细胞学作业第十四章 细胞增殖调与癌细胞
- 格式:docx
- 大小:18.60 KB
- 文档页数:2
细胞周期与癌细胞的增殖癌症的发病机制一直是医学界关注的焦点,研究表明,癌症的发生与细胞周期失控息息相关。
细胞是生命的基本单位,经历一系列有规律的生长、分裂和死亡的过程,称为细胞周期。
细胞周期的失控会导致细胞增殖异常,从而成为癌症的诱因。
下面,我们来深入探讨细胞周期与癌细胞的增殖之间的关系。
细胞周期的四个阶段细胞周期被分为四个不同的阶段:G1期、S期、G2期和M期。
G1期是细胞周期的第一个阶段,这个阶段也被称为“生长期”,因为在这个阶段细胞主要进行生长和准备复制DNA。
S期是DNA复制的阶段,G2期是细胞准备分裂的阶段。
在M期,细胞分裂成两个完整的细胞。
这个过程称为有丝分裂,通过细胞分裂,一个细胞变成两个完全相同的细胞。
细胞周期是一个精密的过程,通过这个过程,细胞将自身复制成两个新的细胞,并随之成长。
DNA复制与染色体在细胞周期的S期,细胞中的DNA会被复制。
每个细胞的DNA含有所有的遗传信息,它存储在染色体中。
染色体是合成DNA和蛋白质的结构,它们位于细胞核中。
染色体的组成方式有助于存储和组织DNA。
癌症的发病机制研究表明,细胞周期的失控是造成癌症的主要诱因之一。
通常情况下,正常细胞会按照规律的生长、分裂和死亡过程完成细胞的增殖。
然而,在某些情况下,细胞周期会失控,细胞可能会过度增殖和分裂,这导致了肿瘤的形成。
肿瘤是指细胞不受调节地增殖的异常过程,它通常由肿瘤细胞组成。
癌症是一种肿瘤,癌细胞是一种不断分裂的细胞,它们的增殖速度很快,而且它们的生长与正常细胞的生长有很大的不同之处。
癌细胞可以穿过正常细胞所不能的壁障,并在身体的其他部位生长。
这也是癌症如此难以治愈的原因之一。
细胞周期与肿瘤形成之间的关系在分子水平上,细胞周期的失调与两个不同的分子通路有关。
它们分别是肿瘤相关因子(oncogenes)和抑癌基因(tumor suppressor gene)。
肿瘤相关因子是防止细胞死亡和细胞增殖的重要因素。
第十四章细胞增殖调控与癌细胞细胞周期的有序运转第十四章细胞增殖调控与癌细胞第一节细胞增殖调控Clock Theory Domino Theory一、MPF的发现及其作用研究背景1970s Rao和Johnson发现与M期细胞(Hela)融合的间期细胞染色体发生凝缩,称为早熟凝集染色体(prematurelycondensed chromosome,PCC)。
–G1期PCC为单线状,因DNA未复制。
–S期PCC为粉末状,因DNA由多个部位开始复制。
–G2期PCC为双线染色体,说明DNA复制已完成。
甚至不同类的M期细胞也可诱导PCC产生,说明M期细胞具有促进间期细胞进行分裂的因子,即成熟促进因子(maturation promoting factor,MPF)。
G期细胞与M期细胞融合S期细胞与M期细胞融合1G 2期细胞与M期细胞融合PCC成熟促进因子(maturation promoting factor,MPF ),早期称为M-期促进因子(M-phase promoting factor, MPF),是指M期细胞中存在的促进细胞分裂的因子MPF的发现及组成卵细胞提取物注射实验把M 期细胞的细胞质注射到卵细胞,发现可以促进卵细胞成熟分裂,继续用该卵细胞细胞质诱导新的卵细胞,仍然可以促进卵细胞成熟分裂。
因而他们推测M 期细胞中必然有一种物质可以诱导卵细胞成熟分裂,即促细胞成熟因子(maturation promoting factor, MPF )。
1960s Leland Hartwell,1970s Paul Nurse 以芽殖酵母和裂殖酵母为实验材料,利用温度敏感突变株,发现许多与细胞分裂有关的基因(cell division cycle gene, CDC)。
如:–裂殖酵母cdc2、芽殖酵母cdc28突变型在限制温度下无法分裂;–wee1突变型则提早分裂,cdc25突变型细胞体积增大而不分裂;–cdc2和cdc28都编码一个34KD的蛋白激酶,促进细胞周期的进行,weel和cdc25分别表现为抑制和促进CDC2的活性。
第⼗四章细胞分化与基因表达调控第⼗四章细胞分化与基因表达调控⼀、填空题:1、癌细胞内染⾊质,染⾊体的和发⽣改变,细胞核,核仁,核质,癌细胞群分裂相,细胞形态是呈和形。
细胞膜表⾯出现和。
2、在个体发育过程中,通常是通过来增加细胞的数⽬,通过来增加细胞的类型。
3、细胞分化的关键在于特异性的合成,实质是在时间和空间上的差异表达。
4、从⼀种类型的分化细胞转变成另⼀种类型的分化细胞,往往要经历和的过程。
5、根据分化阶段的不同,⼲细胞分为和;按分化潜能的⼤⼩,可将⼲细胞分为、和三种。
6、Dolly⽺的诞⽣,说明⾼度分化的哺乳动物的也具有发育全能性,它不仅显⽰⾼等动物细胞的分化复杂性,⽽且也说明卵细胞的对细胞分化的重要作⽤。
7、基因与基因的突变,使细胞增殖失控,形成肿瘤细胞。
8、细胞分化是基因的结果,细胞内与分化有关的基因按其功能分为和两类。
9、编码免疫球蛋⽩的基因是基因,编码rRNA的基因是基因。
10、癌症与遗传病不同之处在于,癌症主要是的DNA的突变,不是的DNA的突变。
⼆、选择题:1、同源细胞逐渐变为结构和功能及⽣化特征上相异细胞的过程是()A.增殖B.分裂C.分化D.发育E.衰⽼2、从分⼦⽔平看,细胞分化的实质是()A.特异性蛋⽩质的合成B.基本蛋⽩质的合成C.结构蛋⽩质的合成D.酶蛋⽩质的合成E.以上都不是3、维持细胞最低限度的基因是()A.奢侈基因B.结构基因C.调节基因D.管家基因E.以上都不是4、⽣物体的细胞中,全能性最⾼的细胞是()A.体细胞B.⽣殖细胞C.⼲细胞D.受精卵E.上⽪细胞5、关于细胞分化的叙述,错误的是()A.分化是因为遗传物质丢失B.分化是因为基因扩增C.分化是因为基因重组D.分化是转录⽔平的控制E.分化是翻译⽔平的控制6、细胞分化过程中,不能激活基因进⾏选择性表达的因素是()A.DNAB.RNAC.组蛋⽩D.酶蛋⽩E.⾮组蛋⽩7、细胞分化的实质是()A、基因选择性表达B、基因选择性丢失C、基因突变D、基因扩增8、关于肿瘤细胞的增殖特征,下列说法不正确的是()。
第一章诸绪1.2001年,诺贝尔生理学或医学奖授予了Hartwell、Nurse、Tim Hunt3位科学家,表彰他们在()研究上作出了杰出贡献。
(B)A.细胞程序性死亡B细胞周期调控C.G蛋白偶联受体D.细胞自噬机理2.细胞学说是由()提出来的。
(C)A.Robert Hooke和Leeuwen HoekB.Crick和WatsonC.Schleiden和SchwannD.Sichold和Virchow第三章细胞生物学研究方法1.适于观察培养瓶中活细胞的显微镜是(B)A.荧光显微镜B.相差显微镜C.倒置显微镜D.扫描电镜2.观察血细胞的种类和形态一般制备成血液(C)A.滴片B.切片C.涂片D.印片3.冰冻蚀刻技术主要用于(A)A.电子显微镜B.光学显微镜C.微分干涉显微镜D.扫描隧道显微镜4.流式细胞术可用于测定(D)A.细胞的大小和特定细胞类群的数量B.分选出特定的细胞类群C.细胞中DNA、RNA或某种蛋白的含量D.以上三种功能都有5.扫描电子显微镜可用于(D)。
A.获得细胞不同切面的图像B.观察活细胞C.定量分析细胞中的化学成分D.观察细胞表面的立体形貌6.分离细胞内不同细胞器的主要技术是(A)A.超速离心技术B.电泳技术C.层析技术.D.光镜技术.7.细胞器进行分级分离时最先离心分离到的细胞器是(D)。
A.微粒体B.溶酶体C.线粒体D.细胞核8.由小鼠骨髓瘤细胞与某一B细胞融合后形成的细胞克隆所产生的抗体称(A)。
A.单克隆抗体B.多克隆抗体C.单链抗体D.嵌合抗体单选题9.直接取材于机体组织的细胞培养称为(B)。
A.细胞培养B.原代培养C.传代培养D.细胞克隆10.建立分泌单克隆抗体的杂交瘤细胞是通过下列技术构建立(A)。
A.细胞融合B.核移植C.病毒转化D.基因转移11.动物细胞在体外培养条件下生长情况是(D)。
A.能无限增殖B.不能增殖分裂很快死亡C.经过有限增殖后死亡D.一般进行有限增殖后死亡,但少数情况下某些细胞发生了遗传突变,,获得无限增殖能力12.正常细胞培养的培养基中常需加入血清,主要是因为血清中含有(C)。
细胞13.细胞增殖调控与癌细胞●细胞增殖调控●调控因子●mitosis-promoting factor, MPF 细胞有丝分裂促进因子定义:也称卵细胞成熟促进因子或M期促进因子,是催化亚基cdc2蛋白和调节亚基周期蛋白共同组成的蛋白质复合物,具有蛋白激酶活性,促进细胞从G_2期进入M期●(1970年)Johnson&Rao将Hela细胞的M期细胞与间期细胞融合,发生了形态各异的早熟染色体凝缩(premature chromosome condensation, PCC)早熟凝缩染色体定义:将M期细胞与G_1、S、G_2期细胞融合并继续培养一定时间后,融合细胞的染色体提前凝缩,形态各异G_1期PCC为细单线S期PCC为粉末状G_2期PCC为双线染色体状提示可能存在诱导染色体凝缩的因子●(1971年)Masui&Markert,非洲爪蟾卵,孕酮刺激生发泡破裂注射诱导卵母细胞成熟●p34^{Cdc2}激酶(MPF的催化亚单位)●Cdc2:CDC基因调控酵母细胞分裂和细胞周期,Cdc2是第一个被分离出来的CDC基因,Cdc2基因突变导致细胞停留在G_2/M期交界处●p34^{Cdc2}是Cdc2基因的表达产物,具有蛋白激酶活性,在裂殖酵母细胞周期调控过程中促进G_2/M期转换●Cdc28:芽殖酵母中的一个关键性CDC基因,其产物p34^{Cdc28}也是一种蛋白激酶,调节G_2/M期和G_1/M期转换●验证得知p34^{Cdc2}是MPF的同源物●本身不具有激酶活性,只有当其与有关蛋白质结合后,其激酶活性才能够表现出来●cyclin 周期蛋白(MPF的调节亚单位)定义:在细胞中的含量随细胞周期进程变化而变化的蛋白质,对细胞周期循环具有调节作用●分类●G_1期周期蛋白定义:某些只在G_1期表达并只在G_1期和S期转化过程中执行调节功能的周期蛋白,如cyclin C、D、E、Cln1、Cln2、Cln3等●M期周期蛋白定义:某些虽然在间期表达和积累,但到M期时才表现出调节功能的周期蛋白,如cyclin A、B等●特点●存在时间:G_1期周期蛋白在细胞周期中存在的时间相对较短,M期周期蛋白在细胞周期中则相对稳定●结构●均含有一段相当保守的氨基酸序列,成为cyclin box 周期蛋白框,其功能是介导周期蛋白与CDK结合●M期周期蛋白近N端含有一段由9个氨基酸残基组成的特殊序列,称为destruction box 破坏框,参与泛素依赖性的cyclin A、B的降解●G_1期周期蛋白分子中不含破坏框,但其C端含有一段特殊的PEST序列,与G_1期周期蛋白的更新有关●与CDK结合特点:不同的周期蛋白在细胞周期中表达的时期不同,并与不同的CDK结合,调节不同的CDK活性●cyclin A在G_1期的早期即开始表达并逐渐积累,到达G_1/S期交界处,其含量达到最大值并一直维持到G_2/M期●cyclin B从G_1期的晚期开始表达并逐渐积累,到G_2期后期阶段达到最大值并一直维持到M期的中期阶段,然后迅速降解●cyclin D在细胞周期中持续表达●cyclin E在M期的晚期和G_1期早期开始表达并逐渐积累,到达G_1期的晚期其含量达到最大值,然后逐渐下降,到达G_2期的晚期,其含量降到最低值●cyclin-dependent kinase, CDK 周期蛋白依赖性蛋白激酶、(CKI)CDK抑制因子●CDK定义:可以与周期蛋白结合,并以周期蛋白作为调节亚单位,表现出蛋白激酶活性●mitosis-promoting factor, MPF 细胞有丝分裂促进因子是一种CDK(CDK1)●特点●各种CDK分子均含有一段类似的CDK激活结构域●不同的CDK所结合的周期蛋白不同,在细胞周期中执行的调节功能也不相同●细胞内存在多种因子,修饰CDK的分子结构,参与CDK活性的调节●CKI:对CDK活性起负调控的蛋白质●细胞周期运转调控●G_2/M期检查点(cyclin B-Cdk1)●Cdk1(MPF)由p34^{Cdc2}和cyclin B(A)结合而成●p34^{Cdc2}在细胞周期中的含量相对稳定,主要变化在于周期蛋白含量●(主)cyclin B(A)的含量呈现周期性变化在G_1期的晚期开始合成,通过S期,其含量不断增加,到达G_2期,其含量达到最大值●(副)进一步的修饰:在Wee1/Mik1激酶和CDK活化激酶作用下发生3次磷酸化,在蛋白磷酸水解酶Cdc25C作用下发生2次去磷酸化三个磷酸化位点:Thr14、Tyr15、Thr161 Thr161位点保持磷酸化使Cdk1活性表现所必需的●下游作用使某些底物蛋白磷酸化,改变其下游的某些靶蛋白的结构和启动其功能,实现其调控细胞周期的作用●磷酸化组蛋白H1:促进染色质凝缩●磷酸化核纤层蛋白:促使核纤层解聚●磷酸化核仁蛋白:促使核仁解体●磷酸化p60^{c-Src}蛋白:促使细胞骨架重排●磷酸化c-Abl蛋白:促使细胞形态调整●中/后期检查点(APC)●anaphase-promoting complex, APC 后期促进复合物●定义:在分裂间期表达,M期表现出活性,可以调节M期周期蛋白泛素化依赖降解途径,以及其他一些与细胞周期调控有关的非周期蛋白类蛋白质的降解●在APC的作用下,M期cyclin A&B通过泛素化依赖途径被蛋白酶体降解这一过程中破坏框起着重要的调节作用●Mad2的负调控作用(有丝分裂中后期转换)Cdc20能活化APC并降解抑制分离酶的securin,进而导致中后期转换●Mad2定位在早中期和错误排列的中期染色体的动粒上,纺锤体组装不完全,动粒不能被动粒微管捕捉,Mad2则不能从动粒上解离下来●当纺锤体组装完成以后,动粒全部被动粒微管捕捉,Mad2从动粒上消失,从而解除对Cdc20的抑制作用,促使APC活化,导致M期周期蛋白降解●G_1/S期检查点(cyclin E/A-Cdk2、cyclin D-Cdk4/6)●主要的G_1期周期蛋白-CDK●cyclin D-Cdk4/6●cyclin D为细胞G_1/S期转化所必需●Cdk4/6的底物Rb蛋白是转录因子E2F的抑制因子,是G_1/S期转化的负调控因子,在G_1期的晚期阶段通过磷酸化而失活如果细胞Rb突变,失去对E2F的抑制,使细胞无法停留在G_1期,会导致细胞过度增殖●cyclin E-Cdk2●主要出现在G_1期晚期到S期的早期阶段,为S期启动所必需●transforming growth factor β, TGFβ 转化生长因子β可以有效地抑制cyclin E-Cdk2活性,进而将细胞阻止在G_1期●cyclin E-Cdk2与类Rb蛋白p107和E2F结合形成复合物,Cdk2催化p107磷酸化,使其不能抑制E2F,E2F促进有关基因的转录,促使细胞周期由G_1期向S期转化●cyclin A-Cdk2●cyclin A的合成开始于G_1/S期转化时期●进入S期后,cyclin A-Cdk2激酶成为该时期主要的CDK●cyclin A-Cdk2与DNA复制有关,位于DNA复制中心●G_1期周期蛋白通过SCF泛素化途径降解●同时需要G_1期CDK活性的参与●SCF具有E3泛素连接酶的功能,它可以被F-box蛋白活化,进而催化底物蛋白的泛素化●其他DNA复制起始活动的调控●DNA复制起始点的识别(ORC、Cdc6、Cdc45)●DNA复制执照因子学说(Mcm蛋白)●S/G_2/M期转换与DNA复制检查点将细胞停滞在S期和G_2/M期●intra-S phase checkpoint S期内部检查点定义:在S期内发生DNA损伤如DNA双链发生断裂时,S期内部检查点被激活,从而抑制复制起始点的启动,使DNA复制速度减慢,S期延长,同时激活DNA修复和复制叉的恢复等机制●通过染色体结构维持蛋白Smc1的磷酸化,从而实现S期的延长●通过ATM/ATR介导的Cdc25A磷酸酶过磷酸化而降解,从而抑制cyclinE/A-Cdk2活性●replication checkpoint DNA复制检查点由于停滞的复制叉导致的S期的延长的机制,主要是由ATR/Chk1激活来介导的●ATR/Chk1介导Cdc25A降解进而抑制cyclin E/A-Cdk2的通路,减缓整体DNA复制的效率●DNA损伤检查点p53含量提高→ p21表达→ cyclin E-CDK2失活●抑癌基因p53表达产物p53蛋白对细胞增殖起负调节作用●调控机制:p53本在细胞中含量极少(被Mdm2泛素化降解),DNA受损后,Chk1&Chk2使p53磷酸化并与Mdm2解离,p53蛋白浓度上升,作为转录因子调控p21表达,使cyclin E-Cdk2失活,不能进入S期●多细胞生物:若DNA无法修复,则发生p53介导的细胞凋亡●癌细胞●cancer cell 癌细胞●定义:脱离了细胞社会制约,表现出细胞增殖失控,并且有侵袭和转移等特征的细胞,癌细胞会破坏组织和器官的正常生理功能●分类●tumor cell 肿瘤细胞动物体内因细胞分裂调节失控而无限增殖的细胞●malignancy 恶性肿瘤具有转移能力的肿瘤●cancer 癌源于上皮组织的恶性肿瘤●benign tumor 良性肿瘤分裂缓慢,具有结缔组织包膜而不扩散的肿瘤●基本特征●细胞生长与分裂失去控制癌细胞失去控制,称为“不死”的细胞,核质比例增大,分裂速度加快,破坏了正常组织的结构与功能●具有浸润性和扩散性癌细胞细胞间黏着性下降,易于浸润周围健康组织,或通过血液循环和淋巴途径转移并在其他部位黏着和增殖。
一、简述p34^cdc2/cyclin B蛋白激酶的发现过程。
Tim Hunt 为代表的科学家以海胆卵为材料,对细胞周期调控进行了深入研究。
JR.Evans 等人于1983年报道,在海胆卵细胞中含有两种特殊蛋白,它们的含量随周期过程变化而变化,一般在细胞间期内积累,在细胞分裂期内消失,在下一个周期有重复这一过程,因而它们将其命名为周期蛋白。
随后的研究证明:周期蛋白为诱导蛋白进入M期所必须。
各种生物之间的周期蛋白在功能上有着广泛的互补性。
将海胆cyclin B的mrna引入到非洲爪蟾卵非细胞系中,其翻译产物可诱导该非细胞体系进行多种细胞周期循环。
接下来的一系列实验提示周期蛋白可能参与MPF的功能调节。
二、举例说明CDK在细胞周期中是如何执行调节功能的?
细胞周期调控包括正调控、负调控和信号反应。
CDK激酶是正调控因子,它是细胞沿周期运行的引擎蛋白。
以MPF为例阐述:MPF是一种使多种底物磷酸化的蛋白激酶,即CDK1激酶,由p34蛋白和周期蛋白B结合而成。
CDK1激酶活性首先依赖于周期蛋白B含量的积累。
周期蛋白B一般在G1期的晚期开始合成,通过S期,其含量不断增加,达到G2期,其含量达到最大值,CDK1激酶的活性随着周期蛋白B浓度变化而变化。
CDK1激酶的活化还受到激酶与磷酸酶的调节。
活化的CDK1激酶可使更多的CDK1激酶活化。
随着周期蛋白B 含量达到一定程度,CDK1激酶活性开始出现,到G2晚期阶段,CDK1激酶活性达到最大值并一直维持到M期的中期阶段。
活化的CDK1激酶促使分裂期细胞在分裂前期执行下列生化事件:(1)染色质开始浓缩形成有丝分裂染色体;(2)细胞骨架解聚,有丝分裂纺锤体开始组装;(3)高尔基复合体、内质网等细胞器解体,形成小的膜泡。
在有丝分裂的后期,活化的后期促进因子APC主要介导两类蛋白降解:后期抑制因子和有死分裂周期蛋白。
前者维持姐妹染色单体粘连,抑制后期启动;后者的降解意味着CDK1激酶失去活性,有死分裂即将结束,即染色体开始去凝集,核膜重建。
CDK,也就是周期蛋白依赖性蛋白激酶,在细胞周期G1期进入s期,G2期进入M期这两个检验点的度过过程中起重要作用。
CDK激酶与周期蛋白结合会生成MPF(即促成熟因子),可以使细胞中多种蛋白质底物磷酸化,促进细胞度过检验点,继续进入后面的循环过程。
总的来说,没有CDK激酶,细胞周期就会停滞在检验点,不能继续向下一阶段推进。
四、说明癌症的发生与癌基因和抑癌基因的关系。
为什么抑癌基因突变在细胞水平上是隐性的,却表现为典型的显性的孟德尔遗传?
癌基因是一种高度保守的基因,仅在胚胎期表达,在成熟个体的正常人中处于关闭状态,停止了表达,这种出生后人体不表达的癌基因称为原癌基因,为生命活动所必需.原癌基因的表达产物对细胞正常生长、繁殖、发育和分化其着精密的调控作用。
显然,若基因的结构发生异常或表达失控,必然导致细胞生长繁殖和分化异常,使细胞恶变而形成肿瘤。
抑癌基因是一类抑制细胞过度生长、增殖从而遏制肿瘤形成的基因。
对于正常细胞,调控生长的基因(如原癌基因)和调控抑制生长的基因(如抑癌基因)的协调表达是调节控制细胞生长的重要分子机制之一。
这两类基因相互制约,维持正负调节信号的相对稳定。
当细胞生长到一定程度时,会自动产生反馈机制,这时抑制性基因高表达,调控生长的基因则低表达或不表达,癌基因激活的过量表达与肿瘤的形成有关。
因为抑癌基因有等位基因隐性作用,失活的抑癌基因之等位基因在细胞中起隐性作用,即一个拷贝失活,另一个拷贝仍以野生型存在,细胞呈正常表型。
只有当另一个拷贝失活后才导致肿瘤发生,如Rb基因。
②抑癌基因的显性负作用抑癌基因突变的拷贝在另一野生型拷贝存在并表达的情况下,仍可使细胞出
现恶性表型和癌变,并使野生型拷贝功能失活。
这种作用称为显性负作用或反显性作用。
如近年来证实突变型p53和APC蛋白分别能与野生型蛋白结合而使其失活,进而转化细胞。