大学物理习题计算题答案
- 格式:doc
- 大小:502.50 KB
- 文档页数:16
大学物理试题及答案一、选择题1.在下列物理量中,不属于标量的是:A. 质量B. 速度C. 力D. 时间正确答案:C. 力2.一个球以12m/s的速度从斜面上滚下,如果斜面的倾角是30°,求球的加速度(取g=10m/s^2)。
A. 5m/s^2B. 7m/s^2C. 10m/s^2D. 12m/s^2正确答案:C. 10m/s^23.一辆汽车以20m/s^2的等加速度沿直线行驶。
若车在t=4s时的位置为s=120m,则在t=8s时汽车的位置为:A. 320mB. 360mC. 400mD. 440m正确答案:C. 400m4.一个质点沿x轴上的直线运动,其速度与时间的关系为v=2t+3,其中v的单位为m/s,t的单位为s,则该质点的加速度为:A. 2m/s^2B. 3m/s^2C. 4m/s^2D. 5m/s^2正确答案:A. 2m/s^25.一个质点在力F的作用下从A点经过B点再到达C点。
若质点下落的高度为h,他在B点的速度为v,将C点作为原点,质点下落的方向为正方向,则B点处的动能为:A. 0B. -mghC. mghD. mgh/2正确答案:C. mgh二、填空题1.加速度的国际单位制为__m/s^2__。
2.牛顿第二定律表述了力与质量、加速度之间的关系,其数学表达式为__F=ma__。
3.弹簧振子的振动周期与弹簧的劲度系数成__反比__关系。
4.等角速度圆周运动的位移和时间之间的关系为__s=vt__。
5.能量守恒定律表述了系统总能量不变的原理,其数学表达式为__E1 + E2 = E3__。
三、计算题1.一个小球从斜坡顶部以12m/s的速度下滚,求小球滚到坡底时的速度。
解析:根据能量守恒定律,滚球过程中,机械能守恒。
机械能守恒的表示式为:mgh = (1/2)mv^2其中,m为小球的质量,g为重力加速度,h为斜坡的高度,v为小球的速度。
利用给定的数值,代入公式进行计算:mgh = (1/2)mv^2(m)(9.8m/s^2)(h) = (1/2)(m)(12m/s)^2解得:h = (1/2)(12m/s)^2 / (9.8m/s^2) = 7.35m所以小球滚到坡底时的速度为12m/s。
xO 1A22练习 十三(简谐振动、旋转矢量、简谐振动的合成)一、选择题1. 一弹簧振子,水平放置时,它作简谐振动。
若把它竖直放置或放在光滑斜面上,试判断下列情况正确的是 (C )(A )竖直放置作简谐振动,在光滑斜面上不作简谐振动; (B )竖直放置不作简谐振动,在光滑斜面上作简谐振动; (C )两种情况都作简谐振动; (D )两种情况都不作简谐振动。
解:(C) 竖直弹簧振子:kx mg l x k dt x d m )(22(mg kl ),0222 x dt xd弹簧置于光滑斜面上:kx mg l x k dt x d m sin )(22 (mg kl ),0222 x dtxd2. 两个简谐振动的振动曲线如图所示,则有 (A ) (A )A 超前2π; (B )A 落后2π;(C )A 超前π; (D )A 落后π。
解:(A)t A x A cos ,)2/cos( t A x B3. 一个质点作简谐振动,周期为T ,当质点由平衡位置向x 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的最短时间为: (B ) (A )4T ; (B )12T ; (C )6T ; (D )8T 。
解:(B)振幅矢量转过的角度6/ ,所需时间12/26/T T t , 4. 分振动表式分别为)π25.0π50cos(31 t x 和)π75.0π50cos(42 t x (SI 制)则它们的合振动表达式为: (C )(A ))π25.0π50cos(2 t x ; (B ))π50cos(5t x ;(C )π15cos(50πarctan )27x t; (D )7 x 。
解:(C)作旋转矢量图或根据下面公式计算)cos(21020212221A A A A A 5)25.075.0cos(4324322712)75.0cos(4)25.0cos(3)75.0sin(4)25.0sin(3cos cos sin sin 1120210120210110 tg tg A A A A tg5. 两个质量相同的物体分别挂在两个不同的弹簧下端,弹簧的伸长分别为1l 和2l ,且212l l ,则两弹簧振子的周期之比21:T T 为 (B )(A )2; (B )2; (C )2/1; (D )2/1。
一 选择题 (共21分)1. (本题 3分)(5666) 在磁感强度为B v的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n v与B v 的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为(A) πr 2B .. (B) 2 πr 2B .(C) -πr 2B sin α. (D) -πr 2B cos α. [ ]2. (本题 3分)(2658) 若空间存在两根无限长直载流导线,空间的磁场分布就不具有简单的对称性,则该磁场分布(A) 不能用安培环路定理来计算. (B) 可以直接用安培环路定理求出. (C) 只能用毕奥-萨伐尔定律求出.(D) 可以用安培环路定理和磁感强度的叠加原理求出. [ ]3. (本题 3分)(2734) 两根平行的金属线载有沿同一方向流动的电流.这两根导线将: (A) 互相吸引. (B) 互相排斥.(C) 先排斥后吸引. (D) 先吸引后排斥. [ ]4. (本题 3分)(2595) 有一N 匝细导线绕成的平面正三角形线圈,边长为a ,通有电流I ,置于均匀外磁场B v中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩M m 值为 (A) 2/32IB Na . (B) 4/32IB Na .(C) °60sin 32IB Na . (D) 0. [ ]5. (本题 3分)(2657) 若一平面载流线圈在磁场中既不受力,也不受力矩作用,这说明: (A) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向平行. (B) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向平行. (C) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向垂直.(D) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向垂直.[ ]6. (本题 3分)(2042) 四条平行的无限长直导线,垂直通过边长为a =20 cm 的正方形顶点,每条导线中的电流都是I =20 A ,这四条导线在正方形中心O 点产生的磁感强度为(µ0 =4π×10-7 N ·A -2)(A) B =0.(B) B = 0.4×10-4 T . (C) B = 0.8×10-4 T. (D) B =1.6×10-4 T . [ ]如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝.当导线中的电流I 为2.0 A 时,测得铁环内的磁感应强度的大小B 为1.0 T ,则可求得铁环的相对磁导率µr 为(真空磁导率µ0 =4π×10-7 T ·m ·A -1)(A) 7.96×102 (B) 3.98×102 (C) 1.99×102 (D) 63.3 [ ]二 填空题 (共34分)8. (本题 3分)(5665) 均匀磁场的磁感强度B v垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为________________.9. (本题 3分)(2554) 真空中有一电流元l I v d ,在由它起始的矢径r v的端点处的磁感强度的数学表达式为_______________.10. (本题 3分)(2570) 一长直螺线管是由直径d= 0.2 mm 的漆包线密绕而成.当它通以I = 0.5 A的电流时,其内部的磁感强度B =______________.(忽略绝缘层厚度)(µ0 =4π×10-7 N/A 2)11. (本题 4分)(0361) 如图所示,一半径为R ,通有电流为I 的圆形回路,位于Oxy 平面内,圆心为O .一带正电荷为q 的粒子,以速度v v沿z 轴向上运动,当带正电荷的粒子恰好通过O 点时,作用于圆形回路上的力为________,作用在带电粒子上的力为________.12. (本题 3分)(2387) 已知面积相等的载流圆线圈与载流正方形线圈的磁矩之比为2∶1,圆线圈在其中心处产生的磁感强度为B 0,那么正方形线圈(边长为a )在磁感强度为B v的均匀外磁场中所受最大磁力矩为______________________.13. (本题 3分)(2096) 在磁场中某点放一很小的试验线圈.若线圈的面积增大一倍,且其中电流也增大一倍,该线圈所受的最大磁力矩将是原来的______________倍.氢原子中电子质量m ,电荷e ,它沿某一圆轨道绕原子核运动,其等效圆电流的磁矩大小p m 与电子轨道运动的动量矩大小L 之比=Lp m________________.15. (本题 5分)(2603) A 、B 、C 为三根共面的长直导线,各通有10 A 的同方向电流,导线间距d =10 cm ,那么每根导线每厘米所受的力的大小为=l F Ad d ______________________, =l F Bd d ______________________, =lF Cd d ______________________. (µ0 =4π×10-7 N/A 2) I16. (本题 3分)(2600) 导线绕成一边长为15 cm 的正方形线框,共 100匝,当它通有I = 5 A 的电流时,线框的磁矩p m = ______________________ .17. (本题 4分)(5133) 在国际单位制中,磁场强度H 的单位是______________,磁导率µ的单位是________________.三 计算题 (共18分)18. (本题 5分)(2666) 平面闭合回路由半径为R 1及R 2 (R 1 > R 2 )的两个同心半圆弧和两个直导线段组成(如图).已知两个直导线段在两半圆弧中心O 处的磁感强度为零,且闭合载流回路在O 处产生的总的磁感强度B 与半径为R 2的半圆弧在O 点产生的磁感强度B 2的关系为B = 2 B 2/3,求R 1与R 2的关系.R 1 R 2 OI19. (本题 5分)(0312) 两长直平行导线,每单位长度的质量为m =0.01 kg/m ,分别用l =0.04 m 长的轻绳,悬挂于天花板上,如截面图所示.当导线通以等值反向的电流时,已知两悬线张开的角度为2θ =10°,求电流I . (tg5°=0.087,µ0 =4π×10-7 N ·A -2)无限长载流直导线弯成如图形状,图中各段共面,其中两段圆弧分别是半径为R 1与R 2的同心半圆弧.(1) 求半圆弧中心O 点的磁感强度B v;(2) 在R 1<R 2的情形下,半径R 1和R 2满足什么样的关系时,O 点的磁感强度B 近似等于距O 点为R 1的半无限长直导线单独存在时在O 点产生的磁感强度.一 选择题 (共21分)1. (本题 3分)(5666) (D)2. (本题 3分)(2658) (D)3. (本题 3分)(2734) (A)4. (本题 3分)(2595) (D)5. (本题 3分)(2657) (A)6. (本题 3分)(2042) (C)7. (本题 3分)(5132) (B)二 填空题 (共34分)8. (本题 3分)(5665) πr 2B 3分9. (本题 3分)(2554) 30d 4d rrl I B vv v ×⋅π=µ 3分10. (本题 3分)(2570) π×10-3 T 3分11. (本题 4分)(0361) 0 2分0 2分3分13. (本题 3分)(2096) 4 3分14. (本题 3分)(2630)me2 3分15. (本题 5分)(2603) 3×10-6N/cm 2分 0 2分3×10-6N/cm 1分16. (本题 3分)(2600) 11.25 Am 2 3分17. (本题 4分)(5133) A/m 2分 T ·m/A 2分三 计算题 (共18分)18. (本题 5分)(2666) 解:由毕奥-萨伐尔定律可得,设半径为R 1的载流半圆弧在O 点产生的磁感强度为B 1,则 1014R IB µ= 1分同理, 2024R IB µ= 1分∵ 21R R > ∴ 21B B < 故磁感强度 12B B B −= 1分204R I µ=104R I µ−206R Iµ=∴ 213R R = 2分19. (本题 5分)(0312) 解:导线每米长的重量为 mg =9.8×10-2 N平衡时两电流间的距离为a = 2l sin θ,绳上张力为T ,两导线间斥力为f ,则: T cos θ = mg 1分 T sin θ = f 1分 =π=)2/(20a I f µ)sin 4/(20θµl I π 1分 =π=0/tg sin 4µθθmg l I 17.2 A 2分20. (本题 8分)(2669) 解:(1) 102010444R IR IR IB π+−=µµµ4)1(012112I R R R R R µπ+−= 4分B v的方向垂直纸面向外 1分(2) 由(1) 结果: 4)(021212IR R R R R B µπ+−π=可以看出,当212)(R R R <<−π, 即1112−π<<−RR R 时 10π4R I B µ≈ 3分。
)2(选择题(5)选择题单元一 质点运动学(一)一、选择题1. 下列两句话是否正确:(1) 质点作直线运动,位置矢量的方向一定不变;【 ⨯ 】(2) 质点作园周运动位置矢量大小一定不变。
【 ⨯ 】 2. 一物体在1秒内沿半径R=1m 的圆周上从A 点运动到B 点,如图所示,则物体的平均速度是: 【 A 】 (A) 大小为2m/s ,方向由A 指向B ; (B) 大小为2m/s ,方向由B 指向A ; (C) 大小为3.14m/s ,方向为A 点切线方向; (D) 大小为3.14m/s ,方向为B 点切线方向。
3. 某质点的运动方程为x=3t-5t 3+6(SI),则该质点作 【 D 】(A) 匀加速直线运动,加速度沿X 轴正方向; (B) 匀加速直线运动,加速度沿X 轴负方向;(C) 变加速直线运动,加速度沿X 轴正方向; (D)变加速直线运动,加速度沿X 轴负方向 4. 一质点作直线运动,某时刻的瞬时速度v=2 m/s ,瞬时加速率a=2 m/s 2则一秒钟后质点的速度:【 D 】(A) 等于零(B) 等于-2m/s (C) 等于2m/s (D) 不能确定。
5. 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向边运动。
设该人以匀速度V 0收绳,绳不伸长、湖水静止,则小船的运动是 【 C 】(A)匀加速运动; (B) 匀减速运动; (C) 变加速运动; (D) 变减速运动; (E) 匀速直线运动。
6. 一质点沿x 轴作直线运动,其v-t 曲线如图所示,如t=0时,质点位于坐标原点,则t=4.5s 时,(7)选择题质点在x 轴上的位置为 【 C 】(A) 0; (B) 5m ; (C) 2m ; (D) -2m ; (E) -5m*7. 某物体的运动规律为t kv dtdv2-=,式中的k 为大于零的常数。
当t=0时,初速为v 0,则速度v 与时间t 的函数关系是 【 C 】(A) 02v kt 21v += (B) 02v kt 21v +-= (C)2v 1kt 21v 1+= (D)2v 1kt 21v 1+-=二、填空题1. )t t (r )t (r ∆+ 与为某质点在不同时刻的位置矢量,)t (v 和)t t (v ∆+为不同时刻的速度矢量,试在两个图中分别画出s ,r ,r ∆∆∆ 和v ,v ∆∆。
第一章质点运动学1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。
(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。
解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线 (2)质点的位置 : 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dt dv-= ⎰⎰-=t vv kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt ev dx tk tx-⎰⎰=000)1(0t k e kv x --=3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = 而落地所用时间 gh2t = 所以 0d -2gh d r v i j t =d d v g j t=- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、 已知质点位矢随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
大学物理习题册计算题及答案三 计算题1. 一质量m = 0.25 kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点。
弹簧的劲度系数k = 25N ·m -1。
(1) 求振动的周期T 和角频率.(2) 如果振幅A =15 cm ,t = 0时物体位于x = 7.5 cm 处,且物体沿x 轴反向运动,求初速v 0及初相. (3) 写出振动的数值表达式。
解:(1) 1s 10/-==m k ω 63.0/2=π=ωT s(2) A = 15 cm ,在 t = 0时,x 0 = 7。
5 cm,v 0 〈 0 由 2020)/(ωv +=x A得 3.1220-=--=x A ωv m/s π=-=-31)/(tg 001x ωφv 或 4/3∵ x 0 > 0 , ∴ π=31φ(3) )3110cos(10152π+⨯=-t x (SI )振动方程为)310cos(1015)cos(2πϕω+⨯=+=-t t A x (SI )﹡2. 在一平板上放一质量为m =2 kg 的物体,平板在竖直方向作简谐振动,其振动周期为T = 21s ,振幅A = 4 cm ,求 (1) 物体对平板的压力的表达式.(2) 平板以多大的振幅振动时,物体才能离开平板。
解:选平板位于正最大位移处时开始计时,平板的振动方程为 t A x π4cos = (SI)t A x ππ4cos 162-=(SI ) (1) 对物体有 x m N mg=- ① t A mg x m mg N ππ4cos 162+=-= (SI) ② 物对板的压力为 t A mg N F ππ4cos 162--=-= (SI )t ππ4cos 28.16.192--= ③(2) 物体脱离平板时必须N = 0,由②式得 04cos 162=+t A mg ππ (SI )A qt 2164cos π-=π 若能脱离必须 14cos ≤t π (SI )即 221021.6)16/(-⨯=≥πg A m三 计算题﹡1。
大学物理 下 复习题 部分计算题 参考答案 答案来自网络 仅供参考1四条平行的载流无限长直导线,垂直通过一边长为a 的正方形顶点,每条导线中的电流都是I ,方向如图,求正方形中心的磁感应强度。
⎪⎭⎫⎝⎛a I πμ02解0222Iaμπ=2.如图所示的长空心柱形导体半径分别为1R 和2R ,导体内载有电流I ,设电流均匀分布在导体的横截面上。
求 (1)导体内部各点的磁感应强度。
(2)导体内壁和外壁上各点的磁感应强度。
解:导体横截面的电流密度为2221()IR R δπ=-在P 点作半径为r 的圆周,作为安培环路。
由0B dl I μ∙=∑⎰得 222201012221()2()I r R B r r R R Rμπμδπ-=-=-即 22012221()2()I r R B r R R μπ-=- 对于导体内壁,1r R =,所以 0B = 对于导体外壁,2r R =,所以 022IB R μπ=3. 如图, 一根无限长直导线,通有电流I , 中部一段弯成圆弧形,求图中O 点磁感应强度的大小。
解:根据磁场叠加原理,O 点的磁感应强度是)A (-∞、)ABC (和)C (∞三段共同产生的。
)A (-∞段在O 点磁感应强度大小:)cos (cos x4IB 2101θθπμ-=将6021πθθ==,,a 213cosa x ==π代入 得到:)231(a 2IB 01-=πμ,方向垂直于纸面向里; )C (∞段在O 点磁感应强度大小:)cos (cos x4IB 2102θθπμ-=将πθππθ=-=216,,a 213cos a x ==π带入得到:)231(a 2I B 02-=πμ,方向垂直向里;)ABC (段在O 点磁感应强度大小:⎰=203a Idl 4B πμ,)a 32(a I 4B 203ππμ=,a6IB 03μ=,方向垂直于纸面向里。
O 点磁感应强度的大小:321B B B B ++=,)231(a I a6IB 00-+=πμμ, 方向垂直于纸面向里。
大学物理练习册 参考解答第12章 真空中的静电场一、选择题1(D),2(C),3(C),4(A),5(C),6(B),7(C),8(D),9(D),10(B), 二、填空题(1). 电场强度和电势,0/q F E=,l E q W U aa⎰⋅==00d /(U 0=0).(2). ()042ε/q q +, q 1、q 2、q 3、q 4 ;(3). 0,λ / (2ε0) ; (4). σR / (2ε0) ; (5). 0 ; (6).⎪⎪⎭⎫ ⎝⎛-π00114r r q ε ;(7). -2×103 V ; (8).⎪⎪⎭⎫ ⎝⎛-πa br r q q 11400ε(9). 0,pE sin α ; (10). ()i a x A2+-.三、计算题1. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L ,它在P 点的场强:()204d d x d L q E -+π=ε()204d x d L L xq -+π=ε总场强为⎰+π=Lx d L xL q E 020)(d 4-ε()d L d q +π=04ε 方向沿x 轴,即杆的延长线方向.2.一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如图所示.试求圆心O 处的电场强度.解:把所有电荷都当作正电荷处理. 在θ处取微小电荷 d q = λd l = 2Q d θ / π它在O 处产生场强θεεd 24d d 20220R QR q E π=π=L Pd EO按θ 角变化,将d E 分解成二个分量:θθεθd sin 2sin d d 202R QE E x π==θθεθd cos 2cos d d 202RQE E y π-=-= 对各分量分别积分,积分时考虑到一半是负电荷⎥⎦⎤⎢⎣⎡-π=⎰⎰πππθθθθε2/2/0202d sin d sin 2R QE x =02022/2/0202d cos d cos 2R QR Q E y εθθθθεππππ-=⎥⎦⎤⎢⎣⎡-π-=⎰⎰ 所以j RQ j E i E E y x202επ-=+= 3. “无限长”均匀带电的半圆柱面,半径为R ,设半圆柱面沿轴线OO'单位长度上的电荷为λ,试求轴线上一点的电场强度.解:设坐标系如图所示.将半圆柱面划分成许多窄条.d l 宽的窄条的电荷线密度为 θλλλd d d π=π=l R取θ位置处的一条,它在轴线上一点产生的场强为θελελd 22d d 020RR E π=π=如图所示. 它在x 、y 轴上的二个分量为:d E x =d E sin θ , d E y =-d E cos θ对各分量分别积分RR E x 02002d sin 2ελθθελππ=π=⎰0d cos 2002=π-=⎰πθθελRE y 场强 i Rj E i E E y x02ελπ=+= 4. 实验表明,在靠近地面处有相当强的电场,电场强度E垂直于地面向下,大小约为100 N/C ;在离地面1.5 km 高的地方,E也是垂直于地面向下的,大小约为25 N/C . (1) 假设地面上各处E都是垂直于地面向下,试计算从地面到此高度大气中电荷的平均体密度;(2) 假设地表面内电场强度为零,且地球表面处的电场强度完全是由均匀分布在地表面的电荷产生,求地面上的电荷面密度.(已知:真空介电常量0ε=8.85×10-12 C 2·N -1·m -2) 解:(1) 设电荷的平均体密度为ρ,取圆柱形高斯面如图(1)(侧面垂直底面,底面∆S 平行地面)上下底面处的 场强分别为E 1和E 2,则通过高斯面的电场强度通量为:⎰⎰E·S d =E 2∆S -E 1∆S =(E 2-E 1) ∆S高斯面S 包围的电荷∑q i =h ∆S ρ由高斯定理(E 2-E 1) ∆S =h ∆S ρ /ε 0∴ () E E h1201-=ερ=4.43×10-13 C/m 3(2) 设地面面电荷密度为σ.由于电荷只分布在地表面,所以电力线终止于地面,取高斯面如图(2)由高斯定理 ⎰⎰E·S d =∑i 01q ε-E ∆S =S ∆σε01∴ σ =-ε 0 E =-8.9×10-10 C/m 3 5. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R ), A 为一常量.试求球体内外的场强分布.解:在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为r r Ar V q d 4d d 2π⋅==ρ在半径为r 的球面内包含的总电荷为403d 4Ar r Ar dV q rVπ=π==⎰⎰ρ (r ≤R)以该球面为高斯面,按高斯定理有 0421/4εAr r E π=π⋅得到()0214/εAr E =, (r ≤R )方向沿径向,A >0时向外, A <0时向里.在球体外作一半径为r 的同心高斯球面,按高斯定理有0422/4εAR r E π=π⋅ 得到 ()20424/r AR E ε=, (r >R )方向沿径向,A >0时向外,A <0时向里.6. 如图所示,一厚为b 的“无限大”带电平板 , 其电荷体密度分布为ρ=kx (0≤x ≤b ),式中k 为一正的常量.求: (1) 平板外两侧任一点P 1和P 2处的电场强度大小;(2) 平板内任一点P 处的电场强度; (3) 场强为零的点在何处?解: (1) 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E .作一柱形高斯面垂直于平面.其底面大小为S ,如图所示. 按高斯定理∑⎰=⋅0ε/d q S E S,即22d d 12εερεkSbx x kSx S SE b b===⎰⎰得到 E = kb 2 / (4ε0) (板外两侧) (2) 过P 点垂直平板作一柱形高斯面,底面为S .设该处场强为E ',如图所示.按高斯定理有(2)()022εεkSb xdx kSS E E x==+'⎰得到 ⎪⎪⎭⎫ ⎝⎛-='22220b x k E ε (0≤x ≤b ) (3) E '=0,必须是0222=-b x , 可得2/b x =7. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为σ.如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零).解:将题中的电荷分布看作为面密度为σ的大平面和面密度为-σ的圆盘叠加的 结果.选x 轴垂直于平面,坐标原点O在圆盘中心,大平面在x 处产生的场强为ixx E 012εσ=圆盘在该处的场强为i x R x x E ⎪⎪⎭⎫ ⎝⎛+--=2202112εσ ∴ i xR x E E E 220212+=+=εσ该点电势为 ()220222d 2x R R xR x x U x+-=+=⎰εσεσ8. 一半径为R 的“无限长”圆柱形带电体,其电荷体密度为ρ =Ar (r ≤R ),式中A 为常量.试求:(1) 圆柱体内、外各点场强大小分布; (2) 选与圆柱轴线的距离为l (l >R ) 处为电势零点,计算圆柱体内、外各点的电势分布.解:(1) 取半径为r 、高为h 的高斯圆柱面(如图所示).面上各点场强大小为E 并垂直于柱面.则穿过该柱面的电场强度通量为:⎰π=⋅SrhE S E 2d为求高斯面内的电荷,r <R 时,取一半径为r ',厚d r '、高h 的圆筒,其电荷为r r Ah V ''π=d 2d 2ρσO R OxP则包围在高斯面内的总电荷为3/2d 2d 32Ahr r r Ah V r Vπ=''π=⎰⎰ρ由高斯定理得 ()033/22εAhr rhE π=π 解出()023/εAr E = (r ≤R )r >R 时,包围在高斯面内总电荷为:3/2d 2d 302AhR r r Ah V RVπ=''π=⎰⎰ρ由高斯定理 ()033/22εAhR rhE π=π 解出 ()r AR E 033/ε= (r >R )(2) 计算电势分布 r ≤R 时 ⎰⎰⎰⋅+==l R Rrl rr r AR r r A r E U d 3d 3d 0320εε ()R l AR r R A ln 3903330εε+-=r >R 时 rlAR r r AR r E U lrl rln 3d 3d 0303εε=⋅==⎰⎰9.一真空二极管,其主要构件是一个半径R 1=5×10-4 m 的圆柱形阴极A 和一个套在阴极外的半径R 2=4.5×10-3 m 的同轴圆筒形阳极B ,如图所示.阳极电势比阴极高300 V ,忽略边缘效应. 求电子刚从阴极射出时所受的电场力.(基本电荷e =1.6×10-19 C)解:与阴极同轴作半径为r (R 1<r <R 2 )的单位长度的圆柱形高斯面,设阴极上电荷线密度为λ.按高斯定理有 2πrE = λ/ ε0得到 E = λ / (2πε0r ) (R 1<r <R 2) 方向沿半径指向轴线.两极之间电势差⎰⎰π-=⋅=-21d 2d 0R R B AB A rrr E U U ελ120ln 2R R ελπ-=得到()120/ln 2R R U U A B -=πελ, 所以 ()rR R U U E A B 1/ln 12⋅-=在阴极表面处电子受电场力的大小为 ()()11211/c R R R U U eR eE F A B ⋅-===4.37×10-14 N 方向沿半径指向阳极.第13章 静电场中的导体和电解质一、选择题1(D),2(D),3(B),4(A),5(C),6(B),7(C),8(B),9(C),10(B) 二、填空题(1). 4.55×105 C ;(2). σ (x ,y ,z )/ε0,与导体表面垂直朝外(σ > 0) 或 与导体表面垂直朝里(σ < 0). (3). εr ,1, εr ; (4). 1/εr ,1/εr ;(5). σ ,σ / ( ε 0ε r ); (6).Rq 04επ ;(7). P ,-P ,0; (8) (1- εr )σ / εr ; (9). 减小, 减小; (10). 增大,增大.三、计算题1. 一接地的"无限大"导体板前垂直放置一"半无限长"均匀带电直线,使该带电直线的一端距板面的距离为d .如图所示,若带电直线上电荷线密度为λ,试求垂足O 点处的感生电荷面密度.解:如图取座标,对导体板内O 点左边的邻近一点,半无限长带电直线产生的场强为: ()⎰∞-=dx i dx E 2004/ελπ()d i 04/ελπ-= 导体板上的感应电荷产生的场强为:()0002/εσi E-='由场强叠加原理和静电平衡条件,该点合场强为零,即()[]()02/4/000=--εσελd π ∴ ()d π2/0λσ-=2.半径为R 1的导体球,带电荷q ,在它外面同心地罩一金属球壳,其内、外半径分别为R 2 = 2 R 1,R 3 = 3 R 1,今在距球心d = 4 R 1处放一电荷为Q 的点电荷,并将球壳接地(如图所示),试求球壳上感生的总电荷.解:应用高斯定理可得导体球与球壳间的场强为 ()304/r r q E επ= (R 1<r <R 2)设大地电势为零,则导体球心O 点电势为: ⎰⎰π==2121200d 4d R R R R r r q r E U ε⎪⎪⎭⎫⎝⎛-π=21114R R qε根据导体静电平衡条件和应用高斯定理可知,球壳内表面上感生电荷应为-q . 设球壳外表面上感生电荷为Q'.以无穷远处为电势零点,根据电势叠加原理,导体球心O 处电势应为: ⎪⎪⎭⎫ ⎝⎛+-'+π=1230041R q R q R Q d Q U ε 假设大地与无穷远处等电势,则上述二种方式所得的O 点电势应相等,由此可得Q '=-3Q / 4 , 故导体壳上感生的总电荷应是-[( 3Q / 4) +q ].3. 一圆柱形电容器,外柱的直径为4 cm ,内柱的直径可以适当选择,若其间充满各向同性的均匀电介质,该介质的击穿电场强度的大小为E 0= 200 KV/cm .试求该电容器可能承受的最高电压. (自然对数的底e = 2.7183)解:设圆柱形电容器单位长度上带有电荷为λ,则电容器两极板之间的场强分布 为 )2/(r E ελπ= 设电容器内外两极板半径分别为r 0,R ,则极板间电压为⎰⎰⋅π==R rRr rr r E U d 2d ελ 0ln 2r Rελπ= 电介质中场强最大处在内柱面上,当这里场强达到E 0时电容器击穿,这时应有 002E r ελπ=,000ln r RE r U = 适当选择r 0的值,可使U 有极大值,即令0)/ln(/d d 0000=-=E r R E r U ,得 e R r /0=,显然有22d d r U < 0,故当 e R r /0= 时电容器可承受最高的电压 e RE U /0max = = 147 kV.4. 如图所示,一圆柱形电容器,内筒半径为R 1,外筒半径为R 2 (R 2<2 R 1),其间充有相对介电常量分别为εr 1和εr 2=εr 1 / 2的两层各向同性均匀电介质,其界面半径为R .若两种介质的击穿电场强度相同,问:(1) 当电压升高时,哪层介质先击穿?(2) 该电容器能承受多高的电压?解:(1) 设内、外筒单位长度带电荷为+λ和-λ.两筒间电位移的大小为 D =λ / (2πr ) 在两层介质中的场强大小分别为E 1 = λ / (2πε0 εr 1r ), E 2 = λ / (2πε0 εr 2r ) 在两层介质中的场强最大处是各层介质的内表面处,即E 1M = λ / (2πε0 εr 1R 1), E 2M = λ / (2πε0 εr 2R ) 可得 E 1M / E 2M = εr 2R / (εr 1R 1) = R / (2R 1)已知 R 1<2 R 1, 可见 E 1M <E 2M ,因此外层介质先击穿. (2) 当内筒上电量达到λM ,使E 2M =E M 时,即被击穿,λM = 2πε0 εr 2RE M 此时.两筒间电压(即最高电压)为:r r r r U R R r M RR r M d 2d 221201012⎰⎰+=επελεπελ⎪⎪⎭⎫ ⎝⎛+=R R R R RE r r M r 22112ln 1ln 1εεε5. 两根平行“无限长”均匀带电直导线,相距为d ,导线半径都是R (R << d ).导线上电荷线密度分别为+λ和-λ.试求该导体组单位长度的电容.解:以左边的导线轴线上一点作原点,x 轴通过两导线并垂直于导线.两导线间x 处的场强为 x E 02ελπ=)(20x d -π+ελ两导线间的电势差为⎰--+π=Rd Rx xd x U d )11(20ελ O R 1R 2Rεr 2εr 1xx R d -R+λO-λ)ln (ln 20R d R R R d ---π=ελRRd -π=ln 0ελ 设导线长为L 的一段上所带电量为Q ,则有L Q /=λ,故单位长度的电容U LU Q C /)/(λ==RR d -π=lnε6.圆柱形电容器是由半径为a 的圆柱形导体和与它同轴的内半径为b (b >a )的导体圆筒构成,其间充满了相对介电常量为εr 的各向同性的均匀电介质.设圆柱导体单位长度带电荷为λ,圆筒上为-λ,忽略边缘效应.求电介质中的电极化强度P 的大小及介质内、外表面上的束缚电荷面密度σˊ.解:由D的高斯定理求出介质内的电位移大小为D = λ / (2πr ) (a <r <b ) 介质内的场强大小为E = D / (ε0εr ) = λ / (2πε0εr r ) (a ≤r ≤b ) 电极化强度 P = ε0χe E ()rr r ελεπ-=21 (a ≤r ≤b )内外表面上束缚电荷面密度a aP ='σcos180°=()ar r ελεπ--21b bP ='σcos 0°=()br r ελεπ-217. 一个圆柱形电容器,内圆柱半径为R 1,外圆柱半径为R 2,长为L (L >>R 2-R 1),两圆筒间充有两层相对介电常量分别为εr 1和εr 2的各向同性均匀电介质,其界面半径为R ,如图所示.设内、外圆筒单位长度上带电荷(即电荷线密度)分别为λ和-λ,求: (1) 电容器的电容. (2) 电容器储存的能量.解:(1) 根据有介质时的高斯定理可得两筒之间的电位移的大小为D = λ / (2πr ) 介质中的场强大小分别为E 1 = D / (ε0εr 1) = λ / (2πε0εr 1r ) E 2 = D / (ε0εr 2) = λ / (2πε0εr 2r )两筒间电势差⎰⎰⋅+⋅=21221d d R RR R r E r E UR R R R r r 220110ln π2ln π2εελεελ+=()()[]21021122/ln /ln r r r r R R R R εεεεελπ+=电容 ()()R R R R L U QC r r r r /ln /ln 22112210εεεεε+π== (2) 电场能量 2102112224ln ln2r r r r R R R RL CQ W εεεεελπ⎪⎪⎭⎫ ⎝⎛+==1r 28. 如图所示,一平板电容器,极板面积为S ,两极板之间距离为d ,其间填有两层厚度相同的各向同性均匀电介质,其介电常量分别为ε1和ε2.当电容器带电荷±Q 时,在维持电荷不变下,将其中介电常量为ε1的介质板抽出,试求外力所作的功.解:可将上下两部分看作两个单独的电容器串联,两电容分别为d S C 112ε= ,d SC 222ε=串联后的等效电容为 ()21212εεεε+=d SC带电荷±Q 时,电容器的电场能量为 ()S d Q C Q W 21212242εεεε+== 将ε1的介质板抽去后,电容器的能量为 ()S d Q W 202024εεεε+='外力作功等于电势能增加,即 ⎪⎪⎭⎫⎝⎛-=-'=∆=102114εεS d Q W W W A .第14章 稳恒电流的磁场一、选择题1(B),2(A),3(D),4(C),5(B),6(D),7(B),8(C),9(D),10(A) 二、填空题(1). 最大磁力矩,磁矩 ; (2). πR 2c ; (3). )4/(0a I μ; (4).RIπ40μ ;(5). μ0i ,沿轴线方向朝右. ; (6). )2/(210R rI πμ, 0 ; (7). 4 ; (8).BIR 2,沿y 轴正向;(9). ωλB R 3π,在图面中向上; (10). 正,负.三 计算题1. 将通有电流I 的导线在同一平面内弯成如图所示的形状,求D 点的磁感强度B的大小.解:其中3/4圆环在D 处的场 )8/(301a I B μ=AB 段在D 处的磁感强度 )221()]4/([02⋅π=b I B μ BC 段在D 处的磁感强度 )221()]4/([03⋅π=b I B μ1B 、2B、3B 方向相同,可知D 处总的B 为)223(40baI B +ππ=μ2. 半径为R 的导体球壳表面流有沿同一绕向均匀分布的面电流,通过垂直于电流方向的每单位长度的电流为K .求球心处的磁感强度大小.解:如图 θd d d KR s K I == 2/32220])cos ()sin [(2)sin (d d θθθμR R R I B += 32302d sin RKR θθμ=θθμd sin 2120K =⎰π=020d sin 21θθμK B ⎰π-=00d )2cos 1(41θθμK π=K 041μ3. 如图两共轴线圈,半径分别为R 1、R 2,电流为I 1、I 2.电流的方向相反,求轴线上相距中点O 为x 处的P 点的磁感强度.解:取x 轴向右,那么有2/322112101])([2x b R I R B ++=μ沿x 轴正方向 2/322222202])([2x b R I R B -+=μ 沿x 轴负方向21B B B -=[2μ=2/32211210])([x b R I R ++μ]])([2/32222220x b R I R -+-μ若B > 0,则B 方向为沿x 轴正方向.若B < 0,则B的方向为沿x 轴负方向.4.一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定 律可得:)(220R r r RIB ≤π=μ因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr r RI Rd 2020⎰π=μπ=40Iμ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为 )(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S B d 2Φr r I R Rd 220⎰π=μ2ln 20π=Iμ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40I μ2ln 20π+Iμ5. 一半径为 4.0 cm 的圆环放在磁场中,磁场的方向对环而言是对称发散的,如图所示.圆环所在处的磁感强度的大小为0.10 T ,磁场的方向与环面法向成60°角.求当圆环中通有电流I =15.8 A 时,圆环所受磁力的大小和方向.解:将电流元I d l 处的B分解为平行线圈平面的B 1和垂直线圈平面的B 2两分量,则 ︒=60sin 1B B ; ︒=60cos 2B B 分别讨论线圈在B 1磁场和B 2磁场中所受的合力F 1与F 2.电流元受B 1的作用力l IB lB I F d 60sin 90sin d d 11︒=︒=方向平行圆环轴线.因为线圈上每一电流元受力方向相同,所以合力⎰=11d F F ⎰π︒=Rl IB 20d 60sin R IB π⋅︒=260sin = 0.34 N ,方向垂直环面向上.电流元受B 2的作用力l IB lB I F d 60cos 90sin d d 22︒=︒= 方向指向线圈平面中心. 由于轴对称,d F 2对整个线圈的合力为零,即02=F . 所以圆环所受合力 34.01==F F N , 方向垂直环面向上.6. 如图所示线框,铜线横截面积S = 2.0 mm 2,其中OA 和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B 中,B 的方向竖直向上.已知铜的密度ρ = 8.9×103kg/m 3,当铜线中的电流I =10 A 时,导线处于平衡状态,AB 段和CD段与竖直方向的夹角α =15°.求磁感强度B 的大小.解:在平衡的情况下,必须满足线框的重力矩与线框所受的磁力矩平衡(对OO '轴而言).重力矩 αραρsin sin 2121gSa a a gS a M +⋅= αρsin 22g Sa =磁力矩 ααcos )21sin(222B Ia BIa M =-π=B 2d l平衡时 21M M =所以 αρsin 22g Sa αcos 2B Ia =31035.9/tg 2-⨯≈=I g S B αρ T7. 半径为R 的半圆线圈ACD 通有电流I 2,置于电流为I 1的无限长直线电流的磁场中,直线电流I 1恰过半圆的直径,两导线相互绝缘.求半圆线圈受到长直线电流I 1的磁力.解:长直导线在周围空间产生的磁场分布为 )2/(10r I B π=μ取xOy 坐标系如图,则在半圆线圈所在处各点产生的磁感强度大小为: θμsin 210R I B π=, 方向垂直纸面向里,式中θ 为场点至圆心的联线与y 轴的夹角.半圆线圈上d l 段线电流所受的力为:l B I B l I F d d d 22=⨯= θθμd sin 2210R R I I π=θsin d d F F y =.根据对称性知: F y =0d =⎰y F θcos d d F F x = ,⎰π=0x x dF F ππ=2210I I μ2210I I μ=∴半圆线圈受I 1的磁力的大小为: 2210I I F μ=,方向:垂直I 1向右.8. 如图所示.一块半导体样品的体积为a ×b ×c .沿c 方向有电流I ,沿厚度a 边方向加有均匀外磁场B (B的方向和样品中电流密度方向垂直).实验得出的数据为 a =0.10 cm 、b =0.35 cm 、c =1.0 cm 、I =1.0 mA 、B =3.0×10-1 T ,沿b 边两侧的电势差U =6.65 mV ,上表面电势高.(1) 问这半导体是p 型(正电荷导电)还是n 型(负电荷导电)?(2) 求载流子浓度n 0 (即单位体积内参加导电的带电粒子数).解:(1) 根椐洛伦兹力公式:若为正电荷导电,则正电荷堆积在上表面,霍耳电场的方向由上指向下,故上表面电势高,可知是p 型半导体。
.运动的描述计算题1、一质点沿X 轴运动,其加速度a=-kv 2,式中k 为常数。
设t=0时,x=0,v=v 0,求该质点的运动方程。
2、一质点作直线运动,加速度为a=2+4t(SI),零时刻时x 0=5m ,v 0=6m/s ,求t=3s 时的速度和位置。
3、一质点沿X 轴运动,坐标与时间的关系为x 0=9+4t-2t 2(SI ),则在最初2s 内的平均速度为多少?2s 末的瞬时速度为多少?加速度为多少?(此题与第4题相似,习题集上角度为45°) 4、以初速度v =201s m -⋅抛出一小球,抛出方向与水平面成幔60°的夹角,求:(1)球轨道最高点的曲率半径1R ;(2)落地处的曲率半径2R . (提示:利用曲率半径与法向加速度之间的关系)解:设小球所作抛物线轨道如题1-4图所示.题1-4图(1)在最高点,o 0160cos v v v x == 21s m 10-⋅==g a n又∵1211ρva n =∴m1010)60cos 20(22111=︒⨯==n a v ρ(2)在落地点,2002==v v 1s m -⋅,而o60cos 2⨯=g a n∴ m8060cos 10)20(22222=︒⨯==n a v ρ8、质量为m 的质点沿x 方向作直线运动,受到阻力F=-k v 2(k 做常数)作用,t=0时质点位于原点,速度为v 0,求(1)t 时刻的速度;(2)求v 作为x 函数的表达式。
10、转动着的飞轮的转动惯量为J ,t=0时角位移为0,角速度为o ω,此后飞轮经制动过程,角加速度与角速度平方成正比,比例系数为k (k 为大于零的常数),(1)求当达到 时,飞轮的制动经历多少时间(2)角位移作为时间的函数。
1-11(教科书上有类似的题目,页数P7,例1.1) 1-12(教课书上原题,页数P15)运动定律与力学中的守恒定律、计算题1. 静水中停着两条质量均为M 的小船,当第一条船中的一个质量为m 的人以水平速度(相对于河岸)跳上第二条船后,两船运动的速度各多大?(忽略水对船的阻力).解:以人与第一条船为系统,因水平方向合外力为零.所以水平方向动量守恒, 则有 Mv 1 +mv =0 v 1 = νMm-再以人与第二条船为系统,因水平方向合外力为零.所以水平方向动量守恒,则有 mv = (m+M )v 2 v 2 =2、一质量为m 的质点在xOy 平面上运动,其位置矢量为j t b i t a rωωsin cos +=求质点的动量及t =0 到ωπ2=t 时间内质点所受的合力的冲量和质点动量的改变量.解: 质点的动量为)cos sin (j t b i t a m v m pωωω+-==将0=t 和ωπ2=t 分别代入上式,得j b m pω=1,i a m p ω-=2,则动量的增量亦即质点所受外力的冲量为 )(12j b i a m p p p I+-=-=∆=ω3、一小船质量为100 kg ,船头到船尾共长3.6m 。
现有质量为50 kg 的人从船尾走到船头时,船头将移动多少距离?水的阻力不考虑。
解:由动量守恒 0=-人人船船v m V M又dtVS t⎰=船船,船人船船人船人人S m M dt V m M dt v s tt ===⎰⎰0,如图,船的长度L S s =+人船所以 3.61.21001150L S m M m ===++船船人即船头相对岸边移动mS 2.1=船4.一质量为m 的球从质量为M 的四分之一的圆弧形槽顶端静止下滑,圆弧槽轨道半径为R ,如图,忽略各种摩擦,求小球m 滑到底离开弧形槽时的速度。
νmM m+题2-4图2-4 m 从M 上下滑的过程中,机械能守恒,以m ,M 地球为系统 ,以最低点为重力势能零点,则有mgR=222121MV mv + 又下滑过程,动量守恒,以m,M 为系统则在m 脱离M 瞬间,水平方向有mv-MV=0联立,以上两式,得 v=()M m MgR+25.为教科书上原题,页数P38,例2.75.质量为M 的木块具有四分之一的圆弧形槽(半径为R),如图2.6,质量为m 的球从其顶端自由滑下,忽略各种摩擦,求球离开木块时的速度。
2201122MV mu mgR MV mu -=⎧⎪⎨=+⎪⎩2MgRu M m ∴=+6、如图2.7所示,A 、B 两木块,质量各为mA 与mB ,由弹簧连接,开始静止于水平光滑的桌面上,现将两木块拉开(弹簧被拉长),然后由静止释放,求两木块的动能之比。
动量守恒定律7.为教科书上原题,页数P37,例2.58、质量为m 的小球沿半球形碗的光滑的内面以角速度ω在一水平面内作匀速圆周运动,碗的半径为R ,求该小球作匀速圆周运动的水平面离碗底的高度。
ABm a m B 图2.7RRMm 图2.69、一质量为45Kg 的物体,由地面以初速度60m/s ,竖直向上发射,空气的阻力为F=-kv ,其中k=0.03,力F 的单位是N ,速率v 的单位是m/s 。
求物体发射到最大高度所需的时间。
题2-10图10. 平板中央开一小孔,质量为m 的小球用细线系住,细线穿过小孔后挂一质量为1M 的重物.小球作匀速圆周运动,当半径为r 时重物达到平衡.今在1M 的下方再挂一质量为2M 的物体,如题2-24图.试问这时小球作匀速圆周运动的角速度ω'和半径r '为多少? 解: 在只挂重物时1M ,小球作圆周运动的向心力为g M 1,即201ωmr g M =①挂上2M 后,则有221)(ω''=+r m g M M ②重力对圆心的力矩为零,故小球对圆心的角动量守恒. 即 v m r mv r ''=00ωω''=⇒2020r r ③联立①、②、③得211213212101010)(r M M M g m M M r M M M mr g M mr gM ⋅+='+='+='=ωωω11.为教科书上原题,页数P56,例2.163.刚体力学2、 (第2题与该题类似)飞轮的质量m =60kg ,半径R =0.25m ,绕其水平中心轴O 转动,转速为900rev ·min -1.现利用一制动的闸杆,在闸杆的一端加一竖直方向的制动力F ,可使飞轮减速.已知闸杆的尺寸如题2-25图所示,闸瓦与飞轮之间的摩擦系数μ=0.4,飞轮的转动惯量可按匀质圆盘计算.试求:(1)设F =100 N ,问可使飞轮在多长时间内停止转动?在这段时间里飞轮转了几转? (2)如果在2s 内飞轮转速减少一半,需加多大的力F ?解: (1)先作闸杆和飞轮的受力分析图(如图(b)).图中N 、N '是正压力,r F 、r F '是摩擦力,x F 和y F 是杆在A 点转轴处所受支承力,R 是轮的重力,P 是轮在O 轴处所受支承力.题2-25图(a )题2-25图(b)杆处于静止状态,所以对A 点的合力矩应为零,设闸瓦厚度不计,则有F l l l N l N l l F 1211210)(+='='-+对飞轮,按转动定律有I R F r /-=β,式中负号表示β与角速度ω方向相反. ∵ N F r μ= N N '=∴F l l l N F r 121+='=μμ又∵ ,212mR I =∴ FmRl l l I R F r 121)(2+-=-=μβ ① 以N 100=F 等代入上式,得2s rad 34010050.025.060)75.050.0(40.02-⋅-=⨯⨯⨯+⨯⨯-=β由此可算出自施加制动闸开始到飞轮停止转动的时间为s 06.74060329000=⨯⨯⨯=-=πβωt这段时间内飞轮的角位移为rad 21.53)49(340214960290021220ππππβωφ⨯=⨯⨯-⨯⨯=+=t t可知在这段时间里,飞轮转了1.53转.(2)10s rad 602900-⋅⨯=πω,要求飞轮转速在2=t s 内减少一半,可知20s rad 21522-⋅-=-=-=πωωωβtt用上面式(1)所示的关系,可求出所需的制动力为N l l mRl F 1772)75.050.0(40.021550.025.060)(2211=⨯+⨯⨯⨯⨯⨯=+-=πμβ4、转动着的飞轮的转动惯量为I ,在t=0时角速度为o ω,此后飞轮经制动过程,阻力矩可写成M=-K 2ω (K 为大于零的常数),当13oωω=时,飞轮的角加速度是多少?从开始制动到现在经历的时间是多少?5.图2.8所示,质量为m ,长为的均匀细棒,可绕过其一端的水平轴o 转动,现将棒拉至水平位置(OA`)后放手,棒下摆到竖直位置时,与静止放置在水平面A 处的质量为M 的物块作完全弹性碰撞,使物体在水平面上滑动,若物体与水平面之间的摩擦系数为μ,试问M 能滑多远?(213I m =).OMl图2.82222'21261133102l mg ml ml ml lMv Mgs Mv ωωωμ⎧=⎪⎪⎪=+⎨⎪⎪-=-⎪⎩26(3)m l s m M v=+题3-6图6. 如题3-6图所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆于水平位置由静止开始摆下.求: (1)初始时刻的角加速度; (2)杆转过θ角时的角速度. 解: (1)由转动定律,有β)31(212ml mg=∴l g 23=β (2)由机械能守恒定律,有22)31(21sin 2ωθml l mg =∴ l g θωsin 3=7、如图3-7,滑轮的转动惯量和半径分别为I 、R ,弹簧的劲度系数为K ,重物的质量为m ,当滑轮——重物系统从静止开始启动,开始弹簧无伸长,且摩擦忽略,则(1)物体能沿斜面下滑多远?(2)当物体沿斜面下滑距离s 时(在弹性限度内)的速度是多大?如图所示,物体的质量为m ,放在光滑的斜面上,斜面与水平面的夹角为θ,弹簧的劲度系数为K ,滑轮的转动惯量为I ,半径为R 。
先把物体托住,使弹簧维持原长,然后由静止释放,试证明物体作简谐振动,并求其周期。
①设弹簧伸长 后受力平衡为沿斜面x 轴原点且 k mg =θsin (2分) ②m 在任意x 处,由牛二,转动定律及受弹力T2可列方程:ββθR a x k T I R T R T ma T mg =+==-=-及)(sin 2211(4分)mθI.Rk图3-7③0222=++x R Im k dt x d 得证 (2分) ④k R Im T 222+==πωπ8、如图3-8,质量M=16kg 的实心圆柱体,半径R=0.15m ,只能绕过中心O 的水平固定轴转动,一轻绳的一端绕于圆柱上,另一端系一质量为m=8kg 的物体,忽略轴处摩擦及其它阻力,求:(1)绳的张力(圆柱体的转动惯量212I MR =); (2)由静止开始经2S 后物体下落的距离。