有理数的运算专项训练
- 格式:doc
- 大小:206.00 KB
- 文档页数:8
有理数计算技巧专项训练
1. 有理数计算中,正负号可别弄混啦!就像你走路不能左右不分呀!比如计算 -3+5,可别看成 3+5 哦!
2. 约分可是个厉害的技巧呢!想想看,就像把一大块蛋糕合理分配,变得更简洁好吃一样。
比如 4/8 约分后就是 1/2 啦!
3. 加减混合运算有妙招哦!这就好比是一场有趣的排列游戏呢。
试着算一算5-3+2 呀!
4. 乘法分配律呀,那可太重要啦!就如同给数字们穿上合适的衣服一样合适。
计算3×(4+5),用起来呀!
5. 分数计算也不难呀,耐心点就好啦!就好像拼图一样,一块一块来。
算算1/3 + 1/4 呗!
6. 负数计算别害怕呀!可以想象成是在走相反的路哦。
算一算 -2×3 是多少呢!
7. 混合运算要按顺序来,可别乱来哟!这就像排队一样要有秩序。
来算算
2+3×4 呀!
8. 转换成分数来计算有时超好用呢!好比是给数字换个装扮呢。
试试把转
换成分数计算呀!
9. 多练练有理数计算技巧专项训练,你会发现数学其实超有趣的啦!就像打游戏升级一样有成就感哦!总之,掌握了这些技巧,有理数计算就不再是难题啦!。
第1章有理数(易错必刷30题11种题型专项训练)一.正数和负数(共5小题)1.(2022秋•定远县校级月考)某品牌大米包装袋上印有【(9±0.10)(kg)】字样.即标准重量为9kg,上下偏差不超过0.1kg就符合标准.则下列不符合标准的是()A.9.15kg B.8.95kg C.9.05kg D.8.90kg2.(2022秋•怀远县校级月考)在﹣3.5,﹣2.1,0,﹣1,﹣4,5这6个数中,负数有几个()A.1B.2C.3D.43.(2022秋•南陵县期中)若a是有理数,则下列叙述正确的是()A.|a|一定是正数B.﹣a一定是负数C.﹣|a|可能是0D.﹣|a|一定是负数4.(2022秋•怀远县校级月考)若规定向东为正,则向东走100m记作m,向西走200m记作m.5.(2022秋•颍州区校级期末)2020年国庆节放假八天,高速公路免费通行,各地风景区游人如织其中,其中闻名于世的北京故宫,在10月1日的游客人数就已经达到了5万人,接下来的七天中,每天的游客人数变化(单位:万人)如下表(正数表示比前一天多的人数,负数表示比前一天少的人数).日期10月2日10月3日10月4日10月5日10月6日10月7日10月8日人数变化+0.6+0.2+0.1﹣0.2﹣0.8﹣1.6﹣0.1(1)10月3日的人数为万人;(2)这八天,游客人数最多的是10月日,达到万人;游客人数最少的是10月日,为万人;(3)这8天参观故宫的总人数为万人;(4)如果你们一家人打算在下一个国庆节参观故宫,请你对你们的出行日期提一个建议.二.有理数(共2小题)6.(2022秋•蚌山区校级月考)下列叙述正确的是()A.不是正数的数一定是负数B.正有理数包括整数和分数C.整数不是正整数就是负整数D.有理数绝对值越大,离原点越远7.(2022秋•霍邱县校级月考)在﹣,,﹣π,﹣4中,属于负整数的是()A.﹣B.C.﹣πD.﹣4三.数轴(共4小题)8.(2021秋•蚌埠期末)如图,在数轴上有A、B两个动点,O为坐标原点.点A、B从图中所示位置同时向数轴的负方向运动,A点运动速度为每秒2个单位长度,B点运动速度为每秒3个单位长度,当运动秒时,点O恰好为线段AB的中点.9.(2021秋•定远县校级期末)已知a,b在数轴上的位置如图所示,则化简|a﹣b|+|a+b|的结果是.10.(2021秋•庐阳区期末)如图,点A在数轴上表示的数是﹣9,点D在数轴上表示的数是12,AB=4(单位长度),CD=2(单位长度).(1)则点B在数轴上表示的数是,点C在数轴上表示的数是,线段BC的长=(单位长度);(2)若点P是线段BC的中点,则P点在数轴上表示的数是:;(3)若点Q是坐标轴上的点,且QC=2QB,则Q点在数轴上表示的数是.11.(2022秋•蜀山区校级月考)我们知道,若有理数x1,x2表示在数轴上得到点A1,A2,且x1<x2,则点A1与点A2之间的距离为|x2﹣x1|=x2﹣x1,现已知数轴上三点A、B、C,其中A表示的数为﹣3,B表示的数为3,C与A的距离等于m,C与B的距离等于n.请解答下列问题:(1)若点C在数轴上表示的数为﹣5,求m+n的值;(2)若m+n=7,请你直接写出点C表示的数为;(3)若C在点A、B之间(不与点A、B重合),且m=n,求点C表示的数.四.相反数(共1小题)12.(2022秋•鸠江区校级月考)下列各组数中,互为相反数的是()A.﹣2022与+(﹣2022)B.﹣(﹣2022)与2022C.﹣(+2022)与+(﹣2022)D.﹣2022 与﹣(﹣2022)五.倒数(共1小题)13.(2022秋•定远县校级月考)﹣2.5的倒数是()A.﹣2.5B.2.5C.D.﹣六.有理数大小比较(共5小题)14.(2022秋•蒙城县期中)用“>”或“<”填空:﹣.15.(2022秋•霍邱县期中)比较两数大小:﹣﹣(用“<”或“=”或“>”填空).16.(2022秋•亳州期末)在﹣1,1.2,﹣2,0四个数中,最小的数是()A.﹣1B.1.2C.﹣2D.017.(2022秋•淮北月考)在下列四个数中,比﹣2023小的数是()A.﹣2024B.﹣2022C.﹣2022.5D.018.(2022秋•无为市月考)有理数a、b在数轴上的对应点的位置如图所示.(1)比大小:|c||b|,﹣a b;(填“>”,“=”或“<”)(2)化简:|2b|+|b﹣c|﹣|c﹣a|.七.有理数的减法(共2小题)19.(2021秋•长丰县期末)已知|a|=5,b=3,且a+b<0,则a﹣b的值为()A.﹣8B.﹣2C.2或﹣8D.220.(2022秋•淮北月考)阅读理解:数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如图,线段AB=1=0﹣(﹣1);线段BC=2=2﹣0;线段AC=3=2﹣(﹣1)问题(1)数轴上点M、N代表的数分别为﹣9和1,则线段MN=;(2)数轴上点E、F代表的数分别为﹣6和﹣3,则线段EF=;(3)数轴上的两个点之间的距离为5,其中一个点表示的数为2,则另一个点表示的数为m,求m.八.非负数的性质:偶次方(共1小题)21.(2021秋•霍邱县期中)如果|a+2|+(b﹣1)2=0,那么代数式(a+b)2021的值是()A.1B.﹣1C.±1D.2021九.有理数的混合运算(共7小题)22.(2022秋•南陵县期中)在数学课上,老师让甲、乙、丙、丁,四位同学分别做了一道有理数运算题,你认为做对的同学是()甲:9﹣32÷8=0÷8=0.乙:24﹣(4×32)=24﹣4×6=0.丙:(36﹣12)÷=36×﹣12×=16.丁:(﹣3)2÷×3=9÷1=9.A.甲B.乙C.丙D.丁23.(2022秋•芜湖期中)a,b互为相反数,且都不为0,c,d互为倒数,|m﹣1|=2,则的值为.24.(2022秋•安徽期末)计算:5÷[(﹣1)3﹣4]﹣|﹣1|.25.(2022秋•蚌山区月考)计算:.26.(2022秋•颍州区校级期末)(1)计算:()×30;(2)计算:(﹣1)4×|﹣8|+(﹣2)3×()2.27.(2022秋•龙子湖区校级月考)已知a、b为有理数,下列说法:①若a、b互为相反数,则=﹣1;②若|a﹣b|+a﹣b=0,则b>a;③若a+b<0,ab>0,则|3a+4b|=﹣3a﹣4b;④若|a|>|b|,则(a+b)•(a﹣b)是正数,其中正确的序号是.28.(2022秋•庐江县期中)小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9.问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时,;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,.(2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0];(3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证.一十.科学记数法—表示较大的数(共1小题)29.(2022秋•定远县校级月考)北京冬奥会标志性场馆国家速滑馆“冰丝带”近12000平方米的冰面采用分模块控制技术,可根据不同项目分区域、分标准制冰.将12000用科学记数法表示为()A.0.12×105B.1.2×105C.1.2×104D.12×103一十一.科学记数法与有效数字(共1小题)30.(2021秋•安庆期末)下列关于近似数的说法中正确的是()A.近似数2020精确到百位B.近似数5.78万精确到百分位C.近似数3.51×105精确到千位D.近似数5.1890精确到千分位。
第1章《有理数》计算题分类专项训练一.有理数的加法1.计算:++(﹣).2.(﹣27)+(﹣14)+(+17)+(+8).3.+++++.4.(1)(﹣52)+24+(﹣74)+12;(2)(+)+(﹣)+(+)+(﹣).5.(1)(﹣25)+34+156+(﹣65);(2)(﹣0.5)+2+2.二.有理数的减法6.计算:.7.计算:.8.计算:3﹣0.759.计算:1﹣(﹣0.5)﹣2.10.计算:3.三.有理数的乘法11.阅读理解:李华是一个勤奋好学的学生,他常常通过书籍、网络等渠道主动学习各种知识.下面是他从网络搜到的两位数乘11的速算法,其口诀是:“头尾一拉,中间相加,满十进一”例如:①24×11=264.计算过程:24两数拉开,中间相加,即2+4=6,最后结果264;②68×11=748.计算过程:68两数分开,中间相加,即6+8=14,满十进一,最后结果748.(1)计算:①32×11=,②78×11=;(2)若某个两位数十位数字是a,个位数字是b(a+b<10),将这个两位数乘11,得到一个三位数,则根据上述的方法可得,该三位数百位数字是,十位数字是,个位数字是;(用含a、b的代数式表示)(3)请你结合(2)利用所学的知识解释其中原理.12.用短除法求(1)18和24的最大公因数.(2)30和45的最小公倍数.13.有6张不同数字的卡片:﹣3,+2,0,﹣8,5,+1.(1)若从中任抽两张,使得两数的积最小,求出最小的积;(2)若从中任抽三张,使得三数的积最大,求出最大的积.14.阅读理解题仔细观察下列式子,然后计算:2×3=6,2×(﹣3)=﹣6﹣2×3=﹣6﹣2×(﹣3)=6根据你得到的规律,计算:(1)﹣5×(﹣2)(2)×(﹣20)15.﹣9×15四.有理数的除法16.(1)4×;(2)7÷3.17.计算:÷(×2).18.计算:(1)(﹣2)×3;(2).19.小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题.(1)从中取出2张卡片,使这两张卡片上数字的乘积最大,乘积的最大值为.(2)从中取出2张卡片,使这两张卡片上数字相除的商最小,商的最小值为20.在括号内填上适当的数:.五.有理数的乘方21.计算(1)﹣32+(﹣)2×(﹣3)3÷(﹣1)25;(2)1×﹣(﹣)×2+(﹣)×.22.计算:﹣(﹣1)2+(6﹣)×+4÷(﹣).23.计算:(﹣12.5)×(﹣8)﹣(1+﹣)×(﹣21).24.计算下列各题:(1)13﹣(﹣)+7﹣|﹣|;(2)﹣14+9×(﹣)2+23.25.计算:4.2×[(﹣)﹣(﹣)]+(﹣0.25).26.计算:﹣32÷(﹣1)2+|﹣3+2|.六.有理数的混合运算27.计算:(1)(﹣20)+(+3)﹣(﹣5)﹣(+7).(2)(﹣+)÷﹣(﹣1)2021.28.计算:(1)()×(﹣24).(2)﹣12018+4﹣(﹣2)3+3÷(﹣).。
1. 先乘方,再乘除,最后加减;2. 同级运算,从左到右进行;3. 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
1、12411 ()()()23523+-++-+-2、4(81)( 2.25)()169-÷-⨯-÷3、11(22)3(11)+--⨯-4、31(12)()15(1)45+⨯--⨯-5、2232[3()2]23-⨯-⨯--6、 33102(4)8-÷--7、)]21)21[(122--÷ 8、121)]3()2[(2⨯-⨯-9、)6(]32)5.0[(22-⨯-- 10、23533||()14714-⨯-÷223 3 22231113、199711(1)(10.5)()312----⨯÷- 14、33514(1)(8)(3)[(2)5]217---⨯+-÷-+15、-10 + 8÷(-2 )2 -(-4 )×(-3 ) 16、-49 + 2×(-3 )2 + (-6 )÷(-91)17、-14 + ( 1-0.5 )×31×[2×(-3)2] 18、(-2)2-2×[(-21)2-3×43]÷51.19、)8()4()6(52-÷---⨯ 20、0)132()43(2⨯+-+-35722523、)23232(21)21(2--⨯+- 24、[][]332)2(3)5(6)7(4-÷--+÷-⨯-25、6-(-12)÷2)2(- 26、(-48)÷ 8 -(-5)÷2)21(-27、42×)43()32(-+-÷ 0.25 28、()23)9181(-÷-29、()()333232÷---⨯- 30、(-5)×6+(-125) ÷(-5)331、)251(4)5(25.0-⨯⨯-⨯-- 32、22)3(61)2132(1-+÷-+-1、【基础题】计算:(1)618-÷)(-)(-312⨯; (2))(-+51232⨯;(3))(-)(-49⨯+)(-60÷12; (4)23)(-×[ )+(--9532 ].(1))(-)+(-2382⨯; (2)100÷22)(--)(-2÷)(-32;(3))(-4÷)(-)(-343⨯; (4))(-31÷231)(--3214)(-⨯.(1)36×23121)-(; (2)12.7÷)(-1980⨯;(3)6342+)(-⨯; (4))(-43×)-+(-31328;(5)1323-)(-÷)(-21; (6)320-÷34)(-81-;(7)236.15.02)-(-)(-⨯÷22)(-; (8))(-23×[ 2322-)(- ];(9)[ 2253)-(-)(- ]÷)(-2; (10)16÷)(-)-(-)(-48123⨯.(1)11+(-22)-3×(-11); (2)0313243⨯⨯)-(-)(-;(3)2332-)(-; (4)23÷[ )-(-)(-423];(5))-(8743÷)(-87; (6))+()(-654360⨯;(7)-27+2×()23-+(-6)÷()231-; (8))(-)-+-(-4151275420361⨯⨯.(1))-(-258÷)(-5; (2)-33121)(--⨯;(3)223232)-(-)(-⨯⨯; (4)0132432⨯⨯)+(-)(-;(5))(-+51262⨯; (6)-10+8÷()22--4×3;(7)-51-()()[]55.24.0-⨯-; (8)()251--(1-0.5)×31;(1)(-8)×5-40; (2)(-1.2)÷(-13)-(-2);(3)-20÷5×14+5×(-3)÷15; (4)-3[-5+(1-0.2÷35)÷(-2)];(5)-23÷153×(-131)2÷(132)2; (6)-52+(1276185+-)×(-2.4)参考答案1、-1/52、-13、224、95、96、 07、-488、-19、-15 10、-15/34311、-24 12、-89 13、3 14、2 15、-20 16、23 17、2 18、24 19、-28 20、9/16 21、1 22、10 23、-1/12 24、104/3 25、9 26、14 27、-31 28、-81又1/81 29、-9 30、-29 31、-1/5 32、91、【答案】 (1)17; (2)511; (3)31; (4)-112、【答案】 (1)-10; (2)22; (3)-16; (4)-253、【答案】 (1)1; (2)0; (3)42; (4)423; (5)18; (6)0; (7)-4.64;(8)37; (9)8; (10)-25.4、【答案】 (1)22; (2)0; (3)-17; (4)-423; (5)71; (6)-95; (7)-85;(8)6 .5、【答案】 (1)3; (2)1; (3)-54; (4)0; (5)526; (6)-20; (7)-2; (8)-67. 6、【答案】(1)-80; (2)5.6; (3)-2; (4)16; (5)-516; (6)-2.9复习 有理数的乘除、乘方运算测试题一、填空题(每小题3分,共30分) 1.3×(-2)=________,(-6)×(-31)=________. 2.(-3)2的底数是________,结果是________;-32的底数是________,结果是________.3.(-61)÷(+23)=________;-493÷(-176)=________;(+8)÷(-41)=________.4.23×(-41)3=________;(-91)÷(+34)2=________.5.(-32)×________=1;(-32)×________=-16.-65×(-2.4)×(-53)=________.7.-32×(-5)2÷(-21)3=________.8.我国台湾省的面积约为3600平方公里,用科学记数法表示为________. 9.+121的倒数是________;________的倒数是-54. 10.用“>”“<”填空: ①23________22②(21)2________(21)3③32________22④(-2)3________(-2)2二、判断题(每小题1分,共5分) 11.零除以任何数都得零( )12.互为相反数的两个数的积为负数( ) 13.如果ab >0,则a >0且b >0( )14.1除以一个非零数的商叫做这个数的倒数( )15.(-3)5表示5个-3相乘( )三、选择题(每小题3分,共21分) 16.下列说法,其中错误的有①一个数与1相乘得原数;②一个数乘以-1得原数的相反数;③0乘以任何数得0;④同号两数相乘,符号不变.A .1个B .2个C .3个D .4个17.下列各对数:①1与1;②-1与1;③a -b 与b -a ;④-1与-1;⑤-5与|6|,其中互为倒数的是A .①②③B .①③⑤C .①③④D .①④ 18.下列各题中两个式子的值相等的是A .-23与(-2)3B .32与23C .(-2)2与 -22D .|-2|与-|-2| 19.下列结论中,其中正确的个数为①0的倒数是0;②一个不等于0的数的倒数的相反数与这个数的相反数的倒数相等;③其倒数等于自身的数是±1;④若a ,b 互为倒数,则-ab=-1.A .4B .3C .2D .1 20.下列各式中结果大于0的是A .1-910×3B .(1-910)×3C .1-(9×3)10D .(1-9)10×3 21.下列说法中正确的是 A .一个数的平方必为正数B .一个数的平方必小于这个数的绝对值C .一个数的平方必大于这个数D .一个数的平方不可能为负数22.用科学记数法表示的数2.89×104,原来是A .2890B .2890000C .28900D .289000四、计算题(共35分)23.(3分)(-3)×(-5)×(+12)×(-21) 24.(3分)-6÷(+3)÷(-4)×(+2) 25.(3分)-5-6÷(-3)26.(3分)(-81)÷241×91÷(-16)27.(3分)-22×(-3)÷5428.(3分)(-1)2000×(-1)2001×(-1)2002÷(-1)200329.(3分)(-2)×(-2001)×[-21-(-21)]×1-200230.(3分)-)45()45(5222-÷-⨯⨯31.(3分)(-5)2÷5×632.(3分)(-2.5)÷(-310)×(-3)33.(5分)30×(21-31+53-109)五、解答题(9分)34.已知A=a+a 2+a 3+……+a 2000(1)若a =1,求A 的值.(2)若a =-1,求A 的值.参考答案一、1.-6 2 2.-3 9 3 -9 3.-91 913 -32 4.-81 -161 5.-23 23 6.-1.2 7.1800 8.3.6×103平方公里 9.32 -141 10.> > > < 二、11.× 12.× 13.× 14.√ 15.√三、16.A 17.D 18.A 19.B 20.D 21.D 22.C四、23.-90 24.1 25.-3 26.41 27.15 28.1 29.-2002 30.1 31.30 32.-49 33.-4 五、34.(1)2000 (2)0。
专题训练(二) 有理数的运算类型一 加减混合运算的技巧(一) 相反数相结合或同号结合1.计算:(1)25.3+(﹣7.3)+(+13.7)+7.3 )()())((8-8032-60110-2++++(二) 同分母相加或凑整相加2. 计算(1)56.8-88.3-56.1012.7-)()(++(2))()()()(1273-1-5341251-872-522+++++(三) 裂项法3.计算:++++…+.类型二 运用分配率解题的技巧(一) 正用分配率4.计算)()(14183-7456-+×(二) 逆用分配率5.计算:)()()()()(763-12763-7-763-5-×+×+×(三) 正用与逆用分配率6.计算:)(31121-18136-121375.41275.3-+×÷+×(四) 除法变乘法,再利用分配率7.计算:)()(481-2413-4367-1211÷+类型三 有规律的运算与新定义运算8.符号“f ”与“g ”表示两种运算,它对一些数的运算结果如下:(1)f (1)=0,f (2)=1,f (3)=2,f (4)=3,…(2)g ()=2,g ()=3,g ()=4,g ()=5,… 利用以上规律计算:g (20201)﹣f (2020)= .9.符号“f”与“g”表示两种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…(2)g()=2,g()=3,g()=4,g()=5,…利用以上规律计算:g()﹣f(2018)=.。
1.先乘方,再乘除,最后加减;之樊仲川亿创作3. 同级运算,从左到右进行;4.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.1、12411 ()()()23523+-++-+-2、4(81)( 2.25)()169-÷-⨯-÷ 3、11(22)3(11)+--⨯- 4、31(12)()15(1)45+⨯--⨯-5、2232[3()2]23-⨯-⨯--6、33102(4)8-÷--7、)]21)21[(122--÷8、121)]3()2[(2⨯-⨯-9、)6(]32)5.0[(22-⨯--10、23533||()14714-⨯-÷11、—22—(—2)2—23+(—2)3 12、2223116(1)(3)(1)(3)22-⨯---÷-⨯-13、199711(1)(10.5)()312----⨯÷- 14、33514(1)(8)(3)[(2)5]217---⨯+-÷-+15、-10 + 8÷(-2 )2-(-4 )×(-3 ) 16、-49 + 2×(-3 )2 + (-6 )÷(-91)17、-14 + ( 1-0.5 )×31×[2×(-3)2] 18、(-2)2-2×[(-21)2-3×43]÷51.19、)8()4()6(52-÷---⨯20、0)132()43(2⨯+-+- 21、6)12()4365127(÷-⨯+-22、22)4()5(25.0)4()85(-⨯-⨯--⨯-23、)23232(21)21(2--⨯+- 24、[][]332)2(3)5(6)7(4-÷--+÷-⨯-25、6-(-12)÷2)2(- 26、(-48)÷ 8 -(-5)÷2)21(- 27、42×)43()32(-+-÷ 0.25 28、()23)9181(-÷-29、()()333232÷---⨯-30、(-5)×6+(-125) ÷(-5)331、)251(4)5(25.0-⨯⨯-⨯-- 32、22)3(61)2132(1-+÷-+-1、【基础题】计算:(1)618-÷)(-)(-312⨯; (2))(-+51232⨯; (3))(-)(-49⨯+)(-60÷12; (4)23)(-×[ )+(--9532 ]. (1))(-)+(-2382⨯; (2)100÷22)(--)(-2÷)(-32; (3))(-4÷)(-)(-343⨯; (4))(-31÷231)(--3214)(-⨯. (1)36×23121)-(; (2)12.7÷)(-1980⨯; (3)6342+)(-⨯;(4))(-43×)-+(-31328; (5)1323-)(-÷)(-21; (6)320-÷34)(-81-;(7)236.15.02)-(-)(-⨯÷22)(-; (8))(-23×[ 2322-)(- ]; (9)[ 2253)-(-)(- ]÷)(-2;(10)16÷)(-)-(-)(-48123⨯. (1)11+(-22)-3×(-11); (2)0313243⨯⨯)-(-)(-;(3)2332-)(-;(4)23÷[ )-(-)(-423]; (5))-(8743÷)(-87; (6))+()(-654360⨯; (7)-27+2×()23-+(-6)÷()231-; (8))(-)-+-(-4151275420361⨯⨯. (1))-(-258÷)(-5; (2)-33121)(--⨯; (3)223232)-(-)(-⨯⨯;(4)0132432⨯⨯)+(-)(-;(5))(-+51262⨯; (6)-10+8÷()22--4×3; (7)-51-()()[]55.24.0-⨯-; (8)()251--(1-0.5)×31; (1)(-8)×5-40; (2)(-1.2)÷(-13)-(-2);(3)-20÷5×14+5×(-3)÷15; (4)-3[-5+(1-0.2÷35)÷(-2)];(5)-23÷153×(-131)2÷(132)2; (6)-52+(1276185+-)×(-2.4) 参考答案1、-1/52、-13、224、95、96、 07、-48 8、-1 9、-15 10、-15/34311、-24 12、-89 13、3 14、2 15、-2016、23 17、2 18、24 19、-28 20、9/1621、1 22、10 23、-1/12 24、104/3 25、926、1427、-3128、-81又1/81 29、-9 30、-29 31、-1/5 32、9 1、【答案】 (1)17; (2)511; (3)31; (4)-11 2、【答案】 (1)-10; (2)22; (3)-16; (4)-25 3、【答案】 (1)1; (2)0; (3)42; (4)423; (5)18; (6)0; (7)-4.64; (8)37; (9)8; (10)-25.4、【答案】 (1)22; (2)0; (3)-17; (4)-423; (5)71; (6)-95; (7)-85;(8)6 .5、【答案】 (1)3; (2)1; (3)-54; (4)0; (5)526; (6)-20; (7)-2; (8)-67.6、【答案】(1)-80; (2)5.6; (3)-2; (4)16; (5)-516; (6)-2.9温习 有理数的乘除、乘方运算测试题一、填空题(每小题3分,共30分) 1.3×(-2)=________,(-6)×(-31)=________. 2.(-3)2的底数是________,结果是________;-32的底数是________,结果是________.3.(-61)÷(+23)=________;-493÷(-176)=________;(+8)÷(-41)=________. 4.23×(-41)3=________;(-91)÷(+34)2=________.5.(-32)×________=1;(-32)×________=-16.-65×(-2.4)×(-53)=________.7.-32×(-5)2÷(-21)3=________.8.我国台湾省的面积约为3600平方千米,用科学记数法暗示为________. 9.+121的倒数是________;________的倒数是-54. 10.用“>”“<”填空: ①23________22②(21)2________(21)3 ③32________22④(-2)3________(-2)2二、判断题(每小题1分,共5分) 11.零除以任何数都得零( )12.互为相反数的两个数的积为正数( ) 13.如果ab >0,则a >0且b >0( )14.1除以一个非零数的商叫做这个数的倒数( ) 15.(-3)5暗示5个-3相乘( ) 三、选择题(每小题3分,共21分) 16.下列说法,其中错误的有①一个数与1相乘得原数;②一个数乘以-1得原数的相反数;③0乘以任何数得0;④同号两数相乘,符号不变.A .1个B .2个C .3个D .4个17.下列各对数:①1与1;②-1与1;③a -b 与b -a ;④-1与-1;⑤-5与|6|,其中互为倒数的是A .①②③B .①③⑤C .①③④D .①④ 18.下列各题中两个式子的值相等的是A .-23与(-2)3B .32与23C .(-2)2与 -22D .|-2|与-|-2| 19.下列结论中,其中正确的个数为①0的倒数是0;②一个不等于0的数的倒数的相反数与这个数的相反数的倒数相等;③其倒数等于自身的数是±1;④若a,b 互为倒数,则-ab=-1.A .4B .3C .2D .1 20.下列各式中结果大于0的是 A .1-910×3 B .(1-910)×3 C .1-(9×3)10 D .(1-9)10×3 21.下列说法中正确的是 A .一个数的平方必为正数B .一个数的平方必小于这个数的绝对值C .一个数的平方必大于这个数D .一个数的平方不成能为正数22.用科学记数法暗示的数2.89×104,原来是 A .2890 B .2890000 C .28900 D .289000 四、计算题(共35分)23.(3分)(-3)×(-5)×(+12)×(-21) 24.(3分)-6÷(+3)÷(-4)×(+2) 25.(3分)-5-6÷(-3)26.(3分)(-81)÷241×91÷(-16) 27.(3分)-22×(-3)÷5428.(3分)(-1)2000×(-1)2001×(-1)2002÷(-1)200329.(3分)(-2)×(-2001)×[-21-(-21)]×1-2002 30.(3分)-)45()45(5222-÷-⨯⨯ 31.(3分)(-5)2÷5×632.(3分)(-2.5)÷(-310)×(-3) 33.(5分)30×(21-31+53-109)五、解答题(9分)34.已知A=a+a2+a3+……+a2000 (1)若a=1,求A 的值. (2)若a=-1,求A 的值.参考答案一、1.-6 2 2.-3 9 3 -9 3.-91913-32 4.-81 -161 5.-2323 6.-1.2 7.1800 8.3.6×103平方千米 9.32 -14110.> > > <二、11.× 12.× 13.× 14.√ 15.√三、16.A 17.D 18.A 19.B 20.D 21.D 22.C 四、23.-90 24.1 25.-3 26.4127.15 28.1 29.-2002 30.1 31.30 32.-4933.-4。
七年级上册计算题专项训练一、有理数的运算1. 计算:(-3)+5 (-2)解析:首先去括号,根据去括号法则,括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变;括号前是“”号,把括号和它前面的“”号去掉后,原括号里各项的符号都要改变。
所以原式变为-3 + 5+2。
然后按照从左到右的顺序进行计算,-3+5 = 2,2 + 2=4。
2. 计算:-2×(-3)÷(1)/(2)解析:先计算乘法,根据有理数乘法法则,两数相乘,同号得正,异号得负,并把绝对值相乘,所以-2×(-3)=6。
再计算除法,除以一个数等于乘以它的倒数,(1)/(2)的倒数是2,所以6÷(1)/(2)=6×2 = 12。
3. 计算:(-2)^3+(-3)×[(-4)^2 2]-(-3)^2解析:先计算幂运算,(-2)^3=-8,(-4)^2 = 16,(-3)^2=9。
原式变为-8+(-3)×(16 2)-9。
接着计算括号内的式子,16-2 = 14。
然后计算乘法,-3×14=-42。
最后计算加减法,-8+(-42)-9=-8 42-9=-59。
二、整式的加减1. 化简:3a + 2b 5a b解析:合并同类项,同类项是指所含字母相同,并且相同字母的指数也相同的项。
对于a的同类项,3a-5a=-2a;对于b的同类项,2b b=b。
所以化简结果为-2a + b。
2. 先化简,再求值:(2x^2 3xy + 4y^2)-3(x^2 xy+(5)/(3)y^2),其中x = -2,y = 1解析:先去括号,2x^2-3xy + 4y^2-3x^2+3xy 5y^2。
然后合并同类项,(2x^2-3x^2)+(-3xy + 3xy)+(4y^2 5y^2)=-x^2 y^2。
当x = -2,y = 1时,代入-x^2 y^2,-(-2)^2-1^2=-4 1=-5。
专项练习有理数的混合运算技巧► 技巧一 凑零相加法1.计算:(-15.43)+(-4.15)+(+15.20)+(+4.15)+(+0.23)+(-5). 2.计算:10-213-6-4+23+123+1.3.计算:8+5+(-4)-(-6)+4-(-2)+3+(-3)+(-2)-9+1. ► 技巧二 凑整相加法4.计算:(+6.4)+(-5.1)-(-3.9)+(-2.4)-(+4.9). 5.计算:⎝ ⎛⎭⎪⎫+235+(-0.8)+⎝ ⎛⎭⎪⎫+318+(+2.8)+⎝ ⎛⎭⎪⎫-18. ► 技巧三 同号相加法6.计算:(+5)+(-6)+(+4)+(+9)+(-7)+(-8). 7.计算:-(+0.5)-⎝ ⎛⎭⎪⎫-314+2.75-⎝ ⎛⎭⎪⎫+712. ► 技巧四 同分母相加 8.计算:-112+114-⎝ ⎛⎭⎪⎫-34-⎝ ⎛⎭⎪⎫+212. 9.计算:-1423+11215-⎝ ⎛⎭⎪⎫-1223-14+⎝ ⎛⎭⎪⎫-11215. ► 技巧五 巧分离相加法 10.计算:⎝ ⎛⎭⎪⎫-200056+⎝ ⎛⎭⎪⎫-199923+400034+⎝ ⎛⎭⎪⎫-112. ► 技巧六 拆项相消法11.请观察以下算式: 11×2=1-12,12×3=12-13,13×4=13-14,14×5=14-15,…. (1)第10个算式为____________=__________,第n 个算式为____________=____________; (2)运用以上规律计算:12+16+112+…+190+1110+1132.► 技巧七 错位相减法12.计算:1-12+14-18+116-132+164-1128.► 技巧八 逆用分配律法13.计算:25×(-18)+(-25)×12+25×(-10). 14.计算:-7778÷(-7)-3338÷3.详解详析1.解:原式=[(-15.43)+(+15.20)+(+0.23)]+[(-4.15)+(+4.15)]+(-5)=0+0+(-5)=-5. 2.解:原式=(10-6-4)+⎝ ⎛⎭⎪⎫-213+23+123+1=0+0+1=1. 3.解:原式=8+5-4+6+4+2+3-3-2-9+1=(-4+4)+(2-2)+(3-3)+(8-9+1)+5+6=0+0+0+0+11=11.4.解:原式=(+6.4)+(-5.1)+(+3.9)+(-2.4)+(-4.9)=6.4-5.1+3.9-2.4-4.9=(6.4-2.4)+(-5.1-4.9)+3.9=4-10+3.9=-2.1. 5.解:原式=[(-0.8)+(+2.8)]+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫+318+⎝ ⎛⎭⎪⎫-18+⎝ ⎛⎭⎪⎫+235 =2+3+235 =735.6.解:原式=[(+5)+(+4)+(+9)]+[(-6)+(-7)+(-8)]=(+18)+(-21)=-3.7.解:原式=-0.5+314+2.75-712 =⎝ ⎛⎭⎪⎫-0.5-712+⎝ ⎛⎭⎪⎫314+2.75 =-8+6=-2.8.解:原式=-32+54+34-52=⎝ ⎛⎭⎪⎫-32-52+⎝ ⎛⎭⎪⎫54+34 =-4+2=-2.9.解:原式=-1423+11215+1223-14-11215=⎝ ⎛⎭⎪⎫-1423+1223+⎝ ⎛⎭⎪⎫11215-11215-14 =-2+0-14=-16. 10.解:原式=-201956-201923+400034-112=(-2019-2019+4000-1)+(-56-23+34-12)=0-54 =-54. 11.解:(1)110×11 110-111 1n 〔n +1〕 1n -1n +1 (2)12+16+112+…+190+1110+1132=1-12+12-13+13-14+…+19-110+110-111+111-112=1+(-12+12)+(-13+13)+(-14+14)+…+(-111+111)-112=1-112=1112. 12.解:设S =1-12+14-18+116-132+164-1128,①那么2S =2-1+12-14+18-116+132-164.②把①和②式的左右两边分别相加, 得S +2S =2+(1-1)+⎝ ⎛⎭⎪⎫-12+12+…+⎝⎛⎭⎪⎫164-164-1128, 那么3S =2-1128=255128,所以S =85128,即1-12+14-18+116-132+164-1128=85128.13.解:原式=25×(-18)-25×12+25×(-10)=25×(-18-12-10)=-1000. 14.解:原式=-(77+78)×(-17)-(33+38)×13=11+18-11-18=0.。
专题2.4 有理数的混合运算专项训练(100题)参考答案与试题解析一.解答题(共25小题,满分100分,每小题4分)1.(4分)(2022•黄冈开学)计算:(1)(−514)+(−3.5); (2)23+(−15)+(−1)+13;(3)−22÷(−12)−(138+213−334)×48; (4)(﹣2)2×3+(﹣3)3÷9.【分析】(1)先通分,然后根据有理数的加法法则计算即可;(2)根据加法的交换律和结合律解答即可;(3)先算乘方,然后算乘除法,最后算加减法即可;(4)先算乘方,再算乘除法,最后算加法即可.【解答】解:(1)(−514)+(−3.5)=(﹣514)+(﹣324) =﹣834; (2)23+(−15)+(−1)+13=(23+13)+[(−15)+(﹣1)] =1+(﹣115)=−15;(3)−22÷(−12)−(138+213−334)×48 =﹣4×(﹣2)−118×48−73×48+154×48=8﹣66﹣112+180=10;(4)(﹣2)2×3+(﹣3)3÷9=4×3+(﹣27)÷9=12+(﹣3)=9.2.(4分)(2022•垦利区期末)计算:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9);(2)−12021×[4−(−3)2]+3÷(−34);(3)(512−79+23)÷136;(4)−316×7−316×(−9)+(−196)×(−8).【分析】(1)先把减法转化为加法,然后根据有理数的加法法则计算即可;(2)先算乘方和括号内的式子,然后计算括号外的乘除法、最后算加法即可;(3)先把除法转化为乘法、然后根据乘法分配律计算即可;(4)先将带分数化为假分数,然后根据乘法分配律计算即可.【解答】解:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9)=(﹣5)+(﹣4)+(﹣101)+9=﹣101;(2)−12021×[4−(−3)2]+3÷(−34)=﹣1×(4﹣9)+3×(−43)=﹣1×(﹣5)+(﹣4)=5+(﹣4)=1;(3)(512−79+23)÷136=(512−79+23)×36=512×36−79×36+23×36=15﹣28+24=11;(4)−316×7−316×(−9)+(−196)×(−8)=−196×7−196×(﹣9)−196×(﹣8)=−196×[7+(﹣9)+(﹣8)]=−196×(﹣10)=953.3.(4分)(2022•呼和浩特期末)计算:(1)(﹣8)×(﹣7)÷(−12);(2)(23−34+16)÷(−124);(3)﹣14﹣(1﹣)×13−|1﹣(﹣5)2|;(4)|13−12|÷(−112)−18×(−2)3.【分析】(1)先把除法统一成乘法,按乘法法则计算即可;(2)利用乘法的分配律计算比较简便;(3)先算乘方,再算绝对值和括号里面的,最后算乘法和加减;(4)先算乘方和绝对值里面的,再算乘除,最后算加减.【解答】解:(1)(﹣8)×(﹣7)÷(−12)=﹣8×7×2=﹣112;(2)(23−34+16)÷(−124)=(23−34+16)×(﹣24)=23×(﹣24)−34×(﹣24)+16×(﹣24)=﹣16+18﹣4=﹣2;(3)﹣14﹣(1﹣)×13−|1﹣(﹣5)2|=﹣1−12×13−|1﹣25|=﹣1−16−24=﹣2516;(4)|13−12|÷(−112)−18×(−2)3 =|−16|×(﹣12)−18×(﹣8)=16×(﹣12)+1=﹣2+1=﹣1.4.(4分)(2022•重庆期末)计算:(1)3+(﹣6)﹣(﹣7);(2)(﹣22)×(﹣114)÷13;(3)(34−13−56)×(﹣12); (4)﹣12023﹣(−13)×(﹣22+3)+12×|3﹣1|.【分析】(1)先把减法转化为加法,然后根据有理数加法法则计算即可;(2)先算乘方、再算乘除法即可;(3)根据乘法分配律可以解答本题;(4)先算乘方和括号内的式子,再算括号外的乘法和加减法即可.【解答】解:(1)3+(﹣6)﹣(﹣7)=3+(﹣6)+7=4;(2)(﹣22)×(﹣114)÷13 =(﹣4)×(−54)×3=15;(3)(34−13−56)×(﹣12)=34×(﹣12)−13×(﹣12)−56×(﹣12)=(﹣9)+4+10=5;(4)﹣12023﹣(−13)×(﹣22+3)+12×|3﹣1|=﹣1﹣(−13)×(﹣4+3)+12×2 =﹣1+13×(﹣1)+1=﹣1+(−13)+1=−13.5.(4分)(2022•镇平县校级期末)计算:(1)|﹣2|÷(−12)+(﹣5)×(﹣2); (2)(23−12+56)×(﹣24); (3)15÷(−32+56);(4)(﹣2)2﹣|﹣7|﹣3÷(−14)+(﹣3)3×(−13)2.【分析】(1)首先计算绝对值,然后计算除法、乘法,最后计算加法即可.(2)根据乘法分配律计算即可.(3)首先计算小括号里面的加法,然后计算小括号外面的除法即可.(4)首先计算乘方、绝对值,然后计算除法、乘法,最后从左向右依次计算即可.【解答】解:(1)|﹣2|÷(−12)+(﹣5)×(﹣2)=2×(﹣2)+10=﹣4+10=6.(2)(23−12+56)×(﹣24)=23×(﹣24)−12×(﹣24)+56×(﹣24)=﹣16+12﹣20=﹣24.(3)15÷(−32+56)=15÷(−23)=15×(−32)=﹣.(4)(﹣2)2﹣|﹣7|﹣3÷(−14)+(﹣3)3×(−13)2 =4﹣7﹣3×(﹣4)+(﹣27)×19=4﹣7+12+(﹣3)=﹣3+12+(﹣3)=9+(﹣3)=6.6.(4分)(2022•高青县期末)计算:(1)(14+38−712)÷124; (2)﹣23÷8−14×(﹣2)2;(3)﹣24+(3﹣7)2﹣2×(﹣1)2;(4)[(﹣2)3+43]÷4+(−23). 【分析】(1)运用乘法对加法的分配律,简化计算.(2)先算乘方,再算乘除,最后算加减.(3)先算乘方,再算乘除,最后算加减.(4)先算乘方,再算中括号里的,再算除法,再算加法.【解答】解:(1)原式=(14+38−712)×24=14×24+38×24−712×24=6+9﹣14=1.(2)原式=−8÷8−14×4 =﹣1﹣1=﹣2.(3)原式=﹣16+(﹣4)2﹣2×1=﹣16+16﹣2=﹣2.(4)原式=(−8+43)÷4+(−23) =−203÷4+(−23) =−53+(−23)=−73.7.(4分)(2022•莱西市期末)计算:(1)﹣﹣﹣;(2)(−613)+(−713)﹣5; (3)25×34−(﹣25)×12+25×;(4)5×(﹣6)﹣(﹣4)2÷(﹣8).【分析】(1)利用有理数的加减运算的法则进行求解即可;(2)利用加减运算的法则进行求解即可;(3)先把式子进行整理,再利用乘法的分配律进行求解即可;(4)先算乘方,再算乘法与除法,最后算加法即可.【解答】解:(1)﹣﹣﹣=﹣﹣=﹣=﹣12;(2)(−613)+(−713)﹣5 =﹣1﹣5=﹣6;(3)25×34−(﹣25)×12+25× =25×0.75+25×0.5+25×=25×()=25×=;(4)5×(﹣6)﹣(﹣4)2÷(﹣8)=5×(﹣6)﹣16÷(﹣8)=﹣30+2=﹣28.8.(4分)(2022•越城区校级月考)计算(1)10﹣1÷(16−13)÷112(2)﹣12﹣6×(−13)2+(﹣5)×(﹣3)(3)32÷(﹣22)×(﹣114)+(﹣5)6×(−125)3 (4)[1﹣(38+16−34)×24]÷5.【分析】(1)先算括号里面的,再算除法,最后算减法即可;(2)先算乘方,再算乘法,最后算加减即可;(3)先算乘方,再算除法和乘法,最后算加减即可;(4)先算乘法,再算加减,最后算除法即可.【解答】解: (1)原式=10﹣1÷(−16)×12=10+72=82;(2)原式=﹣1﹣6×19+15 =﹣1−23+15 =1313;(3)原式=32÷(﹣4)×(−54)+(﹣1)=10﹣1=9;(4)[1﹣(38+16−34)×24]÷5.=[1﹣(9+4﹣18)]÷5=[1﹣(﹣5)]÷5=6÷5=.9.(4分)(2022•宜兴市期中)计算:(1)﹣10﹣(﹣16)+(﹣24);(2)5÷(−35)×53; (3)﹣22×7﹣(﹣3)×6+5;(4)(113+18−2.75)×(﹣24)+(﹣1)2014+(﹣3)3. 【分析】(1)根据有理数的加减混合运算进行计算即可;(2)根据有理数的乘除法进行计算即可;(3)根据有理数的混合运算进行计算即可;(4)根据有理数的混合运算进行计算即可.【解答】解:(1)原式=﹣10+16﹣24=﹣18;(2)原式=﹣5×53×53=−1259;(3)原式=﹣4×7+18+5=﹣28+18+5=﹣5;(4)原式=−43×24−18×24+114×24+1﹣27 =﹣32﹣3+66﹣26=5.10.(4分)(2022•镇平县月考)计算:(1)(−58)÷143×(−165)÷(−67)(2)﹣3﹣[﹣5+(1﹣×35)÷(﹣2)](3)(413−312)×(﹣2)﹣223÷(−12) (4)[50﹣(79−1112+16)×(﹣6)2]÷(﹣7)2.【分析】(1)原式从左到右依次计算即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式先计算乘除运算,再计算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=−58×314×165×76=−12; (2)原式=﹣3+5+(1−325)×12=−3+5+1125=21125; (3)原式=−263+7+163=323;(4)原式=(50﹣28+33﹣6)×149=49×149=1.11.(4分)(2022•饶平县校级期中)计算:(1)2﹣5+4﹣(﹣7)+(﹣6)(2)(﹣2467)÷6 (3)(﹣18)÷214×49÷(﹣16)(4)43−{(−3)4−[(−1)÷2.5+214×(−4)]÷(24815−27815)}.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式变形后,利用乘法分配律计算即可得到结果;(3)原式利用除法法则变形,约分即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=2﹣5+4+7﹣6=2;(2)原式=(﹣24−67)×16=−4−17=−417;(3)原式=﹣18×49×49×(−116)=29;(4)原式=64﹣81+(﹣925)÷(﹣3)=64﹣81+4715=−131315. 12.(4分)(2022•定陶区期中)计算:(1)23﹣6×(﹣3)+2×(﹣4);(2)(﹣134)﹣(+613)﹣+103; (3)214×(−67)÷(12−2);(4)(﹣5)3×(−35)+32÷(﹣22)×(﹣114).【分析】(1)根据有理数的乘法和加减法可以解答本题;(2)根据有理数的加减法可以解答本题;(3)根据有理数的乘除法和减法可以解答本题;(4)根据有理数的乘方、有理数的乘除法和加法可以解答本题.【解答】解:(1)23﹣6×(﹣3)+2×(﹣4)=23+18+(﹣8)=33;(2)(﹣134)﹣(+613)﹣+103=(﹣134)+(﹣613)+(﹣214)+313 =[(﹣134)+(﹣214)]+[(﹣613)+313] =(﹣4)+(﹣3)=﹣7;(3)214×(−67)÷(12−2) =94×(−67)÷(−32) =94×67×23=97; (4)(﹣5)3×(−35)+32÷(﹣22)×(﹣114)=(﹣125)×(−35)+32÷(﹣4)×(−54)=75+(﹣8)×(−54)=75+10=85.13.(4分)(2022•甘州区期末)计算:(1)(18−13+16)×(−24); (2)|−2|×(−1)2023−3÷12×2;(3)−12−(1−0.5)×13×[2−(−3)]2;(4)7×(−36)×(−87)×16. 【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算绝对值及乘方运算,再计算乘除运算,最后算加减运算,即可得到结果;(3)原式先计算乘方及括号中的运算,再计算乘法运算,最后算加减运算,即可得到结果;(4)原式约分即可得到结果.【解答】解:(1)原式=18×(﹣24)−13×(﹣24)+16×(﹣24)=﹣3+8﹣4=1;(2)原式=2×(﹣1)﹣3×2×2=﹣2﹣12=﹣14;(3)原式=﹣1−12×13×25 =﹣1+76 =−316; (4)原式=48.14.(4分)(2022•江都区期中)计算(1)0﹣(+3)+(﹣5)﹣(﹣7)﹣(﹣3)(2)48×(−23)﹣(﹣48)÷(﹣8) (3)﹣12×(12−34+112)(4)﹣12﹣(1﹣)×13×[3﹣(﹣3)2].【分析】(1)先将减法转化为加法,再利用加法法则计算;(2)先算乘除,再算加法即可;(3)利用分配律计算即可;(4)先算乘方,再算乘除,最后算加减,有括号,要先做括号内的运算.【解答】解:(1)原式=0﹣3﹣5+7+3=﹣8+10=2;(2)原式=﹣32﹣6=﹣38;(3)原式=﹣12×12+12×34−12×112=﹣6+9﹣1=﹣7+9=2;(4)原式=﹣1−12×13×(3﹣9) =﹣1−12×13×(﹣6) =﹣1+1=0.15.(4分)(2022•铁力市校级期中)计算:(1)25−|−112|−(+214)+(−2.75) (2)[(−12)2+(−14)×16+42]×[(−32)−3](3)−13−(1−0.5)×13×[2−(−3)2](4)(−5)×313+2×313+(−6)×313.【分析】(1)先计算绝对值、将减法转化为加法,再根据法则计算可得;(2)根据有理数混合运算顺序和运算法则计算可得;(3)根据有理数混合运算顺序和运算法则计算可得;(4)逆用乘法分配律提取313,再计算括号内的,最后计算乘法即可得.【解答】解:(1)原式=25−32−94−114=−1110−5=﹣6110;(2)原式=(14−4+16)×(−92)=494×(−92)8(3)原式=﹣1−12×13×(﹣7)=﹣1+76=16;(4)原式=103×(﹣5+2﹣6) =103×(﹣9)=﹣30.16.(4分)(2022•禄丰县校级期中)计算(1)23﹣17﹣(﹣7)+(﹣16)(2)(﹣4)+|﹣8|+(﹣3)3﹣(﹣3)(3)﹣24÷(223)2﹣312×(−14)(4)×(﹣2)3﹣[4÷(−23)2+1]+(﹣1)2022.【分析】(1)根据有理数的加法法则计算即可;(2)先计算乘方、绝对值即可;(3)先算乘方,再算乘除,最后算加减即可;(4)先算乘方,再算乘除,最后算加减即可;【解答】解:(1)23﹣17﹣(﹣7)+(﹣16)=23﹣17+7﹣16=﹣3(2)(﹣4)+|﹣8|+(﹣3)3﹣(﹣3)=﹣4+8﹣27+3=﹣20(3)﹣24÷(223)2﹣312×(−14)=﹣24×964+72×14=−278+788=−52 (4)×(﹣2)3﹣[4÷(−23)2+1]+(﹣1)2022.=﹣2﹣(9+1)+1=﹣1117.(4分)(2022•高新区校级期中)计算:(1)12﹣(﹣18)+(﹣12)﹣15(2)(−13)﹣(−25)+(−23)+35(3)(14−12+16)×(﹣24)(4)﹣14+(﹣2)3×(−12)﹣(﹣32)【分析】(1)减法转化为加法,依据法则计算可得;(2)减法转化为加法,运用加法的交换律和运算法则计算可得;(3)运用乘法分配律计算可得;(4)根据有理数混合运算顺序和运算法则计算可得.【解答】解:(1)原式=12+18﹣12﹣15=30﹣27=3;(2)原式=−13−23+25+35=−1+1=0;(3)原式=14×(﹣24)−12×(﹣24)+16×(﹣24)=﹣6+12﹣4=2;(4)原式=﹣1+8×12+9=﹣1+4+9=12.18.(4分)(2022•如皋市校级月考)计算:(1)11+(﹣22)﹣3×(﹣11)(2)(−36911)÷9(3)3.52×(−47)+2.48×(−47)−13×(−47) (4)(13−12)×(−6)+(−14)÷(−18).【分析】(1)先计算乘法,再计算加减可得;(2)将除法转化为乘法,再计算乘法可得;(3)逆用乘法分配律提取公因数−47,再计算括号内的,最后计算乘法即可得;(4)先计算乘法、除法,然后计算加减可得.【解答】解:(1)原式=11﹣22+33=22;(2)原式=﹣(36+911)×19=−4−111=−4111;(3)原式=(−47)×(﹣13)=(−47)×(﹣7)=4;(4)原式=﹣2+3+2=3.19.(4分)(2022•郯城县月考)计算(1)1+(﹣2)+|﹣2﹣3|﹣5﹣(﹣9)(2)113×(13−12)×311÷54(3)(512+23−34)×(﹣12)(4)﹣3﹣[﹣5+(1﹣2×35)÷(﹣2)].【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算括号中的运算,再计算乘除运算即可求出值;(3)原式利用乘法分配律计算即可求出值;(4)原式先计算乘除运算,再计算加减运算即可求出值.【解答】解:(1)原式=1﹣2+5﹣5+9=8;(2)原式=113×(−16)×311×45=−215; (3)原式=512×(﹣12)+23×(﹣12)−34×(﹣12)=﹣5﹣8+9=﹣4;(4)原式=﹣3+5−110=.20.(4分)(2022•南川区校级月考)计算(1)(+45)﹣91+5+(﹣9)(2)(−34)×113÷(﹣112) (3)(−74)÷78−23×(−6)(4)[1124−(38+16−34)×24]÷5.【分析】(1)根据加法交换律和结合律简便计算;(2)将除法变为乘法,再约分计算即可求解;(3)先算乘除法,再算加法即可求解;(4)先算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.注意乘法分配律的运用.【解答】解:(1)(+45)﹣91+5+(﹣9)=(45+5)+(﹣91﹣9)=50﹣100=﹣50;(2)(−34)×113÷(﹣112) =34×43×23 =23;(3)(−74)÷78−23×(−6)=﹣2+4=2;(4)[1124−(38+16−34)×24]÷5 =[1124−9﹣4+18]÷5=6124÷5=1524. 21.(4分)(2022•凉州区校级月考)计算:(1)74÷78−23×(﹣6)(2)(−34−59+712)÷136(3)(﹣)+(﹣)﹣(﹣)﹣|﹣5.7|(4)113×(13−12)×311÷54.【分析】(1)根据有理数的乘除法和减法可以解答本题;(2)先把除法转化为乘法,再根据乘法分配律即可解答本题;(3)根据有理数的加减法可以解答本题;(4)根据有理数的乘除法和减法可以解答本题.【解答】解:(1)74÷78−23×(﹣6)=74×87+4=2+4=6;(2)(−34−59+712)÷136=(−34−59+712)×36=﹣27﹣15+21=﹣21;(3)(﹣)+(﹣)﹣(﹣)﹣|﹣5.7|=(﹣)+(﹣)+2.5+(﹣)=﹣;(4)113×(13−12)×311÷54=113×(−16)×311×45=−215.22.(4分)(2022•凉州区校级月考)计算:(1)74÷78−23×(﹣6)(2)(−34−59+712)÷136(3)(﹣)+(﹣)﹣(﹣)﹣|﹣5.7|(4)113×(13−12)×311÷54.【分析】(1)根据有理数的乘除法和减法可以解答本题;(2)先把除法转化为乘法,再根据乘法分配律即可解答本题;(3)根据有理数的加减法可以解答本题;(4)根据有理数的乘除法和减法可以解答本题.【解答】解:(1)74÷78−23×(﹣6)=74×87+4=2+4=6;(2)(−34−59+712)÷136=(−34−59+712)×36=﹣27﹣15+21=﹣21;(3)(﹣)+(﹣)﹣(﹣)﹣|﹣5.7|=(﹣)+(﹣)+2.5+(﹣)=﹣;(4)113×(13−12)×311÷54=113×(−16)×311×45=−215.23.(4分)(2022•兴隆台区校级月考)计算(1)(1−38+712)×(﹣24)(2)25×16+25×13−25×12(3)(﹣1)4−17×[2﹣(﹣4)2](4)﹣32+16÷(﹣2)×12−(﹣1)2015.【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式逆用乘法分配律计算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解: (1)原式=﹣24+9﹣14=﹣29;(2)原式=25×(16+13−12)=25×0=0;(3)原式=1−17×(﹣14)=1+2=3; (4)原式=﹣9﹣4+1=﹣12.24.(4分)(2022•苏仙区校级期中)计算(1)23+(﹣37)﹣23+7(2)﹣10+8÷(﹣2)2﹣(﹣4)×(﹣3)(3)(23−112−415)×(﹣60).(4)﹣12022+|﹣5|×(−85)﹣(﹣4)2÷(﹣8).【分析】(1)原式结合后,相加即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=23﹣23﹣37+7=﹣30;(2)原式=﹣10+2﹣12=﹣20;(3)原式=﹣40+5+16=﹣19;(4)原式=﹣1﹣8+2=﹣7.25.(4分)(2022•立山区期中)计算题(1)﹣81÷(﹣214)×49÷(﹣16);(2)(−124)÷(123−54+76);(3)﹣32÷(﹣2)3×|﹣113|×6+(﹣2)4;(4)﹣(23)2×18﹣2×(−15)÷25+|﹣8|×2+179×(﹣112)2.【分析】(1)原式从左到右依次计算即可求出值;(2)原式被除式与除式调换求出值,即可求出所求;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=﹣81×49×49×116=﹣1;(2)(123−54+76)÷(−124)=(123−54+76)×(﹣24)=53×(﹣24)−54×(﹣24)+76×(﹣24)=﹣40+30﹣28=﹣38,则原式=−138;(3)原式=﹣9÷(﹣8)×43×6+16=98×43×6+16=9+16=25;(4)原式=−49×18﹣2×(−15)×52+8×+169×94=﹣8+1+2+4=﹣1.。
有理数乘除法则专项训练含答案1.计算:(1)5×(-4)(2)(-4)×(-9)(3)(-0.6)×(-5)(4)×(-)解:(1)5×(-4)=-(5×4)=20(2)(-4)×(-9)=4×9=36(3)(-0.6)×(-5)=0.6×5=3(4)×(-)=-(×)=-指导:(1)(4)题是异号两数相乘,先确定积的符号为“-”,再把绝对值相乘;(2)(3)题是同号两数相乘,先确定积的符号为“+”,再把绝对值相乘。
2.计算:(1)(-4)×9×(-2.5)解:(1)(-4)×9×(-2.5)=(-4)×(-2.5)×9=10×9=90指导:(1)用乘法交换律和结合律。
3.-3的倒数是()A.B.C.-3D.3[来源:]解:A指导:倒数概念以及有理数除法运算是中考命题热点。
求一个数的倒数,用1除以这个数的商即是。
注意:负数的倒数是负数,0没有倒数。
4.中百超市推出如下优惠方案:(1)一次性购物不超过100元,不享受优惠;(2)一次性购物超过100元,但不超过300元一律九折;(3)一次性购物超过300元一律八折;某人两次购物分别付款80元,252元,如果他将这两次所购商品一次性购买,则应付款()。
A.288元B.332元C.288元或316元D.332元或363元解:C指导:本题渗透了分类讨论思想。
当252元的实际价值是在300元以内时的实际价值应为:252÷0.9=280元,故应付款(280+80)×0.8=288(元);当252元的实际价值是在300元以上时的实际价值应为:252÷0.8=315(元),故应付款(315+80)×0.8=316(元)。
第1章 有理数(易错必刷30题14种题型专项训练)➢ 正数和负数 ➢ 有理数 ➢ 数轴 ➢ 相反数 ➢ 绝对值 ➢ 有理数大小比较 ➢ 有理数的减法➢ 有理数的乘法 ➢ 有理数的乘方 ➢ 非负数的性质:偶次方 ➢ 有理数的混合运算 ➢ 科学记数法—表示较大的数 ➢ 实数大小比较 ➢ 规律型:数字的变化类一.正数和负数(共4小题)1.(2022秋•霍林郭勒市校级月考)如果向东走6km ,记作+6km ,那么﹣3km 表示( ) A .向西走3kmB .向北走3kmC .向南走3kmD .向东走3km2.(2022秋•桂林月考)如果零上2℃记作+2℃,那么零下3℃记作 .3.(2022秋•惠济区期中)为全力迎接全国第十四届运动会,西安市将继续加快交通高质量发展,不断增强市民获得感和幸福感.某检修小组从O 地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶记录如下,(单位:km ) 第一次 第二次 第三次 第四次 第五次 第六次 第七次 ﹣4+7﹣9+8+6﹣5﹣1(1)求收工时距O 地多远? (2)在第几次记录时距O 地最远?(3)若每千米耗油0.2升,问共耗油多少升?4.(2022秋•福清市校级月考)超市购进8筐白菜,以每筐25kg 为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,﹣3,2,﹣0.5,1,﹣2,﹣2,﹣2.5. (1)这8筐白菜总计超过或不足多少千克?(2)这8筐白菜一共多少千克?(3)超市计划这8筐白菜按每千克3元销售,为促销超市决定打九折销售,求这8筐白菜现价比原价便宜了多少钱?二.有理数(共1小题)5.(2022秋•旌阳区校级月考)请你把下列各数填入表示它所在的数集的圈里:﹣2,﹣20%,﹣0.13,,10,,21,6.2,4.7,﹣8.正整数:{ …};负整数:{ …};正分数:{ …};负分数:{ …}.三.数轴(共3小题)6.(2022秋•隆昌市校级月考)数轴上点P表示的数为﹣2,与点P距离为3个单位长度的点表示的数为()A.1B.5C.1或﹣5D.1或57.(2022秋•雁塔区校级月考)有理数a、b、c在数轴上的位置如图所示,则|a|﹣|a﹣b|+|c﹣a|+|b﹣c|的值是()A.2c﹣3a B.a C.2c﹣a D.2c﹣2b8.(2022秋•广信区月考)数a,b,c在数轴上的位置如图所示:化简:|a+c|+|b﹣c|﹣|c﹣b|.四.相反数(共1小题)9.(2022秋•齐河县校级月考)的相反数是()A.2B.﹣2C.D.五.绝对值(共1小题)10.(2022秋•启东市校级月考)已知|m|=4,|n|=6,且m+n=|m+n|,则m﹣n的值是()A.﹣10B.﹣2C.﹣2或﹣10D.2六.有理数大小比较(共3小题)11.(2022秋•连山区月考)在有理数0,2,﹣1,﹣2中,最小的数是()A.0B.2C.﹣1D.﹣212.(2022秋•高明区月考)写出一个比﹣3大的负整数为.13.(2022秋•阿图什市校级月考)在数轴上把下列各数表示出来,并用小于符号从小到大排列出来﹣2,0,|﹣4|,0.5,﹣5,﹣(﹣3).七.有理数的减法(共1小题)14.(2022秋•扬州月考)对于含绝对值的算式,在有些情况下,可以不需要计算出结果也能将绝对值符号去掉,例如:|7﹣6|=7﹣6;|6﹣7|=7﹣6;=;=.观察上述式子的特征,解答下列问题:(1)把下列各式写成去掉绝对值符号的形式(不用写出计算结果):①|23﹣47|=;②=;(2)当a>b时,|a﹣b|=a﹣b;当a<b时,|a﹣b|=;(3)计算:.八.有理数的乘法(共1小题)15.(2022秋•南安市月考)如果两数之和是负数,且它们的积是负数,那么()A.这两个数都是负数B.这两个数都是正数C.这两个数中,一个是正数,一个是负数,且负数的绝对值较大D.这两个数中,一个是正数,一个是负数,且正数的绝对值较大九.有理数的乘方(共2小题)16.(2021秋•香洲区校级月考)下列说法正确的是()A.倒数等于它本身的数只有1B.平方等于它本身的数只有1C.立方等于它本身的数只有1D.正数的绝对值是它本身17.(2022秋•桂林月考)下列各数中,互为相反数的是()A.|﹣1|和1B.﹣3和﹣(﹣2)C.(﹣2)2和﹣22D.﹣3和一十.非负数的性质:偶次方(共1小题)18.(2022春•南岗区校级月考)已知|a﹣2|+(b+3)2=0,则b a=.一十一.有理数的混合运算(共8小题)19.(2022秋•怀柔区校级月考)如果a>0,那么下面各式计算结果最大的是()A.B.C.D.20.(2022秋•西城区校级月考)(1)﹣5+1﹣(﹣2);(2)(﹣)2+8×(﹣);(3)(+﹣)÷(﹣);(4)[﹣33×()2﹣|﹣1|]×(﹣).21.(2022秋•朝阳区校级月考)计算(能用简便方法的用简便方法):(1)(﹣3)+12+(﹣17)+(+8);(2);(3);(4).22.(2022•越秀区校级开学)39×+148×+48×.23.(2022•越秀区校级开学).24.(2022秋•宛城区校级月考)某水果店以每箱200元的价格从水果批发市场购进20箱樱桃,若以每箱净重10千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下表:与标准重量的差值(单位:千克)﹣0.5﹣0.2500.250.30.5箱数1246n2(1)求n的值及这20箱樱桃的总重量:(2)若水果店打算以每千克25元销售这批樱桃,若全部售出可获利多少元;(3)实际上该水果店第一天以(2)中的价格只销售了这批樱桃的60%,第二天因为害怕剩余樱桃腐烂,决定降价把剩余的樱桃以原零售价的70%全部售出,水果店在销售这批樱桃过程中是盈利还是亏损,盈利或亏损多少元.25.(2022秋•朝阳区校级月考)对于任意的非零有理数a,b,定义:,解决以下问题:(1)计算(﹣3)*4;(2)计算(﹣6)*2*(﹣3);(3)请你举例验证一下交换律即a*b=b*a在这一运算中是否成立.(举一个例子即可).26.(2022秋•庐江县期中)小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9.问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时,;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,.(2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0];(3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证.一十二.科学记数法—表示较大的数(共2小题)27.(2022秋•沈丘县月考)2021年末河南省常住人口9883万人,其中城镇常住人口5579万人,乡村常住人口4304万人;常住人口城镇化率为56.45%,比上年末提高1.02个百分点,数据“9883万”用科学记数法可以表示为()A.9.883×107B.9.883×108C.98.83×107D.98.83×10628.(2022秋•茅箭区校级月考)据国家航天局消息,航天科技集团所研制的天问一号探测器由长征五号运载火箭发射,并成功着陆于火星预选着陆区,距离地球320000000千米.其中320000000用科学记数法表示为.一十三.实数大小比较(共1小题)29.(2021秋•松山区期中)已知数a,b表示的点在数轴上的位置如图所示.(1)在数轴上表示出a,b的相反数的位置,并将这四个数从小到大排列;(2)若数b与其相反数相距16个单位长度,则b表示的数是多少?(3)在(2)的条件下,若数a与数b的相反数表示的点相距4个单位长度,则a表示的数是多少?一十四.规律型:数字的变化类(共1小题)30.(2020秋•新市区校级月考)阅读下面的解答过程.计算:.解:因为,所以原式====.根据以上解题方法计算:(1)=﹣(n为正整数);(2).(3).。
北师大版七年级计算题专项训练一、有理数运算(1 10题)1. 计算:(-2)+3 (-5)解析:首先去括号,根据去括号法则,-( 5)=5,所以原式变为-2 + 3+5。
然后按照从左到右的顺序计算,-2+3 = 1,1 + 5=6。
2. 计算:(-3)×(-4)÷(-2)解析:先计算乘法,根据有理数乘法法则,两数相乘,同号得正,异号得负,所以(-3)×(-4)=12。
再计算除法,12÷(-2)= 6。
3. 计算:(-2)^3+(-3)×[(-4)^2 2]解析:先计算指数运算,(-2)^3=-8,(-4)^2 = 16。
然后计算括号内的式子,(-4)^2-2 = 16 2=14。
接着计算乘法,(-3)×14=-42。
最后计算加法,-8+(-42)=-50。
4. 计算:(1)/(2)-<=ft(-(1)/(3))+<=ft(-(1)/(4))解析:首先去括号,-<=ft(-(1)/(3))=(1)/(3),原式变为(1)/(2)+(1)/(3)-(1)/(4)。
通分,分母的最小公倍数是12,(1)/(2)=(6)/(12),(1)/(3)=(4)/(12),(1)/(4)=(3)/(12)。
然后进行计算,(6)/(12)+(4)/(12)-(3)/(12)=(6 + 4-3)/(12)=(7)/(12)。
5. 计算:(-5)×<=ft((2)/(5)-(3)/(10))解析:先计算括号内的式子,(2)/(5)-(3)/(10)=(4 3)/(10)=(1)/(10)。
再计算乘法,(-5)×(1)/(10)=-(1)/(2)。
6. 计算:-1^4-(1 0.5)×(1)/(3)×[2-(-3)^2]解析:先计算指数运算,-1^4=-1,(-3)^2 = 9。
然后计算括号内的式子,1-0.5 = 0.5=(1)/(2),2-(-3)^2=2 9=-7。
有理数的加减乘除混合运算100道以下是一篇关于有理数加减乘除混合运算的文章。
有理数的加减乘除混合运算100道在数学中,有理数是指可以表示为两个整数的比值的数字,包括整数、分数和小数。
有理数的运算是数学中的基础内容,掌握有理数的加减乘除混合运算是进行更高级别数学运算的前提。
本文将提供100道有理数的加减乘除混合运算题目,以帮助读者巩固相关知识。
1. 1/2 + 3/4 - 5/8答案:3/82. 12/5 - 3/4 × 2/3答案:33/103. -1.5 × 2/3 ÷ 0.5答案:-94. 5/6 + (-2/3) - (-2/3)答案:5/65. -4 + (-3) × 2/5答案:-22/56. 1/4 ÷ 2/3 × 1.5答案:3/8答案:8/38. -7/8 + (-1/4) + 1/2答案:-1/89. 3.5 × (-2) - 1/3 × (-4/5)答案:7/610. -2/5 ÷ (3/4 - 5/6)答案:10/911. 1/3 + (-0.25) + 0.4 - (-1/5)答案:1.8512. 3/4 - (1/2 + 1/8)答案:13/3213. -6 × (-0.25) ÷ (-1/3)答案:414. 2.5 - (-1/4) + (-3/8)答案:2.7515. (-4) ÷ (-0.25) × (1/2)答案:32答案:3/217. 5/6 × (-1/4 - 3/5)答案:-17/6018. 0.4 ÷ 0.2 + 1/5答案:7/519. (-3/4) + (-1/2) - 0.25答案:-7/420. -0.6 × 0.3 ÷ (-0.5)答案:0.3621. (-2/3) - 1/4 + 0.2 - (-1/5)答案:-13/6022. -1.25 - (1.5 - 1/3)答案:-0.416723. 1/2 + 3/4 + (-5/8)答案:7/824. 12/5 - (3/4 × 2/3)答案:3/10答案:-326. 5/6 + (-2/3) - (-2/3)答案:5/627. -4 + ((-3) × 2/5)答案:-22/528. (1/4 ÷ 2/3) × 1.5答案:3/829. 2/3 - 1.5 ÷ (-2/5)答案:8/330. -7/8 + (-1/4) + 1/2答案:-1/8⋮经过以上30道题目的训练,相信读者对有理数的加减乘除混合运算已经有了更深入的理解。
有理数的混合运算专项训练(含解析)一.有理数的加减法专项训练1.口算:(1)(﹣13)+(+19)= (2)(﹣4.7)+(﹣5.3)=(3)(﹣2009)+(+2010)= (4)(+125)+(﹣128)=(5)(+0.1)+(﹣0.01)= (6)(﹣1.375)+(﹣1.125)=(7)(﹣0.25)+(+)= (8)(﹣8)+(﹣4)=(9)=⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-+127411310(10)(﹣1.125)+(+)=(11)(﹣15.8)+(+3.6)= (12)(﹣5)+0=2.口算题:(1)(+6)+(﹣9)=;(2)(﹣5)+(﹣7)=;(3)=;(4)0+(﹣6)=;(5)8﹣8=;(6)(﹣4)+(﹣6)=;(7)6+(﹣6)=;(8)(﹣4)+14=;(9)(﹣3)﹣(﹣5)=;(10)0﹣(﹣)=.3.计算:(1)5+(﹣5);(2)﹣23+(+58)﹣(﹣5);(3)﹣4+28﹣(﹣29)+(﹣24);(4)(﹣49)﹣(+91)﹣(﹣5)+(﹣9);(5)﹣7.2﹣0.8﹣5.6+11.6;(6)(﹣)﹣(﹣0.2)+1;(7)|﹣3+1|﹣(﹣2);(8)+(﹣)+(+)+(﹣).4.计算:(1)45+(﹣20);(2)(﹣8)﹣(﹣1);(3)|﹣10|+|+8|;(4)(﹣12)﹣5+(﹣14)﹣(﹣39);(5)0.47﹣4﹣(﹣1.53)﹣1;(6)36﹣76+(﹣23)﹣105;(7)﹣20+|﹣14|﹣(﹣18)﹣13;(8)(+1.75)+(﹣)+(+)+(+1.05)+(﹣)+(+2.2).5.计算:(1)(﹣4)﹣(+11)﹣(﹣9);(2)12﹣(﹣18)+(﹣12)﹣15;(3)(﹣83)+(+26)+(﹣41)+(+15);(4)(﹣1.8)+(+0.7)+(﹣0.9)+1.3+(﹣0.2);(5)|﹣|﹣(﹣2.5)+1﹣|1﹣|;(6)4+8﹣(+3)+(﹣1)+(﹣2).6.计算(1)(﹣23)+(﹣12)(2)(﹣2)﹣(﹣5)+(﹣9)﹣(﹣7)(3)(﹣5.5)+(﹣3.2)﹣(﹣2.5)﹣4.8 (4)(﹣4)﹣(+5)﹣(﹣4)(5)﹣|﹣1|﹣(+2)﹣(﹣2.75)(6)(﹣0.5)﹣(﹣3)+3.75﹣(+8).7.计算:(1)(﹣4)+9﹣(﹣7)﹣13 (2)(+18)+(﹣32)+(﹣16)+(+26)(3)5+(﹣5)+4+(﹣)(4)(﹣6.37)+(﹣3)+6.37+2.75(5)(﹣1)﹣(+6)﹣2.25+(6)﹣0.5+(﹣15)﹣(﹣17)﹣|﹣12|8.计算:(1)(﹣)+(+)+(+)+(﹣1)(2)(﹣3)+(+8)﹣(﹣5)(3)(﹣3)﹣(﹣)+(﹣0.5)+3(4)(+3)+(﹣2)﹣(﹣5)﹣(+)(5)(﹣0.25)+(﹣3)﹣|﹣1|﹣(﹣3)(6)(+)+(+17)+(﹣1)﹣(+7)﹣(﹣2)+(﹣)二.有理数的乘法专项训练9.计算:(1)﹣0.75×(﹣0.4 )×1;(2)0.6×(﹣)•(﹣)•(﹣2)10.用简便方法计算:(1)﹣13×﹣0.34×+×(﹣13)﹣×0.34 (2)(﹣﹣+﹣)×(﹣60)11.简便计算(1)(﹣48)×0.125+48×(2)()×(﹣36)12.计算:(1);(2).13.用简便方法计算(1)(﹣3.7)×(﹣0.125)×(﹣8)(2)(﹣﹣)×(﹣12)(3)﹣17×(﹣3)(4)﹣5×(﹣)+13×(﹣)﹣3×(﹣)14.计算下列各式:(1)(﹣4)×1.25×(﹣8);(2)×(﹣2.4)×;(3)(﹣14)×(﹣100)×(﹣6)×(0.01);(4)9×15;(5)﹣100×﹣0.125×35.5+14.5×(﹣12.5%);(6)(1﹣2)×(2﹣3)×(3﹣4)×(4﹣5)×…(19﹣20).三.有理数的除法专项训练15.计算:(1)﹣5÷(﹣1);(2)(﹣)÷(﹣)÷(﹣1).16.计算:(1)(﹣36)÷9 (2)(﹣)×(﹣3)÷(﹣1)÷3.17.计算(1)﹣3÷()÷()(2)(﹣﹣+)÷.18.计算(1);(2).(3);(4).四.有理数的乘方专项训练19.﹣10+8÷(﹣2)2﹣(﹣2)3×(﹣3)20.计算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)21.计算:﹣14﹣(1﹣0.5)××[2﹣(﹣3)2].22.计算﹣72+2×(﹣3)2+(﹣6)÷(﹣)2.五.有理数的混合运算专项训练23.计算(1)5.02﹣1.37﹣2.63 (2)72×(﹣+﹣)(3)×[÷(﹣)] (4)[﹣(﹣)÷]÷.24.(1)7+(﹣5)﹣(﹣3)+(6)(2)(﹣2)÷(2)×(﹣2.8)(3)25×+(﹣25)×+25×(﹣)(4)(﹣99)×99(5)﹣12017﹣[2﹣(1﹣×0.5)]×[32﹣(﹣2)2] (6)|﹣|+[×22﹣(﹣)2].有理数的混合运算专项训练参考答案与试题解析一.解答题(共24小题)1.口算:解:(﹣13)+(+19)=6;(﹣4.7)+(﹣5.3)=﹣10;(﹣2009)+(+2010)=1;(+125)+(﹣128)=﹣3;(+0.1)+(﹣0.01)=0.09;(﹣1.375)+(﹣1.125)=﹣2.5;(﹣0.25)+(+)=;(﹣8)+(﹣4)=﹣12;+(﹣)+(﹣)=0;(﹣1.125)+(+)=﹣;(﹣15.8)+(+3.6)=﹣12.2;(﹣5)+0=﹣5.2.口算题:(1)(+6)+(﹣9)=﹣3;(2)(﹣5)+(﹣7)=﹣12;(3)=;(4)0+(﹣6)=﹣6;(5)8﹣8=0;(6)(﹣4)+(﹣6)=﹣10;(7)6+(﹣6)=0;(8)(﹣4)+14=10;(9)(﹣3)﹣(﹣5)=2;(10)0﹣(﹣)=.3.计算:解:(1)5+(﹣5)=0;(2)﹣23+(+58)﹣(﹣5)=﹣23+58+5=﹣23+63=40;(3)﹣4+28﹣(﹣29)+(﹣24)=﹣4+28+29﹣24=﹣28+28+29=29;(4)(﹣49)﹣(+91)﹣(﹣5)+(﹣9)=﹣49﹣91+5﹣9=﹣149+5=﹣144;(5)﹣7.2﹣0.8﹣5.6+11.6=﹣8+6=﹣2;(6)(﹣)﹣(﹣0.2)+1=﹣1+1=0;(7)|﹣3+1|﹣(﹣2)=2+2=4;(8)+(﹣)+(+)+(﹣)=(+)+(﹣﹣)=1﹣1=0.4.计算:解:(1)45+(﹣20)=25;(2)(﹣8)﹣(﹣1)=﹣8+1=﹣7;(3)|﹣10|+|+8|=10+8=18;(4)(﹣12)﹣5+(﹣14)﹣(﹣39)=﹣12﹣5﹣14+39=8;(5)0.47﹣4﹣(﹣1.53)﹣1=(0.47+1.53)﹣(4+1)=2﹣6=﹣4;(6)36﹣76+(﹣23)﹣105=36﹣(76+23+105)=36﹣204=﹣168;(7)﹣20+|﹣14|﹣(﹣18)﹣13=﹣20﹣13+14+18=﹣33+32=﹣1;(8)(+1.75)+(﹣)+(+)+(+1.05)+(﹣)+(+2.2)=(1.75+1.05)+(0.8+2.2)﹣(+)=2.8+3﹣1=4.8.5.计算:解:(1)(﹣4)﹣(+11)﹣(﹣9)=﹣4﹣11+9=﹣6;(2)12﹣(﹣18)+(﹣12)﹣15=12+18﹣12﹣15=3;(3)(﹣83)+(+26)+(﹣41)+(+15)=﹣83+26﹣41+15=﹣83;(4)(﹣1.8)+(+0.7)+(﹣0.9)+1.3+(﹣0.2)=﹣1.8+0.7﹣0.9+1.3﹣0.2=﹣0.9;(5)|﹣|﹣(﹣2.5)+1﹣|1﹣|=2+2.5+1﹣2+1=4.5;(6)4+8﹣(+3)+(﹣1)+(﹣2)=4+8﹣3﹣1﹣2=5.6.计算解:(1)(﹣23)+(﹣12)=﹣(23+12)=﹣35;(2)(﹣2)﹣(﹣5)+(﹣9)﹣(﹣7)=(﹣2)+(+5)+(﹣9)+(+7)=12﹣11=1;(3)(﹣5.5)+(﹣3.2)﹣(﹣2.5)﹣4.8 =(﹣5.5)+(﹣3.2)+(+2.5)﹣4.8=(﹣5.5+2.5)+(﹣3.2﹣4.8)=﹣3﹣8=﹣11;(4)(﹣4)﹣(+5)﹣(﹣4)=(﹣4)+(﹣5)+(+4)=﹣5(5)﹣|﹣1|﹣(+2)﹣(﹣2.75)=0.4﹣1.5﹣2.25+2.75=﹣0.6(6)(﹣0.5)﹣(﹣3)+3.75﹣(+8)=(﹣0.5)+(+3.25)+3.75﹣8.5=﹣27.计算:解:(1)(﹣4)+9﹣(﹣7)﹣13=﹣4+9+7﹣13=(9+7)+(﹣4﹣13)=16+(﹣17)=﹣1(2)(+18)+(﹣32)+(﹣16)+(+26)=18﹣32﹣16+26=(18+26)+(﹣32﹣16)=44+(﹣48)=﹣4(3)5+(﹣5)+4+(﹣)=(5+4)+[(﹣5)+(﹣)]=10+(﹣6)=4(4)(﹣6.37)+(﹣3)+6.37+2.75=[)(﹣6.37)+6.37]+[(﹣3.75)+2.75]=0+(﹣3.75)+2.75=﹣1(5)(﹣1)﹣(+6)﹣2.25+=(﹣1)+(﹣6)+(﹣2.25)+=[(﹣1)+(﹣2.25)]+[(﹣6)+]=(﹣4)+(﹣3)=﹣7(6)﹣0.5+(﹣15)﹣(﹣17)﹣|﹣12|=﹣0.5﹣15+17﹣12=(﹣0.5﹣15﹣12)+17=(﹣27.5)+17=﹣10.5 8.计算:解:(1)原式=﹣﹣1++=﹣2+1=﹣1;(2)原式=﹣3+5+8=2+8=11;(3)原式=﹣3﹣++3=﹣4+4=0;(4)原式=3+5﹣2﹣=9﹣3=6;(5)原式=﹣﹣1﹣3+3=﹣2;(6)原式=﹣+17﹣7﹣1+2=10+1=11.9.计算:解:(1)﹣0.75×(﹣0.4 )×1==.(2)0.6×(﹣)•(﹣)•(﹣2)=﹣=﹣110.用简便方法计算:解:(1)﹣13×﹣0.34×+×(﹣13)﹣×0.34=﹣13×﹣×13﹣×0.34﹣0.34×=﹣13×(+)﹣(+)×0.34=﹣13×1﹣1×0.34=﹣13﹣0.34=﹣13.34(2)(﹣﹣+﹣)×(﹣60)=(﹣)×(﹣60)﹣×(﹣60)+×(﹣60)﹣×(﹣60)=20+15﹣12+28=5111.简便计算解:(1)(﹣48)×0.125+48×=48×(﹣+﹣)=0;(2)()×(﹣36)=﹣20+27﹣2=5.12.计算:解:(1)原式=×12+×12﹣=﹣1;(2)原式=﹣(0.25×4×)=.13.用简便方法计算解:(1)(﹣3.7)×(﹣0.125)×(﹣8),=(﹣3.7)×1,=﹣3.7;(2)(﹣﹣)×(﹣12),=×(﹣12)﹣×(﹣12)﹣×(﹣12),=﹣4+2+1,=﹣1;(3)﹣17×(﹣3),=﹣17×(﹣4+),=﹣17×(﹣4)+(﹣17)×,=68﹣1,=67;(4)﹣5×(﹣)+13×(﹣)﹣3×(﹣),=(﹣)×(﹣5+13﹣3),=(﹣)×5,=﹣11.14.计算下列各式:解:(1)(﹣4)×1.25×(﹣8)=(﹣)××(﹣8)=××8=;(2)×(﹣2.4)×=﹣×2.4×=﹣1.2;(3)(﹣14)×(﹣100)×(﹣6)×(0.01)=(﹣100)×(0.01)×(﹣14)×(﹣6)=﹣1×84=﹣84;(4)9×15=(10﹣)×15=10×15﹣×15=150﹣=149;(5)﹣100×﹣0.125×35.5+14.5×(﹣12.5%)=﹣100×0.125﹣0.125×35.5+14.5×(﹣0.125)=0.125×(﹣100﹣35.5﹣14.5)=0.125×(﹣150)=﹣;(6)(1﹣2)×(2﹣3)×(3﹣4)×(4﹣5)×…×(19﹣20)=(﹣1)×(﹣1)×(﹣1)×(﹣1)×…×(﹣1)=﹣1.15.计算:解:(1)﹣5÷(﹣1)=5×=3.(2)(﹣)÷(﹣)÷(﹣1)=﹣=﹣.16.计算:解:(1)原式=﹣(36+)×,=﹣(36×+×),=﹣4;(2)原式=﹣(×××),=﹣.17.计算解:(1)原式=﹣3××=﹣;(2)原式=(﹣﹣+)×36=﹣27﹣20+21=﹣26.18.计算解:(1)﹣1÷(﹣)﹣3÷(﹣)=﹣1×(﹣8)﹣3×(﹣2)=8+6=14;(2)﹣81÷﹣÷(﹣)=﹣81×3﹣×(﹣9)=﹣243+3=﹣240;(3)﹣1+5÷(﹣)×(﹣6)=﹣1+5×(﹣6)×(﹣6)=﹣1+180=179;(4)(﹣)÷1÷=﹣××10=﹣.19.﹣10+8÷(﹣2)2﹣(﹣2)3×(﹣3)【解答】解:原式=﹣10+2﹣24=﹣34+2=﹣32.20.(2017•石家庄模拟)计算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)【解答】解:原式=﹣8+(﹣3)×18﹣9÷(﹣2),=﹣8﹣54﹣9÷(﹣2),=﹣62+4.5,=﹣57.5.21.计算:﹣14﹣(1﹣0.5)××[2﹣(﹣3)2].【解答】解:原式=﹣1﹣0.5××(2﹣9)=﹣1﹣(﹣)=.22.(2017•文昌校级模拟)计算﹣72+2×(﹣3)2+(﹣6)÷(﹣)2.【解答】解:原式=﹣49+2×9+(﹣6)÷=﹣49+18﹣6×9=﹣49+18﹣54=﹣85.23.计算解:(1)5.02﹣1.37﹣2.63=5.02﹣(1.37+2.63)=5.02﹣4=1.02(2)72×(﹣+﹣)=72×﹣72×+72×﹣72×=36﹣24+18﹣6=12+18﹣6=24(3)×[÷(﹣)]=×[÷]=×=4(4)[﹣(﹣)÷]÷=[﹣÷]×10=[﹣]×10=×10=124.解:(1)7+(﹣5)﹣(﹣3)+(6)=(7+3)+(﹣5+6)=11+1=12;(2)(﹣2)÷(2)×(﹣2.8)=××=;(3)25×+(﹣25)×+25×(﹣)=25×(﹣﹣)=25×0=0;(4)(﹣99)×99=(﹣100+)×99=﹣100×99+×99=﹣9900+1=﹣9899;(5)﹣12017﹣[2﹣(1﹣×0.5)]×[32﹣(﹣2)2]=﹣1﹣[2﹣(1﹣)]×[9﹣4]=﹣1﹣×5 =﹣1﹣5=﹣6;(6)|﹣|+[×22﹣(﹣)2]=+[×4﹣]=+[2﹣]=﹣=﹣.。