(3) 1212343411,,,24223,,,242t T T t T T t T T t T Tϕϕππϕϕππ∆∆∆==∆==∆∆∆==∆==10-2 波源做谐振动,周期为0.01s ,振幅为21.010m -⨯,经平衡位置向y 轴正方向运动时,作为计时起点,设此振动以1400u m s -=∙的速度沿x 轴的正方向传播,试写出波动方程。
解 根据题意可知,波源振动的相位为32ϕπ= 2122200, 1.010,4000.01A m u m s T ππωπ--====⨯=∙ 波动方程231.010cos 2004002x y t m ππ-⎡⎤⎛⎫=⨯-+ ⎪⎢⎥⎝⎭⎣⎦10-3 一平面简谐波的波动方程为()0.05cos 410y x t m ππ=-,求(1)此波的频率、周期、波长、波速和振幅;(2)求x 轴上各质元振动的最大速度和最大加速度。
解 (1)比较系数法 将波动方程改写成0.05cos10 2.5x y t m π⎛⎫=-⎪⎝⎭与cos x y A t u ω⎛⎫=-⎪⎝⎭比较得1120.05;10;0.21015; 2.5;0.5A m T s v s u m s u T m Tπωππλ--=======∙=∙=(2)各质元的速度为()10.0510sin 410v x t m s πππ-=⨯-∙ 所以1max 0.0510 1.57()v m s π-=⨯=∙ 各质元的加速度为()220.05(10)cos 410a x t m s πππ-=-⨯-∙ 所以22max 0.05(10)49.3()a m s π-=⨯=∙10-4 设在某一时刻的横波波形曲线的一部分如图10.1所示。
第十章10-1 无限长直线电流的磁感应强度公式为B =μ0I2πa,当场点无限接近于导线时(即a →0),磁感应强度B →∞,这个结论正确吗?如何解释?答:结论不正确。
公式a IB πμ20=只对理想线电流适用,忽略了导线粗细,当a →0,导线的尺寸不能忽略,电流就不能称为线电流,此公式不适用。
10-2 如图所示,过一个圆形电流I 附近的P 点,作一个同心共面圆形环路L ,由于电流分布的轴对称,L 上各点的B 大小相等,应用安培环路定理,可得∮L B ·d l =0,是否可由此得出结论,L 上各点的B 均为零?为什么? 答:L 上各点的B 不为零. 由安培环路定理∑⎰=⋅ii I l d B 0μρρ得 0=⋅⎰l d B ρρ,说明圆形环路L 内的电流代数和为零,并不是说圆形环路L 上B 一定为零。
10-3 设题10-3图中两导线中的电流均为8A ,对图示的三条闭合曲线a ,b ,c ,分别写出安培环路定理等式右边电流的代数和.并讨论:(1)在各条闭合曲线上,各点的磁感应强度B ϖ的大小是否相等? (2)在闭合曲线c 上各点的B ϖ是否为零?为什么? 解: ⎰μ=⋅al B 08d ϖϖ⎰μ=⋅bal B 08d ϖϖ⎰=⋅cl B 0d ϖϖ(1)在各条闭合曲线上,各点B ϖ的大小不相等.(2)在闭合曲线C 上各点B ϖ不为零.只是B ϖ的环路积分为零而非每点0=B ϖ.习题10-2图题10-3图10-4 图示为相互垂直的两个电流元,它们之间的相互作用力是否等值、反向?由此可得出什么结论?答:两个垂直的电流元之间相互作用力不是等值、反向的。
B l Id F d ρρρ⨯= 20ˆ4r r l Id B d ⨯=ϖϖπμ2212122110221212201112)ˆ(4ˆ4r rl d I l d I r r l d I l d I F d ⨯⨯=⨯⨯=ϖρϖρρπμπμ 2121211220212121102212)ˆ(4ˆ4r rl d I l d I r r l d I l d I F d ⨯⨯=⨯⨯=ϖρϖρρπμπμ ))ˆ()ˆ((4212121221************r r l d l d r r l d l d I I F d F d ⨯⨯+⨯⨯-=+ϖρϖρρρπμ 2122112210212112221212102112)(ˆ4))ˆ()ˆ((4r l d l d r I I r l d r l d l d r l d I I F d F d ϖρϖρϖρρρ⨯⨯=⋅-⋅=+πμπμ 一般情况下 02112≠+F d F d ρρ由此可得出两电流元(运动电荷)之间相互作用力一般不满足牛顿第三定律。
1 习题题10.1:如图所示,两根长直导线互相平行地放置,导线内电流大小相等,均为I = 10 A ,方向,方向相同,如图所示,求图中M 、N 两点的磁感强度B 的大小和方向(图中r 0 = 0.020 m )。
题10.2:已知地球北极地磁场磁感强度B 的大小为6.0´10-5 T 。
如设想此地磁场是由地球赤道上一圆电流所激发的(如图所示),此电流有多大?流向如何?题10.3:如图所示,载流导线在平面内分布,电流为I ,它在点O 的磁感强度为多少?题10.4:如图所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈覆盖住半个球面,设线圈的总匝数为N ,通过线圈的电流为I ,求球心O 处的磁感强度。
题10.5:实验中常用所谓的亥姆霍兹线圈在局部区域内获得一近似均匀的磁场,其装置简图如图所示,一对完全相同、彼此平行的线圈,它们的半径均为R ,通过的电流均为I ,且两线圈中电流的流向相同,试证:当两线圈中心之间的距离d 等于线圈的半径R 时,在两线圈中心连线的中点附近区域,磁场可看成是均匀磁场。
(提示:如以两线圈中心为坐标原点O ,两线圈中心连线为x 轴,则中点附近的磁场可看成是均匀磁场的条件为x B d d = 0;0d d 22=x B )题10.6:如图所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量。
,试求通过矩形面积的磁通量。
题10.7:如图所示,在磁感强度为B 的均匀磁场中,有一半径为R 的半球面,B 与半球面轴线的夹角为a ,求通过该半球面的磁通量。
,求通过该半球面的磁通量。
题10.8:已知10 10 mmmm 2裸铜线允许通过50 50 A A 电流而不会使导线过热。
电流在导线横截面上均匀分布。
求:(1)导线内、外磁感强度的分布;(2)导线表面的磁感强度。
)导线表面的磁感强度。
题10.9:有一同轴电缆,其尺寸如图所示,两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑。
题图10-1题10-1解图d第十章习题解答10-1 如题图10-1所示,三块平行的金属板A ,B 和C ,面积均为200cm 2,A 与B 相距4mm ,A 与C 相距2mm ,B 和C 两板均接地,若A 板所带电量Q =3.0×10-7C ,忽略边缘效应,求:(1)B 和C 上的感应电荷?(2)A 板的电势(设地面电势为零)。
分析:当导体处于静电平衡时,根据静电平衡条件和电荷守恒定律,可以求得导体的电荷分布,又因为B 、C 两板都接地,所以有ACAB U U =。
解:(1)设B 、C 板上的电荷分别为B q 、C q 。
因3块导体板靠的较近,可将6个导体面视为6个无限大带电平面。
导体表面电荷分布均匀,且其间的场强方向垂直于导体表面。
作如图中虚线所示的圆柱形高斯面。
因导体达到静电平衡后,内部场强为零,故由高斯定理得:1A C q q =-2A B q q =-即 ()A B C q q q =-+ ①又因为: ACAB U U =而: 2AC ACdU E =⋅ AB AB U E d =⋅∴ 2AC AB E E =于是:002C B σσεε =⋅ 两边乘以面积S 可得: 002C B S S σσεε =⋅即: 2C B q q = ②联立①②求得: 77210,110C B q C q C --=-⨯=-⨯题图10-2(2) 00222C C A AC C AC AC q d d d U U U U E S σεε =+==⋅=⋅=⋅ 733412210210 2.2610()200108.8510V ----⨯=⨯⨯=⨯⨯⨯⨯10-2 如题图10-2所示,平行板电容器充电后,A 和B 极板上的面电荷密度分别为+б和-б,设P 为两极板间任意一点,略去边缘效应,求:(1)A,B 板上的电荷分别在P 点产生的场强E A ,E B ;(2)A,B 板上的电荷在P 点产生的合场强E ; (3)拿走B 板后P 点处的场强E ′。
思 考 题10.1 人体也向外发出热辐射,为什么在黑暗中还是看不见人呢? 答:人体的辐射频率太低, 远离可见光波段,在远红外波段, 由于为非可见光, 所以是看不到人体辐射的,在黑暗中也是如此。
10.1刚粉刷完的房间从房外远处看,即使在白天,它的开着的窗口也是黑的。
为什么? 答:光线从窗户进去后经过多次反射,反射光的强度越来越弱,能再从窗户射出的光线非常少,窗户外的人看到的光线非常弱,因此觉得窗口很暗。
10.3 在光电效应实验中,如果(1)入射光强度增加一倍;(2)入射光频率增加一倍,各对实验结果有什么影响?答:(1)在光电效应中每秒从光阴极发射的光电子数与入射光强成正比。
入射光强度增加一倍时,饱和电流增加一倍。
(2)当入射光的频率增大时,光电子的最大初动能增大,遏止电压也增大,但入射光的频率和遏止电压两者不是简单的正比关系。
10.4 若一个电子和一个质子具有同样的动能,哪个粒子的德布罗意波长较大? 答:电子的德布罗意波长较大。
10.5 n=3的壳层内有几个次壳层,各次壳层都可容纳多少个电子?答:n=3的壳层内有3个次壳层,各次壳层可容纳的电子数分别为2、6、10。
10.6 完成下列核衰变方程。
(1)?234238+−→−Th U(2)?9090+−→−Y Sr (3)?2929+−→−Ni Cu (4)Zn Cu 2929?−→−+ 答:(1)e H Th U 422349023892+−→−(2)e Y Sr 0190399038-+−→−(3)e Ni Cu 0129282929++−→−(4)Zn e Cu 2930012929−→−++习 题10.1 夜间地面降温主要是由于地面的热辐射。
如果晴天夜里地面温度为-50C ,按黑体辐射计算,每平方米地面失去热量的速率多大?解:依题意,可知地面每平方米失去的热量即为地面的辐射出射度2484/2922681067.5m W T M =⨯⨯==-σ10.2 宇宙大爆炸遗留在空间均匀、各向同性的背景热辐射相当于3K 的黑体辐射。
习题10-3图第10章 静电场中的导体和电介质习 题一 选择题10-1当一个带电导体达到静电平衡时,[ ] (A) 表面上电荷密度较大处电势较高 (B) 表面曲率较大处电势较高(C) 导体内部的电势比导体表面的电势高(D) 导体内任一点与其表面上任一点的电势差等于零 答案:D解析:处于静电平衡的导体是一个等势体,表面是一个等势面,并且导体内部与表面的电势相等。
10-2将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,导体B 的电势将[ ](A) 升高 (B)降低 (C)不会发生变化 (D)无法确定 答案:A解析:不带电的导体B 相对无穷远处为零电势。
由于带正电的带电体A 移到不带电的导体B 附近的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。
10-3将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。
若将导体N 的左端接地(如图10-3所示),则[ ](A) N 上的负电荷入地 (B) N 上的正电荷入地 (C) N 上的所有电荷入地 (D) N 上所有的感应电荷入地 答案:A解析:带负电的带电体M移到不带电的导体N附近的近端感应正电荷;在远端感应负电荷,不带电导体的电势将低于无穷远处,因此导体N的电势小于0,即小于大地的电势,因而大地的正电荷将流入导体N,或导体N的负电荷入地。
故正确答案为(A)。
10-4 如图10-4所示,将一个电荷量为q电的导体球附近,点电荷距导体球球心为d。
设无穷远处为零电势,则在导体球球心O点有[ ](A)0E,4πε=qVd(B)24πε=qEd,4πε=qVd(C) 0E,0V(D)24πε=qEd,4πε=qVR答案:A解析:导体球处于静电平衡状态,导体球内部电场强度为零,因此0E。
导体球球心O点的电势为点电荷q及感应电荷所产生的电势叠加。
感应电荷分布于导体球表面,至球心O的距离皆为半径R,并且感应电荷量代数和q∑为0,因此4qVRπε==∑感应电荷。
习题十10-1 一半径r =10cm 的圆形回路放在B =0.8T 的均匀磁场中.回路平面与B垂直.当回路半径以恒定速率t rd d =80cm ·s -1收缩时,求回路中感应电动势的大小.解: 回路磁通 2πr B BS m感应电动势大小40.0d d π2)π(d d d d 2trr B r B t t m V 10-2 一对互相垂直的相等的半圆形导线构成回路,半径R =5cm ,如题10-2图所示.均匀磁场B =80×10-3T ,B 的方向与两半圆的公共直径(在Oz 轴上)垂直,且与两个半圆构成相等的角 当磁场在5ms 内均匀降为零时,求回路中的感应电动势的大小及方向.解: 取半圆形cba 法向为i , 题10-2图则cos 2π21B R m同理,半圆形adc 法向为j,则 cos 2π22B R m∵ B 与i 夹角和B 与j夹角相等,∴45则cos π2R B m 221089.8d d cos πd dt BR t m V方向与cbadc 相反,即顺时针方向.题10-3图*10-3 如题10-3图所示,一根导线弯成抛物线形状y =2ax ,放在均匀磁场中.B 与xOy 平面垂直,细杆CD 平行于x 轴并以加速度a 从抛物线的底部向开口处作平动.求CD 距O 点为y 处时回路中产生的感应电动势.解: 计算抛物线与CD 组成的面积内的磁通量aym yB x x y B S B 0232322d )(2d 2∴ vy B t y y B t m 21212d d d d∵ ay v 22∴ 212y a v则aByy a yBi 8222121i 实际方向沿ODC .题10-4图10-4 如题10-4图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压N M U U .解: 作辅助线MN ,则在MeNM 回路中,沿v 方向运动时0d m ∴ 0 MeNM即MN MeN又∵ba ba MNb a ba Iv l vB 0ln 2dcos 0所以MeN 沿NeM 方向,大小为 b a ba Iv ln20M 点电势高于N 点电势,即b a ba Iv U U N Mln 20题10-5图10-5如题10-5所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以t Id d 的变化率增大,求:(1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则(1)]ln [lnπ2d π2d π2000d ad b a b Ilr l r Ir l rIab bad dm(2)t I b a b d a d l t d d ]ln [ln π2d d 0 10-6 如题10-6图所示,用一根硬导线弯成半径为r 的一个半圆.令这半圆形导线在磁场中以频率f 绕图中半圆的直径旋转.整个电路的电阻为R .求:感应电流的最大值.题10-6图解: )cos(2π02t r B S B m∴ Bfr f r B r B t r B t m m i 222202ππ22π2π)sin(2πd d ∴ R Bf r R I m 22π10-7 如题10-7图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s -1垂直于直线平移远离.求:d =0.05m时线圈中感应电动势的大小和方向.题10-7图解: AB 、CD 运动速度v方向与磁力线平行,不产生感应电动势. DA 产生电动势ADI vbvBb l B v d 2d )(01BC 产生电动势)(π2d )(02d a Ivbl B v C B∴回路中总感应电动势8021106.1)11(π2ad d Ibv V 方向沿顺时针.10-8 长度为l 的金属杆ab 以速率v 在导电轨道abcd 上平行移动.已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角(如题10-8图所示),B的大小为B =kt (k 为正常).设t =0时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向.解: 22212160cos d klvt lv kt Blvt S B m∴ klvtt m d d即沿abcd 方向顺时针方向.题10-8图10-9 一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B的方向如题10-9图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0).解: 如图逆时针为矩形导线框正向,则进入时0d dt ,0 ;题10-9图(a)题10-9图(b)在磁场中时0d d t,0 ; 出场时0d d t,0 ,故t I 曲线如题10-9图(b)所示.题10-10图10-10 导线ab 长为l ,绕过O 点的垂直轴以匀角速 转动,aO =3l磁感应强度B 平行于转轴,如图10-10所示.试求: (1)ab 两端的电势差; (2)b a ,两端哪一点电势高? 解: (1)在Ob 上取dr r r 一小段 则320292d l Ob l B r rB同理302181d l Oa l B r rB ∴ 2261)92181(l B l B Ob aO ab(2)∵ 0 ab即0 b a U U∴b 点电势高.题10-11图10-11 如题10-11图所示,长度为b 2的金属杆位于两无限长直导线所在平面的正中间,并以速度v 平行于两直导线运动.两直导线通以大小相等、方向相反的电流I ,两导线相距2a .试求:金属杆两端的电势差及其方向. 解:在金属杆上取r d 距左边直导线为r ,则b a b a Iv r r a r Iv l B v b a b a BA AB lnd )211(2d )(00∵ 0 AB∴实际上感应电动势方向从A B ,即从图中从右向左, ∴b a ba Iv U ABln 0题10-12图10-12 磁感应强度为B的均匀磁场充满一半径为R 的圆柱形空间,一金属杆放在题10-12图中位置,杆长为2R ,其中一半位于磁场内、另一半在磁场外.当t Bd d >0时,求:杆两端的感应电动势的大小和方向.解: ∵bc ab act BR B R t t ab d d 43]43[d d d d 21tab d d 2 t BR B R t d d 12π]12π[d d 22∴t B R R acd d ]12π43[22∵ 0d d t B∴ 0 ac即 从c a 10-13 半径为R 的直螺线管中,有dt dB>0的磁场,一任意闭合导线abca ,一部分在螺线管内绷直成ab 弦,a ,b 两点与螺线管绝缘,如题10-13图所示.设ab =R ,试求:闭合导线中的感应电动势.解:如图,闭合导线abca 内磁通量)436π(22R R B S B m∴t B R R i d d )436π(22 ∵ 0d d t B∴0 i,即感应电动势沿acba ,逆时针方向. 题10-13图题10-14图10-14 如题10-14图所示,在垂直于直螺线管管轴的平面上放置导体ab 于直径位置,另一导体cd 在一弦上,导体均与螺线管绝缘.当螺线管接通电源的一瞬间管内磁场如题10-14图示方向.试求: (1)ab 两端的电势差; (2)cd 两点电势高低的情况.解: 由 l S t B l Ed d d d 旋知,此时旋E 以O 为中心沿逆时针方向.(1)∵ab 是直径,在ab 上处处旋E 与ab 垂直∴ ll 0d 旋∴0 ab ,有b a U U(2)同理, 0d l E cddc旋∴0 c d U U 即d c U U题10-15图10-15 一无限长的直导线和一正方形的线圈如题10-15图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.解: 设长直电流为I ,其磁场通过正方形线圈的互感磁通为32300122ln π2d π2a a Iar rIa∴2ln π2012aIM10-16 一矩形线圈长为a =20cm ,宽为b =10cm ,由100匝表面绝缘的导线绕成,放在一无限长导线的旁边且与线圈共面.求:题10-16图中(a)和(b)两种情况下,线圈与长直导线间的互感.解:(a)见题10-16图(a),设长直电流为I ,它产生的磁场通过矩形线圈的磁通为2ln π2d 2πd 020)(12Iar r Ia S B b b S∴6012108.22ln π2a N I N M H (b)∵长直电流磁场通过矩形线圈的磁通012 ,见题10-16图(b)∴ 0 M题10-16图题10-17图10-17 两根平行长直导线,横截面的半径都是a ,中心相距为d ,两导线属于同一回路.设两导线内部的磁通可忽略不计,证明:这样一对导线长度为l 的一段自感为l L 0In a ad .解: 如图10-17图所示,取r l S d d则a d aa d aa d d aa d Il r r rIl r l r I r πI )ln (ln 2πd )d11(π2d ))d (π22(0000a a d Illnπ0∴ a a d l I L lnπ0 10-18 两线圈顺串联后总自感为1.0H ,在它们的形状和位置都不变的情况下,反串联后总自感为0.4H .试求:它们之间的互感. 解: ∵顺串时 M L L L 221反串联时M L L L 221∴ M L L 415.04L L M H10-19图10-19 一矩形截面的螺绕环如题10-19图所示,共有N 匝.试求: (1)此螺线环的自感系数;(2)若导线内通有电流I ,环内磁能为多少? 解:如题10-19图示 (1)通过横截面的磁通为ba a bNIhr h r NIlnπ2d π200磁链a bIh N N lnπ220 ∴a bhN IL lnπ220(2)∵221LI W m∴a b hI N W m lnπ422010-20 一无限长圆柱形直导线,其截面各处的电流密度相等,总电流为I .求:导线内部单位长度上所储存的磁能.解:在R r 时 20π2R I B r∴4222002π82R r I B w m 取 r r V d π2d (∵导线长1 l )则R Rm I R rr I r r w W 0204320π16π4d d 2。
10、量子力学一、选择题1.已知一单色光照射在钠表面上,测得光电子的最大动能是1.2 eV ,而钠的红限波长是5400 Å,那么入射光的波长是(A) 5350 Å (B) 5000 Å (C) 4350 Å (D) 3550 Å2.在均匀磁场B 内放置一极薄的金属片,其红限波长为λ0。
今用单色光照射,发现有电子放出,有些放出的电子(质量为m ,电荷的绝对值为e )在垂直于磁场的平面内作半径为R 的圆周运动,那末此照射光光子的能量是: (A) 0λhc (B) 0λhcm eRB 2)(2+ (C) 0λhc m eRB + (D) 0λhc eRB 2+ 3.用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为:(A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K4.在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子能量ε与反冲电子动能E K 之比ε / E K 为(A) 2 (B) 3 (C) 4 (D) 55.要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是(A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV6.由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出:(A) 一种波长的光 (B) 两种波长的光 (C) 三种波长的光 (D) 连续光谱7.已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为-0.85 eV 的状态跃迁到上述定态时,所发射的光子的能量为(A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV8.在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是(A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和1.9 eV (D) 12.1 eV ,10.2 eV 和3.4 eV9.若α粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则α粒子的德布罗意波长是(A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh10.如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的(A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同 11.已知粒子在一维矩形无限深势阱中运动,其波函数为:a x ax 23cos 1)(π⋅=ψ ( - a ≤x ≤a ),那么粒子在x = 5a /6处出现的概率密度为 (A) 1/(2a ) (B) 1/a (C) a 2/1 (D) a /112.设粒子运动的波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定粒子动量的精确度最高的波函数是哪个图?13.波长λ =5000 Å的光沿x 轴正向传播,若光的波长的不确定量∆λ =10-3 Å,则利用不确定关系式h x p x ≥∆∆可得光子的x 坐标的不确定量至少为:(A) 25 cm (B) 50 cm (C) 250 cm (D) 500 cmx (A)x (C)x (B) x (D)14.将波函数在空间各点的振幅同时增大D 倍,则粒子在空间的分布概率将(A) 增大D 2倍 (B) 增大2D 倍 (C) 增大D 倍 (D) 不变15.下列各组量子数中,哪一组可以描述原子中电子的状态?(A) n = 2,l = 2,m l = 0,21=s m (B) n = 3,l = 1,m l =-1,21-=s m (C) n = 1,l = 2,m l = 1,21=s m (D) n = 1,l = 0,m l = 1,21-=s m [ ] 16.氢原子中处于3d 量子态的电子,描述其量子态的四个量子数(n ,l ,m l ,m s )可能取的值为(A) (3,0,1,21-) (B) (1,1,1,21-)(C) (2,1,2,21) (D) (3,2,0,21) [ ] 17.在氢原子的K 壳层中,电子可能具有的量子数(n ,l ,m l ,m s )是(A) (1,0,0,21) (B) (1,0,-1,21)(C) (1,1,0,21-) (D) (2,1,0,21-) [ ]18.与绝缘体相比较,半导体能带结构的特点是(A) 导带也是空带 (B) 满带与导带重合(C) 满带中总是有空穴,导带中总是有电子 (D) 禁带宽度较窄19.p 型半导体中杂质原子所形成的局部能级(也称受主能级),在能带结构中应处于(A) 满带中 (B) 导带中 (C) 禁带中,但接近满带顶 (D) 禁带中,但接近导带底20.按照原子的量子理论,原子可以通过自发辐射和受激辐射的方式发光,它们所产生的光的特点是:(A) 两个原子自发辐射的同频率的光是相干的,原子受激辐射的光与入射光是不相干的(B) 两个原子自发辐射的同频率的光是不相干的,原子受激辐射的光与入射光是相干的(C) 两个原子自发辐射的同频率的光是不相干的,原子受激辐射的光与入射光是不相干的(D) 两个原子自发辐射的同频率的光是相干的,原子受激辐射的光与入射光是相干的21.xˆ与x P ˆ的互易关系[x P x ˆ,ˆ]等于 (A) i (B) i - (C)ih (D)ih - [ ]22.厄米算符Aˆ满足以下哪一等式(u 、v 是任意的态函数) (A)()dx v u A dx v A u ⎰⎰=**ˆˆ (B)()dx u A v dx u A v ⎰⎰=**ˆˆ (C)()dx u v A dx u A v ⎰⎰=**ˆˆ (D)()dx v u A dx v A u ⎰⎰=**ˆˆ 二、填空题1.光子波长为λ,则其能量=_____;动量的大小 =______;质量=_______。
[习题解答]10-1如果导线中的电流强度为8.2 A,问在15 s内有多少电子通过导线的横截面?解设在t秒内通过导线横截面的电子数为N,则电流可以表示为,所以.10-2 在玻璃管内充有适量的某种气体,并在其两端封有两个电极,构成一个气体放电管。
当两极之间所施加的电势差足够高时,管中的气体分子就被电离,电子和负离子向正极运动,正离子向负极运动,形成电流。
在一个氢气放电管中,如果在3 s内有2.8⨯1018 个电子和1.0⨯1018 个质子通过放电管的横截面,求管中电流的流向和这段时间内电流的平均值。
解放电管中的电流是由电子和质子共同提供的,所以.电流的流向与质子运动的方向相同。
10-3 两段横截面不同的同种导体串联在一起,如图10-7所示,两端施加的电势差为U。
问:(1)通过两导体的电流是否相同?(2)两导体内的电流密度是否相同?(3)两导体内的电场强度是否相同?(4)如果两导体的长度相同,两导体的电阻之比等于什么?(5)如果两导体横截面积之比为1: 9,求以上四个问题中各量的比例关系,以及两导体有相同电阻时的长度之比。
解(1)通过两导体的电流相同,。
(2)两导体的电流密度不相同,因为,又因为,所以.这表示截面积较小的导体电流密度较大。
(3)根据电导率的定义,在两种导体内的电场强度之比为.上面已经得到,故有.这表示截面积较小的导体中电场强度较大。
图10-7(4)根据公式,可以得到,这表示,两导体的电阻与它们的横截面积成反比。
(5)已知,容易得到其他各量的比例关系,,,.若,则两导体的长度之比为.10-4两个同心金属球壳的半径分别为a和b(>a),其间充满电导率为σ的材料。
已知σ是随电场而变化的,且可以表示为σ = kE,其中k为常量。
现在两球壳之间维持电压U,求两球壳间的电流。
解在两球壳之间作一半径为r的同心球面,若通过该球面的电流为I,则.又因为,所以.于是两球壳之间的电势差为.从上式解出电流I,得.10-5一个电阻接在电势差为180 V电路的两点之间,发出的热功率为250W。
习题1010.1选择题(1) 对于安培环路定理的理解,正确的是:(A )若环流等于零,则在回路L 上必定是H 处处为零; (B )若环流等于零,则在回路L 上必定不包围电流;(C )若环流等于零,则在回路L 所包围传导电流的代数和为零; (D )回路L 上各点的H 仅与回路L 包围的电流有关。
[答案:C](2) 对半径为R 载流为I 的无限长直圆柱体,距轴线r 处的磁感应强度B () (A )内外部磁感应强度B 都与r 成正比;(B )内部磁感应强度B 与r 成正比,外部磁感应强度B 与r 成反比; (C )内外部磁感应强度B 都与r 成反比;(D )内部磁感应强度B 与r 成反比,外部磁感应强度B 与r 成正比。
[答案:B](3)质量为m 电量为q 的粒子,以速率v 与均匀磁场B 成θ角射入磁场,轨迹为一螺旋线,若要增大螺距则要() (A ) 增加磁场B ;(B )减少磁场B ;(C )增加θ角;(D )减少速率v 。
[答案:B](4)一个100匝的圆形线圈,半径为5厘米,通过电流为0.1安,当线圈在1.5T 的磁场中从θ=0的位置转到180度(θ为磁场方向和线圈磁矩方向的夹角)时磁场力做功为() (A )0.24J ;(B )2.4J ;(C )0.14J ;(D )14J 。
[答案:A]10.2 填空题(1)边长为a 的正方形导线回路载有电流为I ,则其中心处的磁感应强度 。
[答案:aIπμ220,方向垂直正方形平面](2)计算有限长的直线电流产生的磁场 用毕奥——萨伐尔定律,而 用安培环路定理求得(填能或不能)。
[答案:能, 不能](3)电荷在静电场中沿任一闭合曲线移动一周,电场力做功为 。
电荷在磁场中沿任一闭合曲线移动一周,磁场力做功为 。
[答案:零,正或负或零](4)两个大小相同的螺线管一个有铁心一个没有铁心,当给两个螺线管通以 电流时,管内的磁力线H 分布相同,当把两螺线管放在同一介质中,管内的磁力线H 分布将 。