空调系统冷冻水循环水泵的节能设计方法
- 格式:doc
- 大小:121.00 KB
- 文档页数:13
冷冻水列间空调解决方案概述冷冻水列间空调是一种广泛应用于建筑物中的空调系统,它采用冷冻水作为传热介质,通过冷冻水管道将冷水和热水分别传输到不同的列间,从而实现空调的供暖和降温功能。
本文将介绍冷冻水列间空调的基本原理、优势和应用场景,并提供一些解决方案供参考。
基本原理冷冻水列间空调系统基于冷冻水的传热原理,通过水泵将冷水和热水分别送入不同的列间。
在降温模式下,冷水通过冷水管道流入列间,吸收室内热量后变热,再通过冷冻水机组冷却后再次循环。
而在供暖模式下,热水通过热水管道流入列间,释放热量后变冷,再通过热泵机组加热后再次循环。
通过这种方式,冷冻水列间空调可以实现整个建筑的供暖和降温。
优势相比其他空调系统,冷冻水列间空调具有以下优势:1.节能高效:冷冻水列间空调采用水作为传热介质,传热效率高,能耗较低,节能效果明显。
2.温度控制精度高:冷冻水列间空调系统可以根据实际需求精确控制室内温度,在不同季节和环境变化下保持舒适的温度。
3.系统稳定可靠:冷冻水列间空调系统采用模块化设计,各部件互相独立,故障不会影响整个系统的运行,提供了更高的可靠性和稳定性。
4.设计灵活性强:冷冻水列间空调系统可以根据建筑的不同需求进行灵活设计,包括风管的布局、水管的选择等,能够满足各类建筑的需求。
应用场景冷冻水列间空调适用于以下场景:1.商业办公楼:商业办公楼大多需要满足大面积的供暖和降温需求,冷冻水列间空调可以提供高效、稳定的空调效果,满足办公环境的舒适性需求。
2.酒店:酒店有较高的供暖和降温需求,冷冻水列间空调可以通过调节冷水和热水的供给来满足客房的舒适性需求。
3.医院:医院需要保持稳定的温度和湿度,冷冻水列间空调可以提供高精度的温度和湿度控制,满足医院各区域的需求。
解决方案冷冻水列间空调的解决方案可以根据具体需求和建筑特点进行灵活设计。
以下是一些常见的解决方案:1.单冷冻水系统:适用于较小的空间,仅需使用冷水进行降温的空调系统。
水冷式中央空调的节能措施摘要:近年来随着社会经济的持续快速发展,我国建筑行业呈现出蓬勃发展的态势。
各类建筑中,中央空调系统的应用日益普及,由此造成的能源消耗已成为影响国家能源战略的重要方面。
文章根据实际经验,对中央空调能耗进行了分析,并对中央空调节能措施以及空调施工中的注意点提出了一些看法。
标签:中央空调;建筑节能;耗能;措施一、中央空调能耗分析(一)水冷式中央空调系统中能耗最大的设备属冷水机组,冷水机组按照压缩机的类型分为:往复式(也称活塞式)机组、螺杆式机组和离心式机组,其动力能源为电能和热能,按照其额定制冷量和制冷效率,一般的额定输入功率从100KW到1000KW。
冷水机组的目的是生产低温(7°C)的冷冻水,所以供水温度的高低直接影响机组的负荷。
而末端空气处理机起动的多少也会影响冷冻水的回水温度,回水温度越高,机组负荷越大。
(二)冷冻水循环泵(简称冷冻泵)主要提供冷冻水循环的动力,其输入功率一般从11KW到132KW,传统的设计冷冻泵为定量泵,输出功率恒定不变;冷却水循环泵(简称冷却泵)主要提供冷却水循环的动力,其输入功率一般从11KW到132KW,传统的设计冷却泵为定量泵,输出功率恒定不变。
(三)冷却塔风机主要为冷却水降温提供风力,其输入功率一般从3KW到15KW,传统的设计冷却塔风机为恒速风机,输出功率恒定不变。
(四)空气处理机是进行室内空气温度调节的末端设备,其中风机提供了室内空气循环所需要的动力,通常采用恒速定风量风机,额定功率从0.5KW到15KW,但数量较多。
(五)中央空调的设计往往是按照当地的气象资料和建筑物的特点而设计的,并考虑到最大能量需求,还要预留10%至20%的设计余量,所以主机、水泵、风机都有很大的余量。
(六)由于季节的轮转和时间的变化,中央空调全年以最大功率运行的时间很短,一般不足1%,所以大量恒速电机存在很大的节能潜力。
(七)用户的维护意识淡薄也是造成中央空调效率降低的原因之一。
中央空调智能节能控制系统设计与实现摘要:空调能耗正成为广大暖通设计者关注和研究的重要课题,本文分析了影响空调系统能源消耗的关键因素,并从系统的选择、设备的选配及系统的运行管理等方面提出了切实可行的空调节能方案,对空调系统的设计及运行管理中的节能具有一定参考价值。
关键词:中央空调;系统;设计;节能1.中央空调系统的构成1.1冷冻机组这是中央空调的“制冷源”,通往各个房间的循环水由冷冻机组进行“内部热交换”,降温为“冷冻水”。
1.2冷冻水循环系统由冷冻泵及冷冻水管道组成。
从冷冻机组流出的冷冻水由冷冻泵加压送入冷冻水管道,在各房间内进行热交换,带走房间热量,使房间内的温度下降。
从冷冻机组流出、进入房间的冷冻水简称为“出水”,流经所有的房间后回到冷冻机组的冷冻水简称为“回水”。
1.3冷却水循环系统由冷冻泵、冷却水管道及冷却塔组成。
冷冻机组进行热交换,使水温冷却的同时,必将释放大量的热量。
该热量被冷却水吸收,使冷却水温度升高。
冷却泵将升了温的冷却水压人冷却塔,使之在冷却塔与大气进行热交换,然后在将降了温的冷却水,送回到冷却机组。
如此不断循环,带走了冷冻机组释放的热量。
流进冷冻机组的冷却水简称为“进水”,从冷冻机组流回冷却塔的冷却水简称为“回水”。
1.4冷却风机冷却塔风机用于降低冷却塔中的水温,加速将“回水”带回的热量散发到大气中去。
可以看出,中央空调系统是工作过程室一个不断地进行热交换的能量转换过程。
在这里,冷冻水和冷却水循环系统是能量的主要传递者。
冷却水温度过高、过低都会影响冷冻机组使用寿命,因为温度过低影响机组润滑,但温度过高将导致制冷剂高压过高。
因此,对冷却风机的控制便是中央空调控制系统的重要组成部份。
变频控制冷却风机的转速使冷却水出水温度保持在28~30℃之间,既节能又延长冷冻机组使用寿命。
!中央空调系统的组成和控制思想中央空调与家用独立空调的温度传递方式不同:家用独立空调直接吹风到散热器上获得冷风或者热风。
中央空调工程制冷及空调节能技术措施变频技术中央空调工程能源中心的冷冻水系统采用二次泵形式,二次泵为变流量,根据二次侧末端负荷的变化,在满足某一最不利水环路所需使用压力的条件下,通过改变二次水泵电机的运转频率或水泵的运行台数,以达到节能目的。
各场馆的用户侧水系统均采用变流量水系统,可根据负荷变化变频调节水泵流量和扬程,以达到最大节能运行。
热回收技术中央空调工程采用热回收技术,利用排风对新风进行预热(或预冷),节能空调通风工程的能耗。
水蓄冷技术中央空调工程采用水蓄冷的集中能源中心方式,总蓄冷能力为25500RT.H.蓄冷可起到“削峰填谷”的作用,缓解用电紧张,提高能源利用效率,减少装机容量。
充分利用峰谷电价,节省运行费用。
蓄冷水罐共2个,蓄冷水罐单个有效容积为4500立方米,蓄冷能力为12750RT.H.经测算,水蓄冷运行费比常常规制冷可节约203.45万元/年。
大温差水系统,水系统采用大温差9℃,减小循环水泵装机容量,降低暖通空调工程运行费用。
新风利用中央空调工程过渡季节尽量利用新风,可进行全新风运行,减少空调通风工程的运行。
冬季内区的消除余热,可采用室外免费能源-新风,减少能源的浪费。
分层空调和置换通风中央空调工程在大空间采用分层空调和置换通风工程,尽量减少无效空间区域的能量消耗,只满中有效区域的舒适度。
我们采用CFD的方法,对大空间的暖通空调工程气流组织进行了分析,得到了很好的验证。
如游泳馆暖通空调工程比赛区空间温度可以被控制于28℃到29℃之间,室内的温度分层非常明显,屋顶最高点温度却达到40℃以上。
分层空调和置换通风中央空调工程采用地板辐射采暖加周边散热器采暖,增加人员活动区的热舒适,减少顶部空间的耗能。
冷(热)计量中央空调工程对用户侧和总用冷(热)量,进行冷(热)量计量。
提高节能意识,减少无效冷(热)量损失,便于用冷(热)量收费和管理。
中央空调节能控制系统所有中央空调工程设备采用中央自动控制技术,根据设定的温度控制、湿度控制、压差控制、流量控制来使设备达到最佳的匹配运行效果,使设备在最高效区域运行,以利于能源的综合利用,最大化地实现节能。
空调制冷系统的节能措施1.合理选定制冷机的性能系数仅从节能的角度看,制冷机的性能系数愈大愈好,也就是制冷机的工作循环愈接近理想的卡诺循环,性能系数愈高。
若设计仅以此为优化的目标,则将导致热交换设备增大增多,但这在实际上经济效益是不好的,也是不可行的。
因此,在选用制冷机时应考虑一次性投资和经常运行费用的综合分析,一般来说,性能系数高的设备一次性投资大,运行费用低。
通常对一年内长期运行的制冷系统,由于经常费用大,对节能要求较高,应选用较高性能系数的设备。
反之,运行时间短的制冷系统在节能要求上可略低些。
总之要由具体的技术经济比较优化确定我国《旅游旅馆设计节能标准》规定的性能系数见表1。
2.合理确定空调制冷系统的设计参数冷冻水供水温度和温差、冷却水供水温度和温差对能耗产生直接影响。
提高蒸发温度或降低冷凝温度都可以提高制冷系数,但要减少二者供、回水之间的温差,因而增加蒸发器和冷凝器的面积。
对于一年内运行时间较长的制冷系统,宜取较小的温差;反之,在年内运行时间较短的制冷系统,宜取较高温差。
3.制冷机型号、台数、容量选择和其他影响(1)如前文所述,各种型号的制冷机组,均有与之相适应的制冷负荷、供冷参数和不同的使用条件。
因此,应根据具体情况(如供电、供热、余热利用等情况),选择相应型号的制冷机组。
(2)通常制冷机组在部分负荷情况下效率较低,应根据负荷变化的特点,选用两台或多台制冷机,使之在效率较高的负荷工作区域内运行。
制冷机的容量应与负荷相匹配,根据负荷曲线变化情况,可选择一种或两种以上容量的制冷机组。
(3)合理选择水冷式或风冷式冷水机组。
近几年来,国内外已有多种风冷式冷水机组的系列产品应用在空调工程中。
一般风冷式冷水机组耗电量较高,主机费用较高,但在一些严重缺水地区,在一些不宜装设冷却塔的建筑群,以及对环境噪声有较高要求的用户,则有其优越的条件。
尤其在一些气候条件合适的地区,选用夏季供冷,冬季供热的风冷式冷热水机组有明显的经济效益。
某大厦中央空调制冷站节能改造措施方案1、某大厦中央空调系统制冷站介绍作为空调系统的冷源部分,中央空调系统制冷站是用于提供空调制冷效果的核心设备,主要由制冷机组、冷却水泵、冷冻水泵和冷却塔等设备组成。
中央空调系统运行过程中,首先通过压缩机将制冷剂的低压气体压缩为高压气体,进入冷凝器中换热,此时制冷剂的高压液态经过节流装置调整为低压低温液态进入蒸发器,该过程是完成制冷的关键步骤。
同时,高温冷冻回水经冷冻水泵被送入蒸发器盘管,使之与低温低压制冷剂进行热交换,变成低温冷冻水,并通过冷冻水泵作用将其送至各风机盘管,由冷却盘管吸收热量,降低空气温度,最后通过风机向功能间送风,完成循环制冷过程。
通过以上循环过程,中央空调系统制冷站可以将热气体转化成冷气体,以达到调节室内温度的目的。
1.1 设备使用现状某大厦的中央空调机房位于负一层,配备了 2 台定频螺杆式冷水机组、3台冷冻水泵(2用1备)、3台冷却水泵(2用1备)和2台横流冷却塔。
其中,空调冷冻水管系统采用一次泵变流量系统,冷却水系统为变流量并联式系统,冷却塔位于大厦的设备层。
目前,该系统存在以下使用问题:第一,冷水机组于2007年12月投入使用,运行时间过长,制冷效果较差,使用的冷媒为已被国家列入淘汰的冷媒 R22,具有产量少、价格高的缺点。
第二,原空调冷冻水管系统采用一次泵变流量系统,其冷却水系统为变流量并联式系统。
原有的冷冻泵和冷却水泵配置的流量比冷水机组要求的小,加上管网的水阻力大,导致实际运行 1 台冷水机组需要运行2台冷冻水泵和2台冷却水泵,增加了系统的运行能耗。
水泵电机为国家要求淘汰的Y2系列型号。
第三,针对位于设备层的 2 台侧出风的横流冷却塔,每台冷却塔由2台水量为150 m3/h的冷却塔组成,总电机功率为5.5×2 kW。
现场勘查发现电机已锈蚀严重,换热填充剂老化,部分补水管也已锈蚀,导致系统能效降低,运行成本增加,不利于建筑的绿色环保运行。
论数据中心空调水泵变频节能改造方案前言据工业和信息化部于2014年发布的《关于2011年以来我国数据中心规划建设情况的通报》:255个在规划建设的IDC的设计PUE平均为1.73,同时,据行业估计,美国的IDC行业耗费了其国内发电量的2%,中国的IDC行业耗费了本国发电量的1.5%,是典型的“电老虎”。
因此,革新IDC设计模式、降低IDC 能耗和运营成本,已经成为数据中心行业相当现实和迫切的课题,同时也是一个影响国家产业转型升级、实现国家可持续发展的关键课题。
中央空调系统作为数据中心的专用制冷设备,承担着调节机房环境温湿度,保障IT设备稳定运行的重任,同时也是主力耗电设备之一(约占总体能耗的30%-40%)。
因此,开展中央空调节能改造,即确保机房供冷正常,又可减少能耗、压缩电费成本,创造双赢的局面。
一、中央空调水泵变频节能理论分析由于空调系统设计多以夏季最大冷负荷设计且留有余量,数据中心IT负荷也存在业务逐步增加、波峰波谷等影响热负荷大小的因素,这造成不同时期、不同发展进程中,实际热负荷与空调系统输出冷量之间存在差值,在空调传统配置状态下形成电能浪费[1]。
因此,中央空调系统均有一定的节能空间。
目前数据中心空调主机和末端精密空调大部分采用智能化设备,能实时根据负荷情况调整冷量输出,一定程度上实现节能控制,但水循环系统(水泵)按初期额定流量、压力配置下,当实际负荷低于设计预期时,绝大部分时间运行在低温差、大流量情况下,造成空调主机和水泵能耗的浪费。
通过调节冷冻水泵的频率(转速),节约低负载时水系统的输送能量,可达到理想的节能效果。
水循环系统中重要的耗电设备为水泵,改变水系统的输送能量亦主要靠调节水泵的转速,由于水泵类负载的转速与转子的频率成正比[2],因此对水泵系统进行变频控制即可达到节能效果,分析如下。
交流异步电动机的转速公式为:,其中n为转速,f为频率,s为转差率,p 为极对数。
水泵属于平方转矩负载,即转矩T与转速n的平方成正比,即,而电机轴的输出功率,由此可见,当电机的转速稍有下降时,电机功率损耗就会大幅度地下降,耗电量也就大为减少。
中央空调系统水泵变频节能改造方案一、概述中央空调系统在现代企业及生活环境改善方面极为普遍,而且某此生活环境或生产工序中是属必须的,即所谓人造环境,不仅是温度的要求,还有湿度、洁净度等.至所以要中央空调系统,目的是提高产品质量,提高人的舒适度,集中供冷供热效率高,便管理,节省投资等原因,为此几乎企业、高层商厦、商务大楼、会场、剧场、办公室、图书馆、宾馆、商场、超市、酒店、娱乐场、体育馆等中大型建筑上都采用中央空调的,它是现代大型建筑物不可缺少的配套设施之一,电能的消耗非常之大,是用电大户,几乎占了用电量50%以上,日常开支费用很大.由于中央空调系统都是按最大负载并增加一定余量设计,而实际上在一年中,满负载下运行最多只有十多天,甚至十多个小时,几乎绝大部分时间负载都在70%以下运行.通常中央空调系统中冷冻主机的负荷能随季节气温变化自动调节负载,而与冷冻主机相匹配的冷冻泵、冷却泵却不能自动调节负载,几乎长期在100%负载下运行,造成了能量的极大浪费,也恶化了中央空调的运行环境和运行质量。
随着变频技术的日益成熟,利用变频器、PLC、数模转换模块、温度传感器、温度模块等器件的有机结合,构成温差闭环自动控制系统,自动调节水泵的输出流量;采用变频调速技术不仅能使商场室温维持在所期望的状态,让人感到舒适满意,可使整个系统工作状态平缓稳定,更重要的是其节能效果高达30%以上,能带来很好的经济效益.二、水泵节能改造的必要性中央空调是大厦里的耗电大户,每年的电费中空调耗电占60% 左右,因此中央空调的节能改造显得尤为重要。
由于设计时,中央空调系统必须按天气最热、负荷最大时设计,并且留10-20%设计余量,然而实际上绝大部分时间空调是不会运行在满负荷状态下,存在较大的富余,所以节能的潜力就较大,其中,冷冻主机可以根据负载变化随之加载或减载,冷冻水泵和冷却水泵却不能随负载变化作出相应调节,存在很大的浪费。
水泵系统的流量与压差是靠阀门和旁通调节来完成,因此,不可避免地存在较大截流损失和大流量、高压力、低温差的现象,不仅大量浪费电能,而且还造成中央空调最末端达不到合理效果的情况。
冷冻冷却水泵及循环水泵自动控制系统节能方案一、背景与意义冷冻冷却水泵及循环水泵系统是工业生产中常见的设备,其运行对于保证生产正常进行具有重要意义。
然而,传统的手动控制方式无法有效地适应生产的变化,并且存在能源浪费的问题。
因此,开发一种能实现自动控制的系统来提高能源利用效率具有重要意义。
二、节能方案1.自动控制系统的设计设计一套基于PLC(可编程逻辑控制器)的自动控制系统,在此基础上实现对冷冻冷却水泵及循环水泵的控制。
2.系统参数设置通过对系统中的各参数进行设置,如设定温度和压力范围,以及启停时间和频率等,能够提高系统的运行效率,并减少能源的浪费。
3.温度和压力传感器的应用安装温度和压力传感器,实时监测冷冻冷却系统及循环水系统中的温度和压力变化。
根据传感器的反馈,及时调整系统的运行状态,以达到节能的目的。
4.高效水泵的选择与优化选用能效比较高的水泵,并根据系统的实际需求进行数值模拟计算,确定最佳的水泵工作参数。
并进行定期维护和检修,保证水泵的高效运行。
5.频率变频器的应用安装频率变频器,通过调整电机的转速,减少水泵的运行功率。
根据实际流量进行调整,避免了冷却水泵及循环水泵长时间运行,减少了能耗。
6.能源回收系统的构建利用现有设备中的废热或余热能源,通过回收利用的方式为生产提供热能需求。
在系统中添加换热器,将热能转换为可再生的能源,提高整体能源利用效率。
三、预计效果通过以上的节能方案,预计能够从以下几个方面实现节能效果:1.优化水泵工作参数,减少能源浪费,降低能耗。
2.自动控制系统实时监测温度和压力变化,及时调整系统运行状态,提高系统运行效率。
3.频率变频器应用可根据实际需求动态调整水泵转速,避免长时间高功率运行,减少能耗。
4.回收废热或余热能源,提高整体能源利用效率,减少能源浪费。
综上所述,冷冻冷却水泵及循环水泵自动控制系统的设计与优化将能够提高能源利用效率,减少能耗,具有重要的节能效果。
在实际应用中,可以根据具体情况进行调整和完善,并定期对系统进行检查和维护,以保证系统的长期稳定运行。
浅谈循环水冷却系统的节能改造摘要:随着城市建设的发展,越来越多的公共建筑内设置了中央空调系统,循环水冷却系统成为不可缺少的部分。
循环水冷却系统是工业企业不可或缺的重要设备,水冷却系统通常由冷却塔、水泵和换热系统等组成,其工作流程是由冷水流过需要降温的生产设备有效换热后再返回冷却塔,通过冷却塔内将温度上升的循环水降温,然后通过循环水泵加压后再次循环使用。
关键词:循环水冷却系统节能改造前言:循环水冷却系统作为企业主要的供能设备,占企业用电量的比重相对较大,在国家日渐提倡重视节能环保的新时代下,通过对循环水冷却系统进行节能改造而降低用电消耗,不仅能为企业创造较好的经济效益,更能实现良好的社会效益,在工业循环水冷却系统中循环水泵、冷却塔风机是用电大户,所以节能改造的关键点在于研究如何对循环水泵和冷却塔风机进行节能改造,本文就具体的节能改造措施进行简单阐述。
循环水处理作为电厂水处理系统中最重要的工作,要保持循环冷却水系统长期、高效、经济地运行,水处理日常运行管理是关键,有时即使筛选了合理的药剂配方,也确定了较好的工艺参数,但循环水处理运行管理不善往往达不到预期的处理效果。
因此长期积累运行资料并认真加以分析研究,不断优化循环水处理运行方式才能提高管理水平和效果。
1.循环水泵的节能改造近年来随着工业生产的发展,淡水资源日益紧张,环境保护要求日趋严格,为了保护有限的水资源和生态环境不被破坏,达到国家要求的控制指标,减少废水排放。
发电厂作为用水大户,90%以上水量主要用作循环冷却,为使排水各项指标均达到排放标准,只有合理选择循环水处理方案,避免凝汽器和其他换热设备的腐蚀和结垢,减少循环水排污水实现零排放是摆在运行管理人员面前的一项重要使命。
水冷却系统的循环水泵作为主要的动能设备,占能源消耗的比重相当大,循环水泵方面除采用高效节能泵外还可以通过以下几个方面进行节能改造,一是通过水泵的富余流量分析,以控制循环水泵的回水阀门开关度的方式来调节循环水的供应压力,在满足系统运行的实际扬程情况下低于水泵的设计扬程时,可以有效避免因额外的循环量而产生的能效浪费;二是随着高压大功率电机变频调速技术的不断成熟,运用变速变流量的节能原理,根据水泵的压力和流量特性曲线,在保证循环水冷却系统压力的前提下,采用对循环水泵电机调节方式进行变频改造来实现优化节能,根据循环水泵的转速、扬程、功率与节电率的变化,在转速降低、流量减小时,电机所需功率近似按流量的3次方大幅度下降,虽然降低转速时额定的工作参数会相应降低,但水泵仍能在同样的效率下工作,所以降低转速能大大降低轴功率从而达到节能的目的;循环水泵在进行变频节电改造后,改造后的变频系统相当于一个全自动的调节阀,水泵降低了转速,流量就不再用关小阀门来控制,阀门始终处于全开状态,避免了由于关小阀门引起的能效损耗,同时也避免了总效率的下降,确保了能源的充分利用,设备需要多少,就能供应多少;在采用变频调速时,50Hz工况下满载时功率因数为接近1,工作电流比电机额定电流值要低很多,是因为变频装置的内滤波电容产生的改善功率因数的作用,可以为电网节约20%左右的容量,从而确保了能源的有效利用;三是降低水泵出口压力,通过对水冷系统运行参数和水泵设计参数进行充分的分析比较,通过对循环水泵进行削切叶轮来减小叶轮直径,降低水泵扬程和水泵出口压力,从而达到降低水泵电耗的目的。
公司空调系统节能技术措施中央空调控制方法:目前,国内的中央空调系统,由于没有先进的技术手段支持,基本上都采用传统的定流量控制方式,即空调冷冻水流量、冷却水流量和冷却风风量都是恒定的。
也就是说,只要起动空调主机,冷冻水泵、冷却水泵、冷却塔风机、末端风机都在50Hz工频状态下运行。
定流量控制方式的特征是系统的循环水量保持定值不变,当负荷变化时,通过改变供水或回水温度来匹配。
定流量供水方式的优点是系统简单,不需要复杂的自控设备。
但这种控制方式存在以下问题:(1)无论末端负荷大小如何变化,空调系统均在设计的额定状态下运行,系统能耗始终处于设计的最大值,能源浪费很大。
实际上由于受多种因素不断变化的影响,中央空调系统的负荷是一个始终变量。
空调负荷的这种不恒定性,决定了系统对空调冷量的需求也是一个随机变化的量。
若不论空调负荷大小如何变化,系统都在设计的额定状态下运行,势必造成大量的能源浪费。
(2)舒适性中央空调系统是一个多参量、非线性、时变性的复杂系统,由于末端负荷的频繁波动,必然造成系统循环溶液(冷冻水、冷却水、制冷剂溶液)的运行参量偏离空调主机的最佳工作状态,导致主机热转换效率(COP值)降低,系统长期在低效率状态下运行,也会增加系统的能源消耗。
(3)在工频状态下启停大功率水泵和风机,冲击电流大,不利于电网的安全运行,且水泵、风机等机电设备长期在工频额定状态下高速运行,机械磨损严重,导致设备故障增加和使用寿命缩短。
提高空调能源利用效率,我们可通过改善以下几个方面来提高空调能源利用效率:(1)改善建筑的隔热性能房间内冷量的损失通过房间的墙体、门窗等传递出去的。
改善建筑的隔热性能可以直接有效地减少建筑物的冷负荷。
改善建筑的隔热性能可以从以下几个方面着手:确定合适的窗墙面积比例。
合理设计窗户遮阳。
充分利用保温隔热性能好的玻璃窗。
单层玻璃采用贴膜技术。
(2)选择合理的室内参数人体感觉舒适的室内空气参数区域,大约是空气温度13℃~23℃,空气相对湿度20%~80%。
普通中央空调水泵变频改造节能方案普通中央空调水泵变频改造节能方案:在中央空调系统中,冷冻水泵和冷却水泵的容量是根据建筑物最大设计热负荷选定的,且留有一定的设计余量。
在没有使用调速的系统中,水泵一年四季在工频状态下全速运行,只好采用节流或回流的方式来调节流量,产生大量的节流或回流损失,且对水泵电机而言,由于它是在工频下全速运行,因此造成了能量的大大浪费。
由于四季的变化,阴晴雨雪及白天与黑夜时,外界温度不同,使得中央空调的热负荷在绝大部分时间里远比设计负荷低。
也就是说,中央空调实际大部分时间运行在低负荷状态下。
据统计,67%的工程设计热负荷值为94-165W/m2 ,而实际上83%的工程热负荷只有58-93W/m2 ,满负荷运行时间每年不超过10-20 小时。
实践证明,在中央空调的循环系统(冷却泵和冷冻泵)中接入变频系统,利用变频技术改变电机转速来调节流量和压力的变化用来取代阀门控制流量,能取得明显的节能效果。
一、普通中央空调工作系统1、工作简述⑴、中央空调启动后,冷冻单元工作,蒸发器吸收冷冻水中的热量,使之温度降低;同时,冷凝器释放热量使冷却水温度升高。
⑵、降了温的冷冻水通过冷冻泵加压送入冷冻水管道,在各个房间由室内风机加速进行热交换,带走房间内的热量使房间内的温度降低后,又流回冷冻水端。
⑶、而升了温的冷却水通过冷却泵压入冷却塔,由冷却塔风机加速将冷却水中的热量散发到大气中,使水温降低后,流回冷却水端。
⑷、冷冻机组工作一段时间后,达到设定温度,由温度传感器检测出来,并通过中间继电器及接触器控制冷冻机停止工作,温度回升到一定值后又控制其运行。
二、普通中央空调存在的问题1、冷冻水,冷却水循环泵不能根据实际需求来调整循环量,电机工作效率低下,造成大量电力浪费,并加速机组磨损;2、其控制接触器等电器动作频繁,导致使用寿命短,维修量大;而对于大容量系统,传统的控制线路复杂,可靠性差,需专人负责;3、整个系统运行噪音大、控制性能差、耗电量大、使用寿命短;在维护管理,检修调整方面工作量大,维护费用高。
冷却水冷冻水计算方法及设计1.冷却水计算方法:冷却水的计算是冷却水系统设计的基础,主要考虑以下几个因素:-热负荷计算:根据需要冷却的设备或空间的热负荷计算,包括冷却负荷和冷却水流量的计算。
常用的计算方法有传热计算法和系统热平衡法。
- 冷却水流量计算:根据需要冷却的设备或空间的热负荷计算出冷却水的流量需求。
冷却水流量的计算公式一般为:Q = m * Cp * deltaT,其中Q为冷却负荷,m为冷却水流量,Cp为冷却水的比热容,deltaT为冷却水的温差。
-冷却水温差计算:根据冷却水的进出口温度计算出冷却水的温差。
温差一般为10-15℃,但具体取值要根据实际情况来确定。
-冷却塔的选择:根据冷却水的温度要求和冷却水的流量计算出需要的冷却塔的能力,然后选择合适的冷却塔。
2.冷冻水计算方法:冷冻水的计算是冷冻水系统设计的基础,主要考虑以下几个因素:-冷负荷计算:根据需要制冷的设备或空间的冷负荷计算,包括冷负荷和冷冻水流量的计算。
常用的计算方法有传热计算法和系统热平衡法。
- 冷冻水流量计算:根据需要制冷的设备或空间的冷负荷计算出冷冻水的流量需求。
冷冻水流量的计算公式一般为:Q = m * Cp * deltaT,其中Q为冷负荷,m为冷冻水流量,Cp为冷冻水的比热容,deltaT为冷冻水的温差。
-冷冻水温差计算:根据冷冻水的进出口温度计算出冷冻水的温差。
温差一般为6-12℃,但具体取值要根据实际情况来确定。
-冷冻机组的选择:根据冷冻水的温度要求和冷冻水的流量计算出需要的冷冻机组的能力,然后选择合适的冷冻机组。
3.设计:-系统的布局:包括冷却水循环系统和冷冻水循环系统的布置。
冷却水循环系统一般包括冷却塔、冷却水泵、冷却水管道等设备;冷冻水循环系统一般包括冷冻机组、冷冻水泵、冷冻水管道等设备。
-系统的控制:包括系统的自动控制和手动控制。
自动控制一般采用PLC或DCS系统,可以根据冷负荷和温度变化来自动调节冷却水和冷冻水的流量和温度;手动控制一般采用仪表和阀门来手动调节冷却水和冷冻水的流量和温度。
冷水机组制冷系统节能分析及措施摘要:在我国的能源消费主体中,建筑能耗占了很大的比例,据统计,已占我国能源总消费的27.6%,而中央空调能耗又占了其中的40%—60%。
因此,如何降低空调能耗成为建筑节能的重中之重,而空调系统中冷源的耗电量,一般约占空调系统总耗电量的30%—40%,很多工厂生产车间要求恒温恒湿,工艺空调系统能耗比重较大,节能降耗具有重要意义。
本文主要介绍冷水机组制冷系统运行现状,并结合实际工程节能改造案例进行节能分析。
关键词:空调、冷水机组、COP一、引言建设生态文明是我们党深入贯彻落实科学发展观,立足经济快速增长中资源环境代价过大的严峻现实而提出的重大战略思想和战略任务,是中国特色社会主义伟大事业总体布局的重要组成部分。
坚持“人与自然和谐共生”“绿水青山就是金山银山”的生态文明思想,绿色低碳生活理念已深入人心,正逐渐改变人们的生活方式和思想观念。
企业作为社会主义现代化建设主体,为人们提供物质、精神文化需要,必须肩负起经济和社会责任,倡导低碳、节能、环保不仅是责任,更具有引领和示范意义。
二、关于空调系统冷水机组节能改进的研究方向随着国家有关节能减排、低碳经济、环境保护等政策的出台及中央空调技术的发展,作为中央空调主要设备的冷水机组在技术上也有了很大的发展和提高,不断趋于高效化、精益化和智能化。
对于冷水机组使用客户,针对冷水机组的节能降耗方案主要围绕辅联设备控制策略的优化和精细化操作,设备优化有对冷冻水泵和冷却水泵的变频和冷却塔风机的群控组合控制,精细化操作根据冷水机组运行负荷率,合理搭配机组运行数量,此次研究方向围绕冷却塔风机的群控组合控制策略和根据冷水机组运行负荷率,合理搭配机组运行数量。
三、天水卷烟厂空调系统现状天水卷烟厂生产车间建筑面积约4万平方米,车间全年保证恒温恒湿,空调系统冷源采用两台制冷量3516KW和一台制冷量2461KW的离心式冷水机组,空调机组加热加湿热源采用饱和蒸汽。
空调系统冷冻水循环水泵的节能设计方法(中国矿业大学力学与建筑工程学院建环11-2班郭浩)摘要:建筑空调系统的运行负荷仅为设计负荷的 50%~70%左右,而冷冻水泵作为空调系统中最主要的耗能设备,在整个系统运行过程中存在相当大的节能改造空间。
本文从空调系统的节能重要性以及重点阐述的冷冻水循环水泵的节能,分析了空调系统的运行工况,从运行工况中得出空调能耗的原因,从冷冻水泵的单台、多台串并联的运行情况进行水泵选型,并从冷冻水一次泵变频节能和二次泵变流量两个方面对冷冻水循环水泵的节能坐车进一步阐述。
对水泵的选型方法作一定了解。
关键词:冷冻水泵节能优化水泵选型一次泵二次泵1 课题研究的意义中国是一个能源生产和消费大国。
近年来节能减排已成为国家生活乃至全社会关注的焦点,也是能源可持续发展的必由之路。
我国建筑能耗也已迅速上升到社会总能耗的33%以上。
空调系统、照明系统、动力系统构成了现代建筑的三大重要“器官”。
暖通空调已占到总建筑能耗的 50%~60%。
在空调系统中,主要能耗设备有冷水机组、水泵、末端设备等,其中空调水泵的能耗大约占冷水机组能耗的13%左右。
空调负荷是随气象因素等条件的变化而变化的,因此空调系统在大部分时间内工作于部分负荷状态。
建筑空调系统的运行负荷仅为设计负荷的 50%~70%左右,而冷冻水泵作为空调系统中最主要的耗能设备,在整个系统运行过程中存在相当大的节能改造空间。
本文主要就空调系统中冷冻水循环水泵的节能设计进行探讨,从冷冻水循环水泵的运行工况、水泵组合方式、水泵选型以及冷冻水一次泵、二次泵的节能设计角度进行分析。
2 冷冻水系统耗能分析中央空调系统包括了“末端风系统”、“输配系统”、“冷水机组”,具有“多输入、多输出、强耦合”等特点。
无论是冷水机组、冷冻水泵,又或者末端、阀门的控制策略的变化,均有可能导致冷冻水系统、甚至是冷水机组运行工况发生波动。
图2.1空调系统运行示意图从上图可以看出,冷冻水作为流动“能质”,在冷冻水输配系统中可视为从冷水机组出发后为起点,经过冷冻水泵、阀门、末端后,回到冷水机组蒸发器,此为一个循环。
冷水机组同时作为“能质”流动的起点和终点。
空调冷水机组主要包括了以下四部分:蒸发器,冷凝器、压缩机以及气液换热器,其中冷冻水作为“能质”流经蒸发器与制冷剂进行热交换;压缩机为冷水机组的中枢元件,通过制冷剂工况的变化,在蒸发器和冷凝器之间传递热量;冷凝器则将热量传递给冷却水。
冷冻水系统作为一个内部相互关联,与冷水机组也存在关联的系统,作为“能质”的冷冻水,由于其流量的变化必然对其他部件的能效产生影响。
但具体的影响是大还是小,在本章中通过理论分析,可出以下结论:1) 在冷水机组不能做到变流量运行的时候,冷冻水系统的变流量运行,尤其是一次冷冻水泵系统的变流量运行是不可行的。
然而,随着冷水机组工艺的发展,冷水系统的变流量运行,不会对冷水机组产生安全方面的隐患。
但流量的变化对冷水机组的蒸发器的传热量以及传热系数影响不大;但对冷水机组的蒸发温度以及 COP 的影响较大。
因此,冷冻水流量的改变,与主机具有相关性。
在进行冷冻水泵节能改造的节能量认定需要将冷水机组划分在边界内。
2) 由于对冷冻水泵的节能改造导致的冷冻水流量的改变,对末端的传热系数变化较小,更不会影响空调末端的能耗值。
冷冻水泵与空调末端没有相关性。
3) 在空调系统的运行过程中,阀门调节不可避免,更无法预计。
阀门的变化以及空调末端的启停以及电动二通阀的改变,均会一定程度上改变管网的特性曲线。
因此,在进行冷冻水泵改变流量后的能耗计算中,采用相似律进行分析,是不合理的,应该尽量避免。
通过本章的研究,可以明确冷冻水泵的节能改造,尤其是变频改造,对冷水机组的 COP 的影响非常大,因此,冷冻水泵与冷水机组具有明显的相关性;相反,与空调末端并没有较大的相关性,可不加以考虑。
同时,对阀门的研究讨论得出,由于阀门的变化,导致空调冷冻水管网曲线是不断变动,且不可预见的。
3冷冻水泵节能优化3.1三种控制方式冷冻水泵的运行控制策略包括了台数控制、变频控制、台数控制结合变频控制三种,分别如下:(1)台数控制:若空调系统有多台冷冻水泵,且均定频运行。
当冷冻水进水温度高于设定上限值时,增开一台冷冻水泵;当冷冻水进水温度低于设定下限值时,关闭一台冷冻水泵。
(2)变频控制:若冷冻水泵为变频水泵,当冷冻水进水温度低于设定进水温度下限值时,冷冻水泵变频运行,通过改变冷冻水泵的电机频率,进而改变冷冻水流量。
(3)台数和变频控制:当系统存在多台冷冻水泵,且均安装有变频装置。
则变频运行为优先,根据冷冻水的进水温度,调节冷冻水泵频率。
若冷冻水泵的输入频率值达到变频器设定频率值下限时,冷冻水泵的进水温度仍然无法满足冷冻水进水温度下限,则关闭一台冷冻水泵;若冷冻水泵的输入频率值达到工频时,冷冻水泵的进水温度仍然无法高于冷却水进水温度上限,则增开一台冷冻水泵。
3.2 节能优化冷冻水泵的节能改造措施,主要有更换小流量高效率的定频水泵,或者对水泵叶轮进行切削处理以降低流量;或者对单台水泵加装变频器;如果空调系统存在多台水泵并联运行,还需要进行泵组的优化等等。
针对这些节能改造措施,注意分析其运行工况的变化以及对冷冻水系统的影响。
首先,节能改造的首要目的是改变了管网的流量,一定程度上解决了“大流量小温差”的现象。
但要注意的是,节能改造后如果仅仅更换小流量高效率的定频水泵,或者对水泵叶轮进行切削处理无法解决建筑实际负荷在不停波动的状况。
因此,该措施只能针对建筑负荷波动比较小的情况。
对冷冻水系统的影响还有一个重要方面就是减小了冷冻水泵的运行能耗,但其节能率有限。
其次,进行变频改造,则主要解决的时候建筑长期处于部分负荷的情况,根据建筑的实际负荷,基于变频器的控制机理,调节冷冻水泵的叶轮转速,以达到改变流量的目的。
不同的控制机理,其节能率是不一样的,就原理来讲,采用温度控制的节能率最大;采用定压差控制,其节能率最低。
在实际中,有很多建筑存在着冷冻水泵并联运行的情况,泵组的优化需要考虑对泵组中某一台或者几台水泵改造后,对整个泵组的影响。
在此基础上,可以得出,若泵组假设只有两台水泵(实际情况中,两台水泵并联是最普遍的),则只对其中一台冷冻水泵进行变频改造,是不合理的;最好的改造方法是对两台冷冻水泵同时进行变频改造。
在冷冻水泵定频运行的情况下,只能采用压差旁通控制,通过冷水机组的流量不发生变化;在冷冻水泵变频情况下,由于流量变化需要冷冻水泵与末端联合控制。
因此,亦不考虑末端是否安装电磁二通阀。
因此,可将节能工况划分为以下几种:4 冷冻水循环水泵的选型4.1 水泵选型的基本要求水泵的选型是依据设计流量Go及相应的扬程H。
两个参数确定的,为了节省能耗,要求水泵在高效段η≥0.9ηmax运行,如图4.1所示。
图4.11水泵G-H性能曲线 2.管网性能曲线 3.水泵G-η曲线同时在部分负荷情况下,系统的流量G应该在0-Go之间变化。
所以要求水系统水泵的高效段尽可能宽。
显而易见,较大设计流量Go的系统中,仅仅使用一台水泵是不合适的。
下面就较大设计流量Go情形下讨论水泵的选型。
4.2 水泵选型方式的比较(1)两台同型号水泵并联运行如图4.2所示,对于某一Go、Ho,当采用二台相同水泵并联时,每一台水泵的扬程H相同,流量G各承担一半。
当Go属于并联工作的高效段n,且扬程H 满足要求时,两台水泵都在高效段运行。
在工段,可关闭一台水泵,另一台水泵仍在高效段运行。
图4.21.单台水泵的G-H性能曲线2.并联水泵的G-H性能曲线3.单台水泵的η-G性能曲线Ⅰ段.单台水泵的高效段Ⅱ段,单台水泵的高效段(2)两台不同型号的水泵并联运行如图4.3所示,对于同一G0, H,采用二台不同水泵并联时,要求这两台水泵处于高效段时的扬程很接近,且并联运行时,Go处于高效段Ⅲ段,那么可考虑这两台水泵并联。
当系统流量小时,关闭水泵a, b水泵可在高效段H段运行。
当系统流量更小时,关闭水泵a.b水泵仍可在高效段I段运行。
本文阐述的就是以这种方式并联的各种情况。
图4.31.a水泵的G-H性能曲线2.b水泵并联的G-H性能曲线3.a.b水泵并联的G-H性能曲线Ⅰ段.a水泵的高效段Ⅱ段,b水泵的高效段Ⅲ段,两台水泵并联的高效段(3)三台同型号水泵并联运行如图4所示,可以看出,为了满足系统冷负荷的变化,流量变化的调节范围可以更大,可分别通过三台水泵同时运行、停一台水泵两台水泵运行和停两台水泵一台水泵运行三种工作方式来实现流量调节,且水泵都在高效段运行。
1.1台水泵的G-H性能曲线 2.2台水泵并联的G-H性能曲线 3.3台水泵并联的G-H性能曲线(4)三台不同型号的水泵并联运行如图5所示,可以看出,与图4相比,流量变化的调节范围就更大,可分别用三台水泵两两并联、一台单机运行、三台水泵井联运行七种工作方式,仍能满足在高效段运行1.a水泵的G-H性能曲线 2.b水泵的G-H性能曲线 3.c水泵的G-H性能曲线 4.a.b.c水泵并联的G-H性能曲线为了适应空调系统变负荷的需要,空调水泵必须具备良好的流量调节特性,在设计选型时常采用多台水泵并联运行。
本文通过分析得出:在保持水泵在高速效率运行条件下,采用不同型号但高效段扬程相近的水泵并联时的流量调节范围可比同型号的水泵并联要宽些。
5 空调冷冻水一次泵变频节能一次泵变频技术有三方面:水泵变频能耗、变频控制方式以及变频泵台数设置。
在当前的空调水系统设计中,二次泵水系统使用变频水泵得到了普遍的认可,而一次泵变频却始终得不到推广。
究其原因,不外乎有以下几点担心:蒸发器水流量变化必然引起冷水机组的出水温度波动,甚至导致机组运行不稳定,变流量会对制冷机运行产生不利影响。
因为水侧流量变化会致蒸发器(或冷凝器)的换热效率降低,并产生结冻危险,制冷机水侧变流量后,会明显下降,导致制冷机的能耗增大,结果会抵消水泵所节省的能量,使整个系统节能效果不突出,甚至不节能。
5.1水泵变频能耗采用变频技术关键是要看其节能多少,也即采用变频后水泵能耗越小越好"现在的研究中都不约而同的提到与节流调节法和旁通控制相比,在部分负荷时,降低水泵转速可以节约大量能源。
当转速降低一半,流量也减少一半,管路的阻力损失H随着水泵转速n成平方比关系减小,所耗功率降为原功率的1/8。
水泵的特性曲线越陡,并联运行时增量越大,反之,泵的特性曲线越平坦,增量越小,越不适宜并联工作;管路阻抗越小,并联后增量越大,越适宜水泵的并联工作,曲线为陡降型的泵与曲线缓升型的管路结合,并联后的增量较大。
管路压降是计算水泵能耗的重要参数之一。
水泵变频后,由于管路中冷水的流态可能发生变化,系统中的阀门开度的变化,系统的阻力特性也随之改变,也即管路特性曲线发生变化,但也只是进行了定性的分析,未对管路压降的确定进行定量分析。