18.2.2菱形的性质与判定练习题
- 格式:doc
- 大小:412.00 KB
- 文档页数:6
菱形的性质一、菱形的认识:1、定义:有一组边相等的形叫做菱形2、(1)打开后的四边形是(2)菱形是不是轴对称图形?若是那有几条对称轴?(3)菱形的条边都。
(4)菱形的两条对角线,并且每一条对角线。
二、例题讲解:如图,菱形花坛ABCD的边长为20m,∠ABC=60°,沿着菱形的对角线修建了两条小路AC和BD,求两条小路的长(精确到0.01)和花坛的面积(精确到0.1)练习:1、菱形是轴对称图形,对称轴共有()A、1条B、2条C、3条D、4条2、下列性质中,菱形所具有而平行四边形不一定具有的是()A、对角线互相平分B、对角线相等C、邻角互补D、邻边相等3、下面性质中菱形有而矩形没有的是()A、邻角互补B、内角和为360°C、对角线相等D、对角线互相垂直4、在菱形ABCD中,不一定成立的是()A、四边形ABCD是平行四边形B、AC⊥BDC、△ABD是等边三角形D、∠CAB=∠CAD5、菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=60°,OC=2,则点B的坐标为。
6、四边形ABCD是菱形,点O是两条对角线的交点,AB=5cm,AO=4cm,求两条对角线AC和BD的长。
7、如图菱形的两条对角线的长分别是6cm 和8cm ,求菱形的周长和面积。
8、如图,已知菱形ABCD 中,AE ⊥BC 于E 且BE=CE ,AB=2.(1)求证:△ABC 是等边三角形 (2)求对角线BD 的长及菱形ABCD 的面积。
9、如右图,在菱形ABCD 中,E ,F 分别是CB ,CD 上的点,且BE=DF.求证:①△ABE ≌△ADF ;②∠AEF=∠AFE.10、如图,菱形ABCD 中,点E 、F 分别是BC 、CD 上的点,∠B=∠EAF=60°,∠BAE=20°,求∠CEF 的度数。
F ED A B11、如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=4.求:(1)∠ABC的度数;(2)菱形ABCD的面积.。
人教版八年级数学下册18.2.2.1 菱形的性质同步练习一、选择题(共10小题,3*10=30)1.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直2.(2019·贵阳)如图,菱形ABCD的周长是4 cm,∠ABC=60°,那么这个菱形的对角线AC的长是( ) A.1 cm B.2 cm C.3 cm D.4 cm3. 如图,在△ABC中,AB≠AC,D是BC上一点,DE∥AC交AB于点E,DF∥AB交AC于点F,要使四边形AEDF是菱形,只需添加的条件是()A.AD⊥BC B.∠BAD=∠CAD C.BD=DC D.AD=BD4. 如图,在菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是()A.4 3 B.3 3 C.2 3 D. 35. 如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点为A′. 当CA′的长度最小时,CQ的长为()A.5 B.7 C.8 D. 106.如图,在菱形ABCD中,对角线AC,BD相交于点O,BD=6,AC=8,直线OE⊥AB交CD于点F,则AE的长为()A.4B.4.8 C.2.4D.3.27. 已知菱形的周长为4 5 ,两条对角线的和为6,则菱形的面积为( )A .2 B. 5 C .3 D .48. 如图,菱形ABCD 的对角线AC ,BD 交于点O ,AC =4,BD =16,将△ABO 沿点A 到点C 的方向平移,得到△A′B′O′.当点A′与点C 重合时,点A 与点B′之间的距离为( )A .6B .8C .10D .129. 如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于H ,则DH 等于( )A .245B .125C .5D .410.如图,在周长为12的菱形ABCD 中,AE =1,AF =2,若P 为对角线BD 上一动点,则EP +FP 的最小值为( )A .1B .2C .3D .4二.填空题(共8小题,3*8=24)11. 菱形的两条对角线长分别是5和12,则此菱形的边长是_______,面积是_______.12.在菱形ABCD 中,对角线AC 、BD 相交于点O ,若AB =7 cm ,则周长是________cm.13. 如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,若∠ABC =110°,则∠BAD =________°, ∠ABD =________°,∠BCA =________°.14.如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为_______.15.如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠ABC=60°,则BD的长为________.16.如图,四边形ABCD是菱形,O是两条对角线的交点,过点O的三条直线将菱形分成阴影和空白部分,当菱形的两条对角线的长分别为6和8时,阴影部分的面积为_______.17. 如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D在坐标轴上,则菱形ABCD的周长等于________.18. 如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD 的周长为________.三.解答题(共7小题,46分)19.(6分) 如图,已知菱形的周长为40 cm,两邻角度数之比为1∶2.(1)求菱形的两条对角线的长;(2)求菱形的面积.20.(6分) 如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.21.(6分) 如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE,若∠E=50°,求∠BAO的大小.22.(6分) 已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.23.(6分) 如图,在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.求证:(1)△ABF≌△DAE;(2)DE=BF+EF.24.(8分) 如图,菱形ABCD的两条对角线相交于点O,∠DAC=30°,BD=12(1)求∠ABC的度数;(2)求菱形ABCD的面积.25.(8分) 在菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上.(1)如图①,若E是BC的中点,∠AEF=60°,求证:BE=DF;(2)如图②,若∠EAF=60°,求证:△AEF是等边三角形.参考答案1-5DABBB 6-10 DDCAC11. 6.5,3012. 2813. 70,55,3514. 24 15. 2 316. 1217.4518.2419. 解:(1) ∵四边形ABCD 是菱形,两邻角度数之比为1∶2, ∴∠ABC=∠BAC=60°又∵菱形的周长为40 cm ,AC =AB=10 cm ,BD =2BO=2×AB 2-AO 2 =2×102-52 =10 3 cm(2)S 菱形=12BD·AC =50 3 cm 2 20. 解:∵DE ∥AC ,CE ∥BD ,∴四边形OCED 是平行四边形, ∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠DOC =90°,∴四边形OCED 是矩形,∴OE =CD ,∵四边形ABCD 是菱形,∴CD =BC ,∴OE =BC21. 解:菱形ABCD 中,AB =BC ,∵BE =AB ,∴BC =BE ,∴∠BCE =∠E =50°,∴∠CBE =180°-50°×2=80°,∵AD ∥BC ,∴∠BAD =∠CBE =80°,∴∠BAO =12×80°=40°. 22. 证明:∵四边形ABCD 是菱形,∴AD =CD ,∵点E 、F 分别为边CD 、AD 的中点,∴AD =2DF ,CD =2DE ,∴DE =DF ,在△ADE 和△CDF 中,⎩⎪⎨⎪⎧AD =CD ,∠ADE =∠CDF ,DE =DF ,∴△ADE ≌△CDF(SAS).23. 证明:(1)∵四边形ABCD 是菱形,∴AB =AD ,AD ∥BC , ∴∠BPA =∠DAE ,∵∠ABC =∠AED ,∴∠BAF =∠ADE ,∵∠ABF =∠BPF ,∠BPA =∠DAE ,∴∠ABF =∠DAE , ∵AB =DA ,∴△ABF ≌△DAE(ASA)(2)∵△ABF ≌△DAE ,∴AE =BF ,DE =AF ,∵AF =AE +EF =BF +EF ,∴DE =BF +EF24. 解:(1)∵菱形ABCD 的两条对角线相交于点O ,∠DAC =30°, ∴∠BAD =2∠DAC =60°,∵AD ∥BC ,∴∠ABC =180°-60°=120°;(2)∵菱形ABCD 的两条对角线相交于点O ,BD =12,∴AC ⊥BD ,DO =12BD =6, 又∵∠DAC =30°,∴AD =2DO =12,∴Rt △AOD 中,AO =122-62=63,∴AC =2AO =123,∴菱形ABCD 的面积=12×AC×BD =12×12×123=72 3. 25. 解:(1)连接AC ,∵四边形ABCD 是菱形,∴AB =BC ,∵∠B =60°,∴△ABC 是等边三角形,∵点E 为BC 的中点,∴AE ⊥BC ,∴∠AEC =90°,∵∠AEF =60°,∴∠FEC =90°-60°=30°,∵∠C =180°-∠B =120°,∠C +∠EFC +∠FEC =180°, ∴∠EFC =30°,∴∠FEC =∠EFC ,∴CE =CF ,∵BC =CD ,∴BC -CE =CD -CF ,即BE =DF(2)连接AC ,由(1)得△ABC 是等边三角形,∴AB =AC , ∵∠BAE +∠EAC =60°,∠EAF =∠CAF +∠EAC =60°,∴∠BAE =∠CAF ,∵四边形ABCD 是菱形,∠B =60°,∴∠ACF =12∠BCD =∠B =60°, ∴△ABE ≌△ACF(ASA),∴AE =AF , 又∵∠EAF =60°,∴△AEF 是等边三角形。
18.2.2菱形同步习题一.选择题1.菱形ABCD的周长为40cm,它的一条对角线长10cm,则它的另一条对角线长为()A.10cm B.10cm C.5cm D.5cm2.已知平行四边形ABCD,AC,BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为菱形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 3.菱形不具备的性质是()A.对角线一定相等B.对角线互相垂直C.是轴对称图形D.是中心对称图形4.如图,菱形ABCD中,∠D=135°,BE⊥CD于E,交AC于F,FG⊥BC于G.若△BFG的周长为4,则菱形ABCD的面积为()A.4B.8C.16D.165.如图,在菱形ABCD中,E、F分别是AB、CD上的点,且AE=CF,EF与AC相交于点O,连接BO.若∠DAC=36°,则∠OBC的度数为()A.36°B.54°C.64°D.72°6.如图,在菱形ABCD中,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,若∠BAD=70°,则∠CFD等于()A.50°B.60°C.70°D.80°7.如图,菱形ABCD中,在边AD、BC上分别截取DM=BN,连接MN交AC于点O,连接DO,若∠BAC=20°,则∠ODC的度数为()A.20°B.40°C.50°D.70°8.如图,在菱形ABCD中,AB=5,对角线BD=8,过BD的中点O作AD的垂线,交AD 于点E,交BC于点F,连接DF,则DF的长度为()A.B.C.D.9.如图平行四边形ABCD中,∠A=110°,AD=DC.E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠PEF=()A.35°B.45°C.50°D.55°10.如图,在菱形ABCD中,∠D=120°,AB=2,点E在边BC上,若BE=2EC,则点B 到AE的距离是()A.B.C.D.二.填空题11.如图,在▱ABCD中,点E、F分别在边AD,BC上,且DE=BF,则再添加一个条件:可判定四边形AFCE是菱形.(只添加一个条件)12.在菱形ABCD中,两条对角线相交于点O,且AB=10cm,AC=12cm.则菱形ABCD 的面积是cm2.13.如图,菱形ABCD中,AC和BD交于点O,过点D作DE⊥BC于点E,连接OE,若∠BAC=25°,则∠OED的度数是.14.如图,在菱形ABCD中,AB=5,AC=6.过点D作BA的垂线,交BA的延长线于点E,则线段DE的长为.15.如图,菱形ABCD中,EF是AB的垂直平分线,∠FBC=80°,则∠ACB=°.三.解答题16.如图,在▱ABCD中,∠ABC=60°,BC=2AB,点E、F分别是BC、DA的中点.(1)求证:四边形AECF是菱形;(2)若AB=2,求BD的长.17.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC、BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E.(1)求证:四边形ABCD是菱形;(2)若AB=5,BD=6,求CE的长.18.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC,且2DE=AC,连接AE交OD于点F,连接DE、OE.(1)求证:AF=EF;(2)已知AB=2,若AB=2DE,求AE的长.参考答案一.选择题1.解:菱形ABCD如右图所示,∵菱形ABCD的周长为40cm,∴AB=BC=CD=AD=10cm;∵对角线BD=10cm,∴BO=DO=5cm;在Rt△ADO中,AO===.∴AD=2AO=.故选:A.2.解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACB,∵∠BAC=∠DAC,∴∠BAC=∠ACB,∴AB=BC,∴四边形ABCD是菱形(邻边相等的平行四边形是菱形)故选:B.3.解:根据菱形的性质可知:菱形的对角线互相垂直平分;菱形既是轴对称图形,又是中心对称图形.进行的对角线相等,而菱形不具备对角线一定相等.故选:A.4.解:∵菱形ABCD中,∠D=135°,∴∠BCD=45°,∵BE⊥CD于E,FG⊥BC于G,∴△BFG与△BEC是等腰直角三角形,∵∠GCF=∠ECF,∠CGF=∠CEF=90°,CF=CF,∴△CGF≌△CEF(AAS),∴FG=FE,CG=CE,设BG=FG=EF=x,∴BF=x,∵△BFG的周长为4,∴x+x+x=4,∴x=4﹣2,∴BE=2,∴BC=BE=4,∴菱形ABCD的面积=4×2=8,故选:B.5.解:∵四边形ABCD是菱形,∴AB=BC=AD=CD,AB∥CD,AD∥BC,∴∠EAO=∠FCO,∠DAC=∠ACB=36°,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴AO=CO,又∵AB=BC,∴BO⊥AC,∴∠OBC=90°﹣∠ACB=54°,故选:B.6.解:连接BF,如图所示:∵四边形ABCD是菱形,∴∠BAC=∠BAD=×70°=35°,∠BCF=∠DCF=∠BAC,BC=DC,∠ABC=180°﹣∠BAD=180°﹣70°=110°,∵EF是线段AB的垂直平分线,∴AF=BF,∴∠DCF=∠ABF=∠BAC=35°,∴∠CBF=∠ABC﹣∠ABF=110°﹣35°=75°,在△BCF和△DCF中,,∴△BCF≌△DCF(SAS),∴∠CDF=∠CBF=75°,∴∠CFD=180°﹣∠CDF﹣∠DCF=180°﹣75°﹣35°=70°,故选:C.7.解:∵四边形ABCD是菱形,∴AB∥CD,∴∠OAM=∠OCN,在△AOM和△CON中,,∴△AOM≌△CON(AAS),∴OA=OC,∵四边形ABCD是菱形,∴点O为BD与AC的交点,∵∠ACD=∠BAC=20°,∴∠ODC=90°﹣∠ACD=70°.故选:D.8.解:连接AC,如图:∵四边形ABCD是菱形,O是BD的中点,∴OD=OB=BD=4,AD=AB=5,AC⊥BD,∴OA==3,∵OE⊥AD,∴△AOD的面积=AD×OE=OA×OD,∴OE===,同理:OF=,∴EF=OE+OF=,∵DE===,∵EF⊥AD,∴DF===;故选:D.9.解:∵平行四边形ABCD中,AD=DC,∴四边形ABCD为菱形,∴AB=BC,∠ABC=180°﹣∠A=70°,∵E,F分别为AB,BC的中点,∴BE=BF,∠BEF=∠BFE=55°,∵PE⊥AB,∴∠PEB=90°∴∠PEF=90°﹣55°=35°,故选:A.10.解:过点B作BH⊥AE于点H,过点E作EF⊥AB交AB的延长线于点F,∵菱形ABCD中,AB=2,∴BC=2,∵BE=2EC,∴BE=,CE=,∵∠D=120°,∴∠ABE=120°,∴∠EBF=60°,∴BF=BE=,EF=,∴AF=AB+BF=2+=,∴AE===,∵S△ABE=AB•EF,∴BH===.故选:A.二.填空题11.解:添加AE=AF,理由:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,又∵DE=BF,∴AE=FC.∴四边形AFCE是平行四边形.又∵AE=AF,∴四边形AFCE是菱形.故答案为:AE=AF.12.解:∵四边形ABCD为菱形,∴AC⊥BD,OA=OC=AC=6cm,OB=OD,∴OB===8(cm),∴BD=2OB=16cm,∴S菱形ABCD=AC•BD=×12×16=96(cm2).故答案为:96.13.解:∵四边形ABCD是菱形,∠BAC=25°,∴∠ABC=180°﹣25°﹣25°=130°,∴O为BD中点,∠DBE=∠ABC=65°.∵DE⊥BC,在Rt△BDE中,OE=BE=OD,∴∠OEB=∠OBE=65°.∴∠OED=90°﹣65°=25°.故答案为:25°.14.解:∵四边形ABCD是菱形,AB=5,AC=6.∴AB=BC=CD=DA=5,AC⊥BD,OA=OC=3,∴OB===4,∴BD=2OB=8,∵,∴=5DE,解得,DE=,故答案为:.15.解:∵四边形ABCD是菱形,∴AD∥BC,∠DAC=∠BAC,∴∠AFB=∠FBC=80°,∠DAC=∠ACB,∵EF是AB的垂直平分线,∴AF=BF,∴∠F AB=∠FBA=(180°﹣∠AFB)=50°,∴∠DAC=∠BAC=25°,∴∠ACB=25°,故答案为:25.三.解答题16.(1)证明:∵四边形ABCD是平行四边形,∴BC∥AD,BC=AD.∵E,F分别是BC,AD的中点∴BE=CE=BC,AF=AD,∴CE=AF,CE∥AF,∴四边形AECF是平行四边形,∵BC=2AB,∴AB=BE,∵∠ABC=60°,∴△ABE是等边三角形,∴AE=BE=CE,∴平行四边形AECF是菱形;(2)解:作BG⊥AD于G,如图所示:则∠ABG=90°﹣∠ABC=30°,∴AG=AB=1,BG=AG=,∵AD=BC=2AB=4,∴DG=AG+AD=5,∴BD===2.17.(1)证明:∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,OB=OD=BD=3,∴OA===4,∴AC=2OA=8,∴菱形ABCD的面积=AC×BD=×8×6=24,∵CE⊥AB,∴菱形ABCD的面积=AB×CE=5CE=24,∴CE=.18.(1)证明:∵四边形ABCD是菱形,∴OA=OC=AC,∵2DE=AC,∴DE=OA,又∵DE∥AC,∴四边形OADE是平行四边形,∴AF=EF;(2)解:连接CE,∵DE∥OC,DE=OC,∴四边形OCED是平行四边形,又∵菱形ABCD,∴AC⊥BD,∴四边形OCED是矩形,∴∠OCE=90°,又∵AB=2DE=AC,∴△ABC为等边三角形,∵在菱形ABCD中,∠ABC=60°,∴AC=AB=2,AO=AC=1,∴在矩形OCED中,CE=OD==,∴在Rt△ACE中,AE==.。
2020春人教版八下数学18.2.2菱形同步课堂练习(学生版)第1课时菱形的性质01基础题知识点1菱形的性质1.(2018·十堰)菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形2.(2019·河北)如图,在菱形ABCD中,∠D=150°,则∠1=()A.30°B.25°C.20°D.15°3.(2019·贵阳)如图,菱形ABCD的周长是4 cm,∠ABC=60°,那么这个菱形的对角线AC的长是() A.1 cm B.2 cmC.3 cm D.4 cm4.(2019·呼和浩特)已知菱形的边长为3,较短的一条对角线的长为2,则该菱形较长的一条对角线的长为() A.2 2 B.2 5 C.4 2 D.2105.(2019·赤峰)如图,菱形ABCD周长为20,对角线AC,BD相交于点O,E是CD的中点,则OE的长是()A.2.5B.3C.4D.56.(2019·衢州)已知:如图,在菱形ABCD中,点E,F分别在边BC,CD上,且BE=DF,连接AE,AF.求证:AE=AF.知识点2菱形的面积7.(2018·徐州)若菱形两条对角线的长分别是6 cm和8 cm,则其面积为cm2.8.(教材P56例3变式)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且∠ACD=30°,BD=4,求菱形ABCD的面积.易错点点的位置不确定导致漏解9.四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上.若OE=3,则CE的长为.02中档题10.(2019·泸州)一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为()A.8 B.12 C.16 D.3211.如图,在菱形ABCD中,点M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°12.(2019·绵阳)如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()A.(2,3) B.(3,2) C.(3,3) D.(3,3)13.(2019·广西)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO=4,S菱形ABCD=24,则AH=.14.(2019·百色)如图,在菱形ABCD中,作BE⊥AD,CF⊥AB,分别交AD,AB的延长线于点E,F.(1)求证:AE=BF;(2)若点E恰好是AD的中点,AB=2,求BD的值.15.如图,在菱形ABCD中,对角线AC,BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)求证:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.03综合题16.如图,已知菱形ABCD的周长为16,面积为83,E为AB的中点.若P为对角线BD上一动点,则EP +AP的最小值为.17.(2019·宁波)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.对角线互相垂直的四边形的面积我们已经知道:菱形的面积等于对角线乘积的一半,那么,如果是对角线互相垂直的任意一个四边形,还有这样的结论吗?如图,四边形ABCD的对角线AC,BD互相垂直,其中对角线BD长为15,AC长为20,垂足为O,求四边形ABCD的面积.(请写出求解过程)结论:对角线互相垂直的四边形的面积等于.第2课时菱形的判定01基础题知识点1有一组邻边相等的平行四边形是菱形1.如图,若要使▱ABCD成为菱形,则可添加的条件是()A.AB=CDB.AD=BCC.AB=BCD.AC=BD2.如图,在△ABC中,AD是∠BAC的平分线,DE∥AC交AB于点E,DF∥AB交AC于点F,求证:四边形AEDF是菱形.知识点2对角线互相垂直的平行四边形是菱形3.如图,四边形ABCD的对角线互相垂直,且满足AO=CO,请你添加一个适当的条件,使四边形ABCD成为菱形.(只需添加一个即可)4.(2018·遂宁)如图,在▱ABCD中,点E,F分别是AD,BC上的点,且DE=BF,AC⊥EF.求证:四边形AECF 是菱形.知识点3四条边相等的四边形是菱形5.(2019·兰州)如图,AC=8,分别以A,C为圆心,以5为半径作弧,两条弧分别相交于点B,D.依次连接A,B,C,D,连接BD交AC于点O.(1)判断四边形ABCD的形状,并说明理由;(2)求BD的长.6.如图,在四边形ABCD中,AC=BD,E,F,G,H依次是AB,BC,CD,DA的中点.求证:四边形EFGH 是菱形.易错点对菱形的判定方法掌握不透导致出错7.下列命题:①四边都相等的四边形是菱形;②两组邻边分别相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形;④对角线相等的四边形是菱形;⑤一条对角线平分一组对角的平行四边形是菱形.其中正确的是.(填序号)02中档题8.(2019·宁夏)如图,四边形ABCD的两条对角线相交于点O,且互相平分.添加下列条件,仍不能判定四边形ABCD为菱形的是()A.AC⊥BD B.AB=ADC.AC=BD D.∠ABD=∠CBD9.(2019·永州)如图,四边形ABCD的对角线相交于点O,且点O是BD的中点.若AB=AD=5,BD=8,∠ABD =∠CDB,则四边形ABCD的面积为()A.40 B.24 C.20 D.1510.如图,在四边形ABCD中,AB=AD,BC=DC,AC,BD相交于点O,点E在AO上,且OE=OC.(1)求证:∠1=∠2;(2)连接BE,DE,判断四边形BCDE的形状,并说明理由.11.(2019·宿迁)如图,矩形ABCD中,AB=4,BC=2,点E,F分别在AB,CD上,且BE=DF=3 2.(1)求证:四边形AECF是菱形;(2)求线段EF的长.03综合题12.(2019·滨州)如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.2020春人教版八下数学18.2.2菱形同步课堂练习(教师版)第1课时菱形的性质01基础题知识点1菱形的性质1.(2018·十堰)菱形不具备的性质是(B)A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形2.(2019·河北)如图,在菱形ABCD中,∠D=150°,则∠1=(D)A.30°B.25°C.20°D.15°3.(2019·贵阳)如图,菱形ABCD的周长是4 cm,∠ABC=60°,那么这个菱形的对角线AC的长是(A)A.1 cm B.2 cmC.3 cm D.4 cm4.(2019·呼和浩特)已知菱形的边长为3,较短的一条对角线的长为2,则该菱形较长的一条对角线的长为(C) A.2 2 B.2 5 C.4 2 D.2105.(2019·赤峰)如图,菱形ABCD周长为20,对角线AC,BD相交于点O,E是CD的中点,则OE的长是(A)A.2.5B.3C.4D.56.(2019·衢州)已知:如图,在菱形ABCD中,点E,F分别在边BC,CD上,且BE=DF,连接AE,AF.求证:AE=AF.证明:∵四边形ABCD是菱形,∴AB=AD,∠B=∠D.∵BE=DF,∴△ABE≌△ADF(SAS).∴AE=AF.知识点2菱形的面积7.(2018·徐州)若菱形两条对角线的长分别是6 cm和8 cm,则其面积为24cm2.8.(教材P56例3变式)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且∠ACD=30°,BD=4,求菱形ABCD的面积.解:∵四边形ABCD 是菱形,BD =4,∴OA =OC =12AC ,OB =OD =12BD =2,AC ⊥BD.∵在Rt △OCD 中,∠OCD =30°, ∴CD =2OD =4,OC =CD 2-OD 2=42-22=2 3.∴AC =2OC =4 3.∴S 菱形ABCD =12AC·BD =12×43×4=8 3.易错点 点的位置不确定导致漏解9.四边形ABCD 是菱形,∠BAD =60°,AB =6,对角线AC 与BD 相交于点O ,点E 在AC 上.若OE =3,则CE 的长为02 中档题 10.(2019·泸州)一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为(C ) A .8 B .12 C .16 D .3211.如图,在菱形ABCD 中,点M ,N 分别在AB ,CD 上,且AM =CN ,MN 与AC 交于点O ,连接BO.若∠DAC =28°,则∠OBC 的度数为(C )A .28°B .52°C .62°D .72°12.(2019·绵阳)如图,在平面直角坐标系中,四边形OABC 为菱形,O(0,0),A(4,0),∠AOC =60°,则对角线交点E 的坐标为(D )A .(2,3)B .(3,2)C .(3,3)D .(3,3)13.(2019·广西)如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,过点A 作AH ⊥BC 于点H ,已知BO =4,S 菱形ABCD =24,则AH =245.14.(2019·百色)如图,在菱形ABCD 中,作BE ⊥AD ,CF ⊥AB ,分别交AD ,AB 的延长线于点E ,F. (1)求证:AE =BF ;(2)若点E 恰好是AD 的中点,AB =2,求BD 的值.解:(1)证明:∵四边形ABCD 是菱形, ∴AB =BC ,AD ∥BC.∴∠A=∠CBF.∵BE⊥AD,CF⊥AB,∴∠AEB=∠BFC=90°.∴△AEB≌△BFC(AAS).∴AE=BF.(2)∵点E是AD的中点,且BE⊥AD,∴直线BE为AD的垂直平分线.∴BD=AB=2.15.如图,在菱形ABCD中,对角线AC,BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)求证:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.解:(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD.∴AE∥CD.又∵DE⊥BD,∴DE∥AC.∴四边形ACDE是平行四边形.(2)∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=AO2+DO2=5.∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8.∴C△ADE=AD+AE+DE=5+5+8=18.03综合题16.如图,已知菱形ABCD的周长为16,面积为83,E为AB的中点.若P为对角线BD上一动点,则EP+AP的最小值为17.(2019·宁波)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.解:(1)证明:∵四边形EFGH是矩形,∴EH=FG,EH∥FG.∴∠GFH=∠EHF.∵∠BFG=180°-∠GFH,∠DHE=180°-∠EHF,∴∠BFG=∠DHE.∵四边形ABCD是菱形,∴AD∥BC.∴∠GBF=∠EDH.∴△BGF≌△DEH(AAS).∴BG=DE.(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC.∵E为AD中点,∴AE=ED.∵BG=DE,∴AE=BG,AE∥BG.∴四边形ABGE是平行四边形.∴AB=EG.∵在矩形EFGH中,EG=FH=2,∴AB=2.∴菱形ABCD的周长为8.对角线互相垂直的四边形的面积我们已经知道:菱形的面积等于对角线乘积的一半,那么,如果是对角线互相垂直的任意一个四边形,还有这样的结论吗?如图,四边形ABCD的对角线AC,BD互相垂直,其中对角线BD长为15,AC长为20,垂足为O,求四边形ABCD的面积.(请写出求解过程)解:∵S四边形ABCD=S△ADC+S△BAC=12AC·OD+12AC·BO=12AC·(OD+OB)=12AC·BD,∴S四边形ABCD=12×20×15=150.结论:对角线互相垂直的四边形的面积等于两条对角线乘积的一半.第2课时菱形的判定01基础题知识点1有一组邻边相等的平行四边形是菱形1.如图,若要使▱ABCD成为菱形,则可添加的条件是(C)A.AB=CDB.AD=BCC.AB=BCD.AC=BD2.如图,在△ABC中,AD是∠BAC的平分线,DE∥AC交AB于点E,DF∥AB交AC于点F,求证:四边形AEDF是菱形.证明:∵DE∥AC,DF∥AB,∴四边形AEDF为平行四边形,∠FAD=∠EDA.∵AD是∠BAC的平分线,∴∠EAD=∠FAD.∴∠EDA=∠EAD.∴AE=ED.∴四边形AEDF是菱形.知识点2对角线互相垂直的平行四边形是菱形3.如图,四边形ABCD的对角线互相垂直,且满足AO=CO,请你添加一个适当的条件BO=DO(答案不唯一),使四边形ABCD成为菱形.(只需添加一个即可)4.(2018·遂宁)如图,在▱ABCD中,点E,F分别是AD,BC上的点,且DE=BF,AC⊥EF.求证:四边形AECF 是菱形.证明:∵四边形ABCD是平行四边形,∴AD綊BC.∵DE=BF,∴AD-DE=BC-BF,即AE=FC.∵AE∥FC,∴四边形AECF是平行四边形.又∵AC⊥EF,∴四边形AECF是菱形(对角线互相垂直的平行四边形是菱形).知识点3四条边相等的四边形是菱形5.(2019·兰州)如图,AC=8,分别以A,C为圆心,以5为半径作弧,两条弧分别相交于点B,D.依次连接A,B,C,D,连接BD交AC于点O.(1)判断四边形ABCD的形状,并说明理由;(2)求BD的长.解:(1)四边形ABCD 为菱形,理由如下:由作法得AB =AD =CB =CD =5,∴四边形ABCD 为菱形.(2)∵四边形ABCD 为菱形,∴OA =OC =12AC =4,OB =OD ,AC ⊥BD. 在Rt △AOB 中,OB =52-42=3,∴BD =2OB =6.6.如图,在四边形ABCD 中,AC =BD ,E ,F ,G ,H 依次是AB ,BC ,CD ,DA 的中点.求证:四边形EFGH 是菱形.证明:∵E ,F ,G ,H 分别是线段AB ,BC ,CD ,AD 的中点,∴EH ,FG 分别是△ABD ,△BCD 的中位线,EF ,HG 分别是△ABC ,△ACD 的中位线.∴EH =FG =12BD ,EF =HG =12AC. 又∵AC =BD ,∴EH =FG =EF =HG.∴四边形EFGH 是菱形.易错点 对菱形的判定方法掌握不透导致出错7.下列命题:①四边都相等的四边形是菱形;②两组邻边分别相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形;④对角线相等的四边形是菱形;⑤一条对角线平分一组对角的平行四边形是菱形.其中正确的是①③⑤.(填序号)02中档题8.(2019·宁夏)如图,四边形ABCD的两条对角线相交于点O,且互相平分.添加下列条件,仍不能判定四边形ABCD为菱形的是(C)A.AC⊥BD B.AB=ADC.AC=BD D.∠ABD=∠CBD9.(2019·永州)如图,四边形ABCD的对角线相交于点O,且点O是BD的中点.若AB=AD=5,BD=8,∠ABD =∠CDB,则四边形ABCD的面积为(B)A.40 B.24 C.20 D.1510.如图,在四边形ABCD中,AB=AD,BC=DC,AC,BD相交于点O,点E在AO上,且OE=OC.(1)求证:∠1=∠2;(2)连接BE,DE,判断四边形BCDE的形状,并说明理由.解:(1)证明:在△ADC 和△ABC 中,⎩⎨⎧AD =AB ,AC =AC ,DC =BC ,∴△ADC ≌△ABC(SSS ).∴∠1=∠2.(2)四边形BCDE 是菱形.理由:∵∠1=∠2,CD =BC ,∴AC 垂直平分BD.∵OE =OC ,∴四边形DEBC 是平行四边形.∵AC ⊥BD ,∴四边形DEBC 是菱形.11.(2019·宿迁)如图,矩形ABCD 中,AB =4,BC =2,点E ,F 分别在AB ,CD 上,且BE =DF =32. (1)求证:四边形AECF 是菱形;(2)求线段EF 的长.解:(1)证明:∵在矩形ABCD 中,AB =4,BC =2,∴CD =AB =4,AD =BC =2,CD ∥AB ,∠D =∠B =90°.∴AF =CE =22+(32)2=52. ∵BE =DF =32,∴CF =AE =4-32=52. ∴AF =CF =CE =AE =52. ∴四边形AECF 是菱形.(2)过点F 作FH ⊥AB 于点H ,则四边形AHFD 是矩形,∴AH =DF =32,FH =AD =2. ∴EH =52-32=1. ∴EF =FH 2+HE 2=22+12= 5.03 综合题12.(2019·滨州)如图,矩形ABCD 中,点E 在边CD 上,将△BCE 沿BE 折叠,点C 落在AD 边上的点F 处,过点F 作FG ∥CD 交BE 于点G ,连接CG .(1)求证:四边形CEFG 是菱形;(2)若AB =6,AD =10,求四边形CEFG 的面积.解:(1)证明:由题意得△BCE ≌△BFE ,∴∠BEC =∠BEF ,FE =CE.∵FG ∥CE ,∴∠FGE =∠CEB.∴∠FGE =∠FEG.∴FG =FE.∴FG =EC.∴四边形CEFG 是平行四边形.又∵CE =FE ,∴四边形CEFG 是菱形.(2)∵矩形ABCD 中,AB =6,AD =10,BC =BF ,∴∠BAF =90°,AD =BC =BF =10.∴AF =8.∴DF =2.设EF =x ,则CE =x ,DE =6-x.∵∠FDE =90°,∴22+(6-x)2=x 2.解得x =103. ∴CE =103. ∴S 四边形CEFG =CE·DF =103×2=203.。
矩形、菱形的性质定理和判定定理及其证明习题精选矩形的性质和判定1.矩形的两条对角线的夹角为60°,一条对角线与短边的和为15,则短边的和为15,则短边的长是________。
2.如图32-3-1,设矩形ABCD和矩形AEFC的面积分别为S1、S2,则二者的大小关系是:S1____S2。
3.如果矩形一个角的平分线分一边为4 cm和3 cm两部分,那么矩形的周长为_______。
4.现有一张长为40cm, 宽为20 cm的长方形纸片(如图32-3-2所示),要从中剪出长为18 cm,宽为12 cm的长方形纸片,则最多能剪出___张。
5.矩形的一条较短边的长为5 c m,两条对角线的夹角为60°,则它的对角线的长等于_____ cm。
6.如图32-3-3,在矩形ABCD中,CE⊥BD于E,∠DCE:∠ECB=3:1,则∠ACE=____度。
7.下列说法中正确的是( )A.一个角是直角,两条对角线相等的四边形是矩形。
B.一组对边平行且有一个角是直角的四边形是矩形。
C.对角线互相垂直的平行四边开是矩形。
D.一个角是直角且对角线互相平分的四边形是矩形。
8.四边形ABCD的对角线相交于O,在下列条件中,不能说明它为矩形的是()A.AB=CD,AD=BC, BAD=90°B.AO=CO,BO=DO,AC=BDC.∠BAD=∠ABC=90°, ∠BAD+∠ADC=180°D.∠BAD=∠BCD, ∠ABC+∠ADC=180°★菱形的性质和判定9.己知菱形的锐角是60°,边长是20 cm,则较长对角线是_____。
10.菱形两条对角线的长分别为6 cm和8 cm,它的高为______。
11.菱形的一个内角是120°,平分这个内角的一条对角钱长为13 cm,则菱形的周长是____。
12.菱形的一边与两条对角线所构成的两个角的差是32°,则菱形较小的内角是_____。
18.2.2菱形同步练习一.选择题1.平行四边形、矩形、菱形都具有的性质是()A.对角线相等B.对角线互相平分C.都是轴对称图形D.对角线互相垂直2.菱形ABCD的边长是5cm,一条对角线AC的长是8cm,则此菱形的面积为()A.40cm2B.48cm2C.24cm2D.24cm23.已知菱形的周长是高的8倍,则菱形的两邻角的度数之比为()A.3:1B.4:1C.5:1D.6:14.如图,菱形ABCD中,∠A=50°,DE⊥AB于点E.则∠BDE的度数为()A.25°B.35°C.40°D.50°5.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E.连接DF,则∠DFE等于()A.150°B.140°C.130°D.120°6.如图,在菱形ABCD中,AB=5,BD=6,DE⊥AB于点E,则DE的长为()A.4.8B.5C.9.6D.107.如图,菱形ABCD和菱形ECGF的边长分别为4和2,∠B=120°,则图中阴影部分的面积是()A.3B.2C.4D.38.如图,在菱形ABCD中,对角线AC,BD相交于点O,BD=6,AC=8,直线OE⊥AB交CD 于点F,则EF的长为()A.4.8B.C.5D.69.如图,菱形ABCD的对角线相交于点O,AC=12,BD=16,点P为边BC上一点,且P不与B、C重合.过P作PE⊥AC于E,PF⊥BD于F,连接EF,则EF的最小值为()A.4B.4.8C.5D.610.如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论:①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S=AB2;⑤2DE=DC;⑥BF=BC,正确结论的有()个.菱形ABCDA.1B.2C.3D.4二.填空题11.如图,四边形ABCD的对角线AC与BD交于点O,AC⊥BD,且AC平分BD,若添加一个条件,则四边形ABCD为菱形.12.若一个菱形的周长为200cm,一条对角线长为60cm,则它的面积为.13.如图,菱形ABCD的边长AB=3,对角线BD=4,点E,F在BD上,且BE=DF=,连接AE,AF,CE,CF.则四边形AECF的周长为.14.如图,菱形ABCD的对角线AC,BD相交于点O,过点O作OE⊥BC于点E,若AC=6,BD=8,则OE=.15.如图,在菱形ABCD中,∠B=60°,E,H分别为AB,BC的中点,G,F分别为线段HD,CE的中点.若线段FG的长为2,则AB的长为.三.解答题16.如图,在菱形ABCD中,E为对角线BD上一点,且AE=DE,连接CE.(1)求证:CE=DE.(2)当BE=2,CE=1时,求菱形的边长.17.如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE 的延长线于F,连接CF.(1)求证:△AEF≌△DEB;(2)若∠BAC=90°,求证:四边形ADCF是菱形.18.如图,平行四边形ABCD中,E、F分别为CD、BC上两点,AF平分∠BAE,∠EAD=∠FEC.(1)求证:AB=AE;(2)若∠B=90°,AF与DC的延长线交于点H,求证:四边形ABHE为菱形.参考答案一.选择题1.解:平行四边形的对角线互相平分,而对角线相等、是轴对称图形、互相垂直不一定成立.故平行四边形、矩形、菱形都具有的性质是:对角线互相平分.故选:B.2.解:如图所示:∵菱形ABCD的边长为5cm,对角线AC=8cm,∴AB=5cm,AO=CO=4cm,OB=OD,AC⊥BD,∴OB===3(cm),∴BD=2OB=6cm,∴此菱形的面积为×8×6=24(cm2).故选:D.3.解:如图所示:∵四边形ABCD是菱形,菱形的周长是高的8倍,∴AB=BC=CD=DA=2,∠DAB+∠B=180°,∵AE=1,AE⊥BC,∴AE=AB,∴∠B=30°,∴∠DAB=150°,∴∠DAB:∠B=5:1,故选:C.4.解:∵四边形ABCD是菱形,∠A=50°,∴AD=AB,∴∠ADB=65°,∵DE⊥AB,∴∠ADE=90°﹣50°=40°,∴∠BDE=65°﹣40°=25°,故选:A.5.解:连接BF,如图所示:∵四边形ABCD是菱形,∠BAD=80°,∴∠BAC=∠BAD=×80°=40°,AB=BC=DC,∠BCF=∠DCF=∠BAC=40°,∠ABC=180°﹣∠BAD=100°,∵EF是线段AB的垂直平分线,∴AF=BF,∠AFE=90°﹣∠BAC=50°,∴∠ABF=∠BAC=40°∴∠CBF=∠ABC﹣∠ABF=100°﹣40°=60°,在△BCF和△DCF中,,∴△BCF≌△DCF(SAS),∴∠CDF=∠CBF=60°,∴∠AFD=∠CDF+∠DCF=60°+40°=100°,∴∠DFE=∠AFD+∠AFE=150°;故选:A.6.解:∵四边形ABCD为菱形,∴AO=CO,BO=DO=3,AC⊥BD,∴AO===4,∴AC=8,∴S菱形ABCD=AC•BD=×8×6=24,∵DE⊥AB,∴S菱形ABCD=AB•DE=5DE,∴5DE=24,∴DE==4.8,故选:A.7.解:方法一:如图,连接AC,则AC平行EG,根据平行线间的距离处处相等可知:阴影部分的面积=三角形ECG的面积=菱形ECGF的面积=3.方法二:如图,设AG交CE于点H,∵菱形ABCD的边AB∥CD,∴△GCH∽△GBA,∴CH:AB=GC:GB,即CH:4=2:6,解得CH=,所以,EH=CE﹣CH=2﹣=,∵∠B=120°,∴∠BCD=∠FEC=180°﹣120°=60°,∴点B到CD的距离为4×=6,点F到CE的距离为2×=3,∴阴影部分的面积=S△AEH+S△GEH=××(6+3)=3.故选:D.8.解:∵在菱形ABCD中,BD=6,AC=8,∴OB=BD=3,OA=AC=4,AC⊥BD,∴AB==5,∵S菱形ABCD=AC•BD=AB•EF,即×6×8=5EF,∴EF=4.8.故选:A.9.解:连接OP,∵四边形ABCD是菱形,AC=12,BD=16,∴AC⊥BD,BO=BD=8,OC=AC=6,∴BC===10,∵PE⊥AC,PF⊥BD,AC⊥BD,∴四边形OEPF是矩形,∴FE=OP,∵当OP⊥BC时,OP有最小值,此时S△OBC=OB×OC=BC×OP,∴OP==4.8,∴EF的最小值为4.8,故选:B.10.解:∵四边形ABCD是菱形,∴AB=BC=CD=AD.∠A=∠BCD.∵∠A=60°,∴∠BCD=60°,∴△ABD是等边三角形,△BDC是等边三角形.∴∠ADB=∠ABD=60°,∠CDB=∠CBD=60°.∵E,F分别是AB,AD的中点,∴∠BFD=∠DEB=90°,∴∠GDB=∠GBD=30°,∴∠GDC=∠GBC=90°,DG=BG,∴∠BGD=360°﹣90°﹣90°﹣60°=120°,故①正确;在△CDG和△CBG中,,∴△CDG≌△CBG(SSS),∴∠DGC=∠BGC=60°.∴∠GCD=30°,∴CG=2GD=GD+GD,∴CG=DG+BG.故②正确.∵△GBC为直角三角形,∴CG>BC,∴CG≠BD,∴△BDF与△CGB不全等.故③错误;∵S菱形ABCD=2S△ADB=2×AB•DE=AB•(BE)=AB•AB=AB2,故④错误;∵DE=BE=AB=CD,∴2DE=CD,故⑤正确;∵BD>BF,BD=BC,∴BC>BF,故⑥错误.∴正确的有:①②⑤共三个.故选:C.二.填空题11.解:添加一个条件OA=OC,则四边形ABCD为菱形,理由如下:∵AC平分BD,OA=OC,∴四边形ABCD是平行四边形,又∵AC⊥BD,∴平行四边形ABCD是菱形,故答案为:OA=OC(答案不唯一).12.解:已知AC=60cm,菱形对角线互相垂直平分,∴AO=30cm,又∵菱形ABCD周长为200cm,∴AB=50cm,∴BO===40cm,∴AC=2BO=80cm,∴菱形的面积为×60×80=2400(cm2).故答案为:2400cm2.13.解:如图,连接AC,交BD于O,∵四边形ABCD是菱形,∴AC⊥BD,BO=BD==,在Rt△ABO中,AO===1,又∵BE=,∴EO=﹣=,在Rt△AOE中,AE===,同理可得,CE=CF=AF=,∴四边形AECF的周长4.故答案为:4.14.解:∵菱形ABCD中,AC=6,BD=8,∴OA=OC=AC=3,OB=BD=4,AC⊥BD,∴BC===5,∵OE⊥BC,∴S△OBC=×OB×OC=×BC×OE,∴OE===,故答案为:.15.解:如图,连接CG并延长,交AD于点M,连接EM,∵四边形ABCD为菱形,∠B=60°,∴AD∥BC,∴∠A=120°,∠MGD=∠CGH,∵点G为HD的中点,∴HG=DG,∵∠MGD=∠CGH,∴△MGD≌△CGH(ASA),∴MG=CG,MD=CH=BC=AD,∴点G为MC的中点,点M为AD的中点,∵F,G分别为CE和CM的中点,∴FG是△CEM的中位线,∴FG=EM,∴EM=2FG=4,∵E,M分别为AB和AD的中点,∴AE=AM,∵∠A=120°,∴EM=AE=4,∴AE=4,∴AB=2AE=8.故答案为:8.三.解答题16.(1)证明:∵四边形ABCD是菱形,∴∠ABE=∠CBE,AB=CB,在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴AE=CE,∵AE=DE,∴CE=DE;(2)解:如图,连接AC交BD于H,∵四边形ABCD是菱形,∴AH⊥BD,BH=DH,AH=CH,∵CE=DE=AE=1,∴BD=BE+DE=2+1=3,∴BH=BD=,EH=BE﹣BH=2﹣=,在Rt△AHE中,由勾股定理得:AH===,在Rt△AHB中,由勾股定理得:AB===,∴菱形的边长为.17.证明:(1)∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,∵∠AEF=∠DEB,∴△AEF≌△DEB;(2)∵△AEF≌△DEB,∴AF=DB,∵AD是BC边上的中线,∴DC=DB,∴AF=DC,∵AF∥DC,∴四边形ADCF是平行四边形,∵∠BAC=90°,AD是BC边上的中线,∴AD=DC,∴▱ADCF是菱形.18.(1)证明:∵∠AEC=∠AEF+∠FEC=∠EAD+∠D,∠EAD=∠FEC,∴∠AEF=∠D,∵四边形ABCD是平行四边形,∴∠B=∠D,∴∠B=∠AEF,∵AF平分∠BAE,∴∠BAF=∠EAF,在△ABF和△AEF中,,∴△ABF≌△AEF(AAS),∴AB=AE;(2)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAF=∠EHA,∵∠BAF=∠EAF,∴∠EHA=∠EAF,∴AE=HE,∵AB=AE,∴AB=EH,∴四边形ABHE是平行四边形,又∵AB=AE,∴四边形ABHE为菱形.。
第14题
F A
D E B C 菱形的性质与判定练习题1
一、选择题
1、已知在菱形ABCD 中,下列说法错误的是( ).
A. 两组对边分别平行
B. 菱形对角线互相平分
C. 菱形的对边相等
D. 菱形的对角线相等 2、菱形具有而矩形不一定具有的性质是( ).
A .对边相等
B .对角相等
C .对角线互相垂直
D .对角线相等 3、能够找到一点使该点到各边距离相等的图形为( ). A .平行四边形 B .菱形 C .矩形 D .不存在 4、下列说法不正确的是( ).
A .菱形的对角线互相垂直
B .菱形的对角线平分各内角
C .菱形的对角线相等
D .菱形的对角线交点到各边等距离 5、菱形的两条对角线分别是12cm 、16cm ,则菱形的周长是( ). A .24cm B .32cm C .40 cm D .60cm
6、菱形的周长为4,一个内角为60°,则较短的对角线长为( ). A .2 B .3 C .1 D .
2
1
7、菱形ABCD 中,AB=15,∠ADC=120°,则B 、D 两点之间的距离为( ). A .15 B .
32
15
C .7.5
D .315
8、菱形的两邻角之比为1:2,如果它的较短对角线为3cm ,则它的周长为( ). A .8cm B .9cm C .12cm D .15cm
9、菱形的周长为8cm ,高为1cm ,则该菱形两邻角度数比为( ). A .3:1 B .4:1 C .5:1
二、填空
10、如图,菱形ABCD 的对角线AC 、BD 交于点O ,且AC=8,BD=6,过点O 作OH 丄AB ,垂足为H ,则点0到边AD
的距离为 _______.
11、如图,菱形ABCD 的边长是2cm ,E 是AB 的中点,且DE 丄AB ,则菱形ABCD 的面积为 cm 2
.
1
A B
C D
O
F
E C
A
B D
15题图 16题图 17题图
12、如图,在菱形ABCD 中,AE ⊥BC ,AF ⊥CD ,E 、F 分别为BC ,CD 的中点,则∠EAF 的度数 .
13、如图,菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上任一点(点P 不与点A 、C 重合),且PE∥BC
交AB 于E ,PF∥CD 交AD 于F ,则阴影部分的面积是 _________ .
13题图 14题图 12题图
14、如图,菱形ABCD 中,AB=2,∠B=120°,E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值
是 _________ .
三、解答题
1、如图,已知在菱形ABCD 中,AE ⊥CD 于E ,∠ABC=60°,求∠CAE 的度数.
2、如图,菱形的周长为20cm ,两邻角的比为1:2. 求:(1)较短对角线长是多少?(2)一组对边的距离是多少?
3、如图,已知E 为菱形ABCD 的边AD 的中点,EM ⊥AC 交CB 的延长线于点F. (1)试说明M 为AB 的中点.(2)若FB=2,求菱形ABCD 的周长.
4、如图,菱形ABCD 中,E 是AB 中点,DE ⊥AB ,AB=4.
求(1)∠ABC 的度数; (2)AC 的长; (3)菱形ABCD 的面积.
5、如图,□ABCD 的对角线AC 的垂直平分线与两边AB 、CD 的延长线分别相交于E 、F , 求证:四边形AECF 为菱形.
6、如图,△ABC 中,AC 的垂直平分线MN 交AB 于点D ,交AC 于点O ,CE ∥AB 交MN 于E ,连结AE 、CD . 求证:四边形ADCE 是菱形
7、如图,在□ABCD 中,EF ∥BD ,分别交BC 、CD 于点P 、Q ,分别交AB 、AD 的延长线于点E 、F ,且BE=BP . 求证:(1)∠E=∠F ; (2)□ABCD 是菱形.
8、如图,在菱形ABCD 中,∠ABC=60°,DE∥AC 交BC 的延长线于点E . 求证:DE=
2
1
BE .
9、如图,四边形ABCD 为菱形,已知A (0,4),B (﹣3,0). (1)求点D 的坐标;
(2)求直线AC 的解析式.
10、如图,在四边形ABCD 中,点E ,F 分别是AD ,BC 的中点,G ,H 分别是BD ,AC 的中点,AB ,CD 满足什么条件时,四边形EGFH 是菱形?请证明你的结论. A D
E
G
H
11、如图,在四边形ABCD中,E为AB上一点,△ADE和△BCE都是等边三角形,AB、 BC、 CD、DA的中点
分别为P、Q、M、N,试判断四边形PQMN为怎样的四边形,并证明你的结论.
12、如图,△ABC中,AB=AC,AD、CD分别是△ABC两个外角的平分线.
(1)求证:AC=AD;
(2)若∠B=60°,求证:四边形ABCD是菱形.
13、如图,四边形ABCD是菱形,BE⊥AD、BF⊥CD,垂足分别为E、F.
(1)求证:BE=BF;
(2)当菱形ABCD的对角线AC=8,BD=6时,求BE的长.
14、如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,
(1)求DH的长;(2)连接OH,求证:∠OHB+∠DCO=90°.
15、如图,在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F,
求证:四边形AEFG是菱形.
16、如图,已知菱形ABCD中,E、F分别在BC和CD上,且∠B=∠EAF=60°,∠BAE=15°.
求∠CEF的度数.
17、如图,矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB、CD的延长线分别交于E、F.
(1)求证:△BOE≌△DOF;
(2)当EF与AC满足什么关系时,以A、E、C、F为顶点的四边形是菱形?证明你的结论.
18、如图,在□ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G.
(1)求证:DE∥BF;
(2)若∠G=90°,求证:四边形DEBF是菱形.
19、如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF.连接BF与DE相交于点G,连接CG
与BD相交于点H.
求证:(1)求∠BGD的度数。
(2)求证:DG+BG=CG
20、如图,□ABCD中,AB⊥AC,AB=1,BC=5.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.
(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;
(2)试说明在旋转过程中,线段AF与EC总保持相等;
(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,画出图形并写出此时AC绕点O
顺时针旋转的度数.。