2010第三章 食品物性分析
- 格式:ppt
- 大小:2.13 MB
- 文档页数:52
食品物性学食品物性科学技术名称食品物性——质构篇食品物性food phisical property食品原料及其加工过程中热学性质力学性质、电学性质、光学性质等物理性质。
食品质构food texture通过触觉、视觉.听觉对食品产生的综合感觉(软硬、黏稠、酥脆滑爽等)所表现出来的食品物理性质。
硬度hardness , firmness材料局部抵抗硬物压人其表面的能力。
食品领域用来描述食物软硬、咀嚼需要的力度大小的物理指标。
脆度brittleness物体(整体或表面)承受冲击载荷的能力的量度。
材料受到外力时,其内部容易产生裂纹并破坏的性质,当外力达到-定限度时,材料发生无先兆的突然破坏,且破坏时无明显塑性变形。
黏着性adhesiveness咀嚼时食物对上腭、牙齿或舌头等接触面黏着的性质。
口感mouth feel口腔对食品质地感觉的总称。
包括稀稠、干湿、老嫩、松脆、油性、冷热、蜡质的、粉质的、丝滑的、清凉的等多种感觉。
流变仪rheometer用于测定流体、黏弹性或弹性食品的粘度、黏弹性等流体特性的仪器,包括旋转粘度计、毛细管粘度计、转矩流变仪及界面流变仪等。
布拉本德粉质仪Brabender farinograph应用最广泛的粉质测量仪器,用于测定小麦、燕麦等吸水率和揉混性能。
以旋转搅动对面团施加确定的机械剪切力,以力矩对时间图线实时记录粉质变化。
吸水率water absorption, ab表示食品原料在正常大气压下吸水程度的物理量,用百分率来表示。
面团形成时间dough development time, dt,从揉面开始至达到最高黏度值后,此值开始下降时所需要的时间。
初达到最高点的时间叫PT。
面团衰落度weakness, wk又称“面团弱化度”。
阻力曲线从开始下降时起12min后曲线的下降值。
Wk 越小,面团筋力越强。
综合评价值valorimeter value, ww面团形成时间和衰减度综合评价的指标。
绪论:1)食品的质量因素:营养特性、感官特性、安全性。
2)流变学:流变学( Rheology)是研究物质在力的作用下变形和流动的科学。
3)食品流变学:食品流变学是在流变学基础上发展起来的, 它以弹性力学和流体力学为基础,主要应用线性粘弹性理论, 研究食品在小变形范围内的粘弹性质及其变化规律,测量食品在特定形变情况下具有明确物理意义的流变响应。
食品流变学的研究对象是食品及其原料的力学性质。
(了解)通过对食品流变学特性的研究,可以了解食品的组成、内部结构和分子形态等,为产品配方、加工工艺、设备选型及质量控制等提供方便和依据。
4)其他几个性质稍作了解.第一章1)物质的结构:是指物质的组成单元(原子或分子)之间相互吸引和相互排斥的作用达到平衡时在空间的几何排列.分子内原子之间的几何排列称为分子结构,分子之间的几何排列称为聚集态结构。
食品物质:聚集态结构2)高聚物结构研究的内容:1 高分子链的结构:近程结构(一级结构)、远程结构(二级结构);2 高分子的聚集态结构又称三级或更高级结构。
3)高分子内原子间与分子间相互作用:吸引力(键合原子之间的吸引力有键合力,非键合原子间、基团间和分子间的吸引力有范德华力、氢键和其他力。
)和推拒力(当原子间或分子间的距离很小时,由于内层电子的相互作用,呈现推拒力。
)键合力包括共价键、离子键和金属键。
在食品中,主要是共价键和离子键。
范德华力包括静电力、诱导力和色散力。
范德华力是永远存在于一切分子之间的吸引力,没有方向性和饱和性。
作用距离0.26nm,作用能比化学键能小1一2个数量级。
氢键:它是极性很强的X一H键上的氢原子与另一个键上电负性很大的Y原子之间相互吸引而形成的(X一H…Y).氢键既有饱和性又有方向性.氢键的作用能为12一30kJ/mol氢键作用半径一般为0。
17一0。
20nm。
氢键可以在分子间形成,也可以在分子内形成。
疏水键并不是疏水基团之间存在引力,而是体系为了稳定自发的调整。
食品组织结构与物性特征分析研究食品是我们日常生活中不可或缺的一部分,而食品的组织结构和物性特征对其质量和口感有着重要影响。
在食品科学领域,人们通过研究食品的组织结构与物性特征,来揭示其内部结构与性质之间的关系,并为食品的加工、保存和调理提供科学依据。
食品的组织结构是指食品中各种成分的分布状态和相互关系。
例如,面粉中的蛋白质和淀粉形成了复杂的网络结构,而水分则通过与蛋白质和淀粉的结合来改变其流动性。
食品的组织结构不仅影响了食品的质地和口感,还决定了食品的储存稳定性和加工性能。
因此,研究食品的组织结构对于改善食品品质和开发新型食品具有重要意义。
物性特征是指食品在物理、化学和生物学等方面的特性。
食品的物性特征包括流变学性质、质构特征、化学反应特性等。
流变学性质指食品在外力作用下的刚性、粘弹性等特点,质构特征是指食品的硬度、弹性、咀嚼性等口感性质,化学反应特性则包括食品在加工和保存过程中的物质转化和产生的变化。
研究食品的物性特征对于探索食品的机理和改善食品加工工艺具有重要作用。
通过对食品的组织结构和物性特征进行研究,可以了解食品内部的分子排布和相互作用。
例如,在烘焙过程中,面团在高温作用下发生膨胀,这涉及到淀粉与水分的吸附作用、面筋蛋白的网络形成等。
只有深入了解食品内部结构和特性,才能找到改善加工工艺和提高产品品质的途径。
近年来,随着科学技术的不断进步,食物组织结构和物性特征的研究也得到了快速发展。
先进的成像技术,如扫描电子显微镜(SEM)和透射电子显微镜(TEM),能够将食品的微观结构展现得更为清晰,有助于揭示食品的组织结构和特性。
另外,利用X射线衍射、红外光谱和核磁共振等分析方法,还可以获得食品中各种成分的分布情况和相互作用机制。
以面包为例,通过对面包组织结构和物性特征的研究,可以了解面包的膨松性和储存稳定性。
传统的面包中,面团中的面筋蛋白通过形成网络结构而使得面包具有一定的弹性和蓬松度。
而随着工艺的改进和添加剂的使用,研究人员通过调控面筋蛋白的结构和淀粉的水化程度,进一步提高了面包的质地和口感。
食品物性学
食品物性学是食品科学的一个重要分支,它致力于研究食品的物
理性质和物理性能,以帮助开发、分析和评估食品质量和安全性。
食品物性研究通常集中在液体食品、固体食品和混合食品之间的
不同物理性质上。
其中一个重要的物性是流变特性,它涉及食物的流
动过程,以及它们在物理上如何发生改变。
例如,液体食品的流变特
性可以用来测量液体的粘度,以及它们在流动过程中的变化。
此外,
固体食品的流变特性也很重要,例如分析固体食品的硬度和口感。
其他重要的物性有流体动力学、热学、电学和营养学特性。
食品
中的流体动力学特性可以用来测量食物的流速、流动方式和混合情况。
热学特性涉及食物的温度和热量传输,以及这种传输如何影响食物的
质量和安全性。
此外,电学特性会影响食物的电解质在其中的分布,
从而影响食物的品质。
最后,营养物性可以用来研究食物中的营养成分,以确定哪些成分具有最大的营养价值。
总之,食品物性学是一个复杂和多样化的科学,通过对食品中不
同物性的研究,可以更好地理解食物的制作、保存和运输过程,确保
向消费者提供优质的食品。
食品物性学论文引言食品物性学是研究食品的物理性质和化学性质以及这些性质对食品质量和食品加工过程的影响的学科。
食品物性学对于食品工程师、食品科学家和食品生产厂商来说十分重要,它可以帮助他们更好地理解食品的特性,从而进行食品加工、质量控制和新产品的开发。
本文将重点介绍食品物性学的基本概念和一些常见的物性测试方法。
食品的物性食品的物性是指食品的物理和化学特性,包括了食品的形态、结构、力学性质、流变性质、传热性质等。
这些物性对于食品的加工、品质和储存都有着重要的影响。
形态和结构食品的形态和结构是指食品的外观、内部结构和组织特征。
食品的形态和结构可以直接影响到食品的口感和质感。
例如,在面包制作中,面团的形态和结构会直接影响到面包的蓬松度和口感。
力学性质食品的力学性质是指食品在外力作用下的变形行为。
常见的力学性质测试方法包括硬度测试、拉伸测试和压缩测试。
这些测试可以帮助我们了解食品的韧性、弹性和脆性等特性。
流变性质食品的流变性质是指食品在外力作用下的变形行为与应力关系的特性。
流变性质测试可以帮助我们了解食品的黏度、流动性和变形特性。
例如,在糖果制造中,流变性质的测试可以帮助我们确定最佳的糖浆黏度,以获得所需的糖果形状。
传热性质食品的传热性质是指食品在传热过程中的热传导特性。
食品的传热性质对于食品的加热、冷却和保温过程都有着重要的影响。
通过测量食品的传热性质,我们可以优化食品加工过程,提高生产效率和产品质量。
食品物性测试方法为了准确地了解食品的物性,我们需要借助一些测试方法和仪器。
下面介绍一些常见的食品物性测试方法:形态和结构测试形态和结构测试是通过观察和测量食品的外观、内部结构和组织特征来进行的。
常用的方法包括光学显微镜、扫描电子显微镜和X射线成像等。
力学性质测试力学性质测试可以通过应力-应变关系来评估食品的韧性、弹性和脆性等特性。
常用的方法包括质感分析、硬度测试仪和拉伸仪。
流变性质测试流变性质测试是通过应力和变形速率之间的关系来评估食品的黏度、流动性和变形特性的。