1.3.2有理数的减法1练习
- 格式:pptx
- 大小:891.74 KB
- 文档页数:25
第一章 有理数 1.3.2有理数的减法 课后练习一、选择题(共10小题).1.计算(-25)-(-16)+2的结果是( )A .7B .-7C .8D .-82.把(-2.4)+(+3.4)-(-4.7)-(+0.5)+(-3.5)写成省略加号的和的形式应是( )A .-2.4+3.4-4.7-0.5-3.5B .-2.4+3.4+4.7+0.5-3.5C .-2.4+3.4+4.7-0.5-3.5D .-2.4+3.4+4.7-0.5+3.53.在下列算式中,正确的算式有( )①2-(-2)=0;②(-3)-(+3)=0;③(-3)+|-3|=0;④0-(-1)=0.A .1个B .2个C .3个D .4个 4.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a -b +c 的值为( ).A .-1B .0C .1D .25.已知蚂蚁沿数轴从表示数3.5的点A 处先向左爬行2.5个单位长度,再向右爬行2.2个单位长度,最后向左爬行了1个单位长度到达点B ,则点B 落在( )A .段③B .段①C .段④D .段②6.如图,点A ,B ,C 在数轴上,它们分别对应的有理数是a ,b ,c ,则以下结论正确的是( )A .0a b +>B .0a c +<C .0a b c +->D .0b c a +->7.一天早晨气温为4C -︒,中午上升了7C ︒,半夜又下降了8C ︒,则半夜的气温是( )A .16C -︒B .4C -︒ C .4C ︒D .5C -︒8.数学考试成绩85分以上为优秀,以85分为标准,老师将某一小组五名同学的成绩记为+9、-4、+11、-7、0,这五名同学的实际成绩最高的应是( )A .94分B .85分C .98分D .96分9.电子虫落在数轴上的某点K 0,第一步从K 0向左跳1个单位到K 1,第二步由K 1向右跳2个单位到K 2,第三步由K 2向左跳3个单位到K 3,第四步由K 3向右跳4个单位到K 4…,按以上规律跳了100步时,电子虫落在数轴上的点K 100所表示的数恰是19.94,则K 0表示的数是( )A .﹣19.94B .30.06C .19.94D .﹣30.0610.在某航展上,一架“20J -”飞机在某一高度开始进行10min 的特技表演,然后每隔2min 记录一次该飞机高度变化,5次记录数据如下:(注:正号表示比前一次记录高,负号表示比前一次记录低)1.5, 3.2,0.5,2,4km km km km km +-+-+.在上述5次记录时,飞机的实际高度最低是哪次( )A .第2次B .第3次C .第4次D .第5次二、填空题 11.有理数-5,+2的和比它们的绝对值的和小________.12.计算:1111111111 (2324398109)-+-+-+-+-=_________. 13.计算1(2)3(4)5(6)99(100)101+-++-++-+⋅⋅⋅⋅⋅⋅++-+=________.14.东京与北京的时差为1+,巴黎与北京的时差为7-.假如现在是北京时间7:00,那么东京时间是______,巴黎时间是________.15.某地气象资料表明,高度每增加1000米,气温就下降大约6℃,现在10000高空的气温是23-℃,则地面气温约为_______.三、解答题16.计算题(1)5+(-6)+(+3)+(-4)(2)-3-4+19-10(3)-2.4+133+(-116)+(-1.6) (4)1131130.25 3.75 4.5244-+--- (5)|-3 | +(-5)-|-4| + 3 + |-(+5)|(5)()21112 2.75524⎛⎫---+-- ⎪⎝⎭17.已知a 、b 互为相反数,n 的绝对值是2,m 是最大的负整数,求m a b n -++的值.18.(1)列式计算:﹣3、7、﹣8这三数之和比它们绝对值的和小多少?(2)已知:a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的数,求a ﹣b +c 的值.19.甲城市与乙城市的时差为两城市同一时刻的时数之差,如当北京时间为8:00时,东京时间为9:00,巴黎时间为1:00,那么,东京与北京的时差为()981h -=+(1)任务一:请你计算巴黎与东京的时差.(2)任务二:已知纽约与北京的时差为13h -.那么李伯伯在北京乘坐早晨8:00的航班飞行约20h 到达时纽约时间是几点?20.出租车司机小张某天下午营运全是南北方向的魏武大道上行驶的,如果规定向南为正,向北为负,这天下午行车里程如下:(单位:千米)12+,1-,15+,13-,10+,11-,6+,14-(1)当最后一名乘客送到目的地时,距出车地点的距离为多少千米?(2)若每千米的营运额为2元,这天下午的营业额为多少?(3)若成本为0.5元/千米,出租车司机小张这天下午盈利多少元?21.某仓库原有某种货物库存200千克,现规定运入为正,运出为负;一天中七次出入如下(单位:千克)(1)在第________次纪录时库存最多.(2)求最终这一天库存增加或减少了多少?(3)若货物装卸费用为每千克0.3元,问这一天需装卸费用多少元?22.某路公交车从起点经过A,B,C,D站到达终点,各站上下乘客的人数如下(上车为正,下车为负):起点(20,0),(12,4),(8,9),(6,4),(2,7)A B C D----,终点()0,____.(1)在横线上填写适当的数,并说明该数的实际意义;(2)行驶在哪两站之间时,车上的乘客最多?(3)若乘坐该车的票价为每人2元,则这一趟公交车能收入多少钱?23.学校为了备战校园足球联赛,利用体育课让学生进行足球训练,为了训练学生快速抢断转身,体育老师设计了折返跑训练.老师在东西方向的足球场上画了一条直线插上不同的折返旗帜,如果约定向西为正,向东为负,练习一组的行驶记录如下(单位:米):+40,﹣30,+45,﹣25,+25,﹣35,+15,﹣28,+16,﹣18.(1)学生最后到达的地方在出发点的哪个方向?距出发点多远?(2)学生训练过程中,最远处离出发点多远?(3)学生在一组练习过程中,跑了多少米?【参考答案】1.B 2.C 3.A 4.D 5.D 6.D 7.D 8.D 9.D 10.C11.1012.9 1013.5114.8:00 0:00.15.37℃16.(1)-2;(2)2;(3)116-;(4)92-;(5)2;(6)3517.1或-3.18.(1)22;(2)219.(1)8h-;(2)到达时纽约时间是15点.20.(1)在出发点的东边,距离出发点的距离为3千米;(2)164元;(3)123元.21.(1)四;(2)增加了55千克;(3)109.5元22.(1)−24;(2)公交车行驶在C站和D站之间车上的乘客最多;(3)9623.(1)在出发点的正西方向,距出发点5米;(2)最远处离出发点55米;(3)跑了277米.。
1.3.2有理数的减法一、单选题1.一只小虫在数轴上先向右爬行3个单位,再向左爬行7个单位,正好停在3-的位置,则小虫的起始位置所表示的数是( )A .1B .2C .3D .42.比4-小2的数是( )A .2B .2-C .6-D .63.在学习“有理数的加减法运算”时,我们做过如下观察:“小亮操控遥控车模沿东西方向做定向行驶练习,规定初始位置为0,向西行驶为正,向东行驶为负,先向西行驶3m ,在向东行驶1m ,这时遥控车的位置表示什么数?”用算式表示以上过程和结果的是( ) A .(3)(1)4--+=- B .(3)(1)2-++=- C .(3)(1)2++-=+ D .(3)(1)4+++=+ 4.下列说法正确的是( )A .两个有理数的和一定大于每一个加数B .两个有理数的差一定小于被减数C .若两数的和为0,则这两个数都为0D .若两个数的和为正数,则这两个数中至少有一个为正数5.某地9时温度为3-℃,到了晚上7时温度下降了6℃,则晚上7时温度是( ) A .3℃ B .3-℃ C .6-℃ D .9-℃6.早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年,下列各式计算结果为负数的是( )A .4+(﹣3)B .2﹣(﹣2)C .4×(﹣2)D .(﹣4)÷(﹣2) 7.下列各式中,计算结果属于负数的是( )A .|7||1|-+-B .|7|(1)---C .|1||7|---D .|1|(7)--- 8.如图,数轴上的A B 、两点分别表示有理数a b 、,下列式子中正确的是( )A .0a b +>B .0a b ->C .()0a b -+<D .||||b a <9.有理数a 和b 在数轴上的位置如图,则-a b 是( )A .正数B .负数C .零D .非正数10.式子20357-+-+的正确读法是( )A .负20,加3,减5,加7的和B .负20加3减负5加正7C .负20,正3,负5,正7的和D .负20加正3减负5加正7二、填空题11.吐鲁番盆地低于海平面155米,记作155m -,宝石山高于海平面97米,则宝石山记作_____,宝石山比吐鲁番盆地高______米.12.已知数a 和数b 互为相反数,且在数轴上表示数,a b 的点,A B 之间的距离为2018个单位长度,若a b <,则a =________,b =________,点,A C 相距2009个单位长度,则点C 表示的数为_________.13.比3小6-的数是_____.14.规定图形表示运算x ﹣z ﹣y +w ,那么=_____(直接写出答案). 15.表示有理数a ,b ,c 的点在数轴上的位置如图所示,请化简:c b a a b +---=______.三、解答题16.计算:(1)﹣27+(﹣32)+(﹣8)+72;(2)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4).17.计算:已知14m n ==, (1)当0m <时,求m n +的值;(2)求-m n 的最大值;18.在2020年抗洪抢险中,解放军战士的冲锋舟加满汽油后沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+15,﹣8,+9,﹣6,+14,﹣5,+13,﹣10.(1)B地位于A地的什么方向?距离A地多少千米?(2)若冲锋舟每千米耗油0.6升,油箱容量为30升,求冲锋舟当天救灾过程中至少还需补充多少升油?(3)救灾过程中,冲锋舟离出发点A最远时,距A地多少千米?19.高速公路养护小组,乘车沿东西方向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.2升/千米,则这次养护共耗油多少升?参考答案1.A解:-3向右移动7个单位长度后是4,再向左移动3个单位长度是1,即小虫的起始位置所表示的数是1,故选:A.2.C解:-4-2=-6,℃比-4小2的数是-6.故选:C.3.C解:由题意可得:(+3)+(-1)=2.故选:C.4.D解:A、两个有理数的和一定大于每一个加数,错误,例如0+2=2,故不符合题意;B、两个有理数的差一定小于被减数,错误,例如-1-(-2)=1,故不符合题意;C、若两数的和为0,则这两个数都为0,错误,例如1和-1的和,故不符合题意;D、若两个数的和为正数,则这两个数中至少有一个为正数,正确,符合题意;故选D.5.D解:-3-6=-9(℃).即晚上7时温度是-9℃.故选:D.6.C解:4+(﹣3)=1,故选项A不符合题意;2﹣(﹣2)=2+2=4,故选项B不符合题意;4×(﹣2)=﹣8,故选项C符合题意;(﹣4)÷(﹣2)=2,故选项D不符合题意;故选:C.7.C-+-=7+1=8,不符合题意;解:A. |7||1|---=7+1=8,不符合题意;B. |7|(1)---=1-7=-6,符合题意;C. |1||7|---=1+7=8,不符合题意,D. |1|(7)故选C.8.D解:由数轴可得,a<0,b>0,|a|>|b|,℃a+b<0,故选项A错误、D正确;℃a<0,b>0,℃a-b<0,故选项B错误;℃-a>0,b>0,℃(-a)+b>0,故选项C错误;故选:D.9.B解:根据有理数在数轴上的位置可得a<0<b,℃a-b<0,即a-b是负数,故选:B.10.C解:式子-20+3-5+7正确读法是:负20,正3,负5,正7的和.故选:C.11.+97m 252m-,解:℃吐鲁番盆地低于海平面155米,记作155m℃宝石山高于海平面97米,记作+97m,97-(-155)=252m,故答案为:+97m,252m.12.-1009 1009 1000或-3018解:℃数a 与数b 互为相反数,℃a +b =0,℃a <b ,℃b -a =2018,℃b =1009,a =-1009;℃点A ,C 相距2009个单位长度,则-1009+2009=1000,或-1009-2009=-3018,℃点C 表示的数为1000或-3018,故答案为:-1009,1009,1000或-3018.13.9解:3-(-6)=3+6=9.故答案为:9.14.-4解:由题意可得,=4﹣6﹣7+5=﹣4,故答案为:﹣4.15.c解:根据图示,a <b <0<c ,且|a|>|c|>|b|则c+b -a >0,a -b <0=()=cc b a a bc b a a b +---+-+-故答案为:c16.(1)5;(2)2解:(1)﹣27+(﹣32)+(﹣8)+72=(﹣27﹣32﹣8)+72=﹣67+72=5;(2)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4)=(+4.3﹣2.3)+(4﹣4)=2+0=2.17.(1)3或-5;(2)5解:℃|m|=1,|n|=4,℃m=±1,n=±4;(1)℃m<0,℃m=-1,n=-4或m=-1,n=4,℃m+n=3或-5;(2)当m=1,n=4时,m-n=-3;当m=-1,n=-4时,m-n=3;当m=1,n=-4时,m-n=5;当m=-1,n=4时,m-n=-5;℃m-n的最大值是5.18.(1)B地在A地的东边22千米;(2)还需补充18升汽油;(3)距A地32千米解:(1)℃15﹣8+9﹣6+14﹣5+13﹣10=22,℃B地在A地的东边22千米;(2)这一天走的总路程为:15+|﹣8|+9+|﹣6|+14+|﹣5|+13|+|﹣10|=80千米,应耗油80×0.6=48(升),故还需补充的油量为:48﹣30=18(升),答:冲锋舟当天救灾过程中至少还需补充18升油;(3)℃路程记录中各点离出发点的距离分别为:15千米;15﹣8=7千米;7+9=16千米;16﹣6=10千米;10+14=24千米;24﹣5=19千米;19+13=32千米;32﹣10=22千米.℃冲锋舟离出发点A最远时,距A地32千米.19.(1)最后到达的地方在出发点的东边,距出发点15千米;(2)这次养护共耗油19.4升.解:(1)17﹣9+7﹣15﹣3+11﹣6﹣8+5+16,=17+7+11+5+16-(9+15+3+6+8),=15.答:最后到达的地方在出发点的东边,距出发点15千米;++-+++-+-+++-+-++++⨯,(2)(17971531168516)0.2=97×02,=19.4(升).答:这次养护共耗油19.4升.。
初中数学组卷参考答案与试题解析一.选择题(共33小题)1.我市冬季里某一天的最低气温是﹣10℃,最高气温是5℃,这一天的温差为()A.﹣5℃B.5℃C.10℃D.15℃【分析】用最高温度减去最低温度,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:5﹣(﹣10),=5+10,=15(℃).故选D.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.2.|(﹣3)﹣5|等于()A.﹣8 B.﹣2 C.2 D.8【分析】根据分式的减法和绝对值可以解答本题.【解答】解:|(﹣3)﹣5|=|﹣3﹣5|=|﹣8|=8,故选D.【点评】本题考查有理数的减法和绝对值,解答本题的关键是明确有理数减法的计算方法.3.若|x|=7,|y|=5,且x+y>0,那么x﹣y的值是()A.2或12 B.2或﹣12 C.﹣2或12 D.﹣2或﹣12【分析】题中给出了x,y的绝对值,可求出x,y的值;再根据x+y>0,分类讨论,求x﹣y的值.【解答】解:∵|x|=7,|y|=5,∴x=±7,y=±5.又x+y>0,则x,y同号或x,y异号,但正数的绝对值较大,∴x=7,y=5或x=7,y=﹣5.∴x﹣y=2或12.故本题选A.【点评】理解绝对值的概念,同时要熟练运用有理数的减法运算法则.4.下列算式正确的是()A.(﹣14)﹣5=﹣9 B.0﹣(﹣3)=3 C.(﹣3)﹣(﹣3)=﹣6 D.|5﹣3|=﹣(5﹣3)【分析】根据有理数的减法运算法则和绝对值的性质对各选项分析判断利用排除法求解.【解答】解:A、(﹣14)﹣5=﹣19,故本选项错误;B、0﹣(﹣3)=0+3=3,故本选项正确;C、(﹣3)﹣(﹣3)=﹣3+3=0,故本选项错误;D、|5﹣3|=2,﹣(5﹣3)=﹣2,故本选项错误.故选B.【点评】本题考查了有理数的减法,绝对值的性质,熟记运算法则和性质并准确计算是解题的关键.5.如图为我县十二月份某一天的天气预报,该天最高气温比最低气温高()A.﹣3℃B.7℃C.3℃D.﹣7℃【分析】根据所给图可知该天的最高气温为5℃,最低气温为﹣2℃,继而作差求解即可.【解答】解:根据所给图可知该天的最高气温为5℃,最低气温为﹣2℃,故该天最高气温比最低气温高5﹣(﹣2)=7(℃),故选B.【点评】本题考查有理数的减法,解决此类问题的关键是找出最大最小有理数和对减法法则的理解.6.已知a、b、c三个数在数轴上对应点的位置如图所示,下列几个判断:①a <c<b;②﹣a<b;③a+b>0;④c﹣a<0中,错误的个数是()个.A.1 B.2 C.3 D.4【分析】先根据在数轴上,右边的数总比左边的数大,得出a<c<b,再由相反数、绝对值的定义以及有理数的加减法法则得出结果.【解答】解:由数轴上右边表示的数总大于左边表示的数,可知a<c<b.①正确;②a<﹣2,则﹣a一定大于2,而b<1,所以﹣a>b,错误;③∵a<0,b>0,|a|>|b|,∴a+b<0,③错误;④∵a<c,∴c﹣a>0,错误.所以错误的判断为3个.故选C.【点评】此题主要考查学生数轴上的点的位置和数的关系,给学生渗透数形结合的思想.7.下列表示某地区早晨、中午和午夜的温度(单位:℃),则下列说法正确的是()A.午夜与早晨的温差是11℃B.中午与午夜的温差是0℃C.中午与早晨的温差是11℃D.中午与早晨的温差是3℃【分析】温差就是最高气温与最低气温的差,分别计算每一天的温差,比较即可得出结论.【解答】解:A、午夜与早晨的温差是﹣4﹣(﹣7)=3(℃),故本选项错误;B、中午与午夜的温差是4﹣(﹣4)=8(℃),故本选项错误;C、中午与早晨的温差是4﹣(﹣7)=11(℃),故本选项正确;D、中午与早晨的温差是4﹣(﹣7)=11(℃),故本选项错误.故选C.【点评】本题是考查了温差的概念,以及有理数的减法,是一个基础的题目.有理数减法法则:减去一个数等于加上这个数的相反数.8.若|a|=3,|b|=2,且a+b>0,那么a﹣b的值是()A.5或1 B.1或﹣1 C.5或﹣5 D.﹣5或﹣1【分析】先根据绝对值的性质,判断出a、b的大致取值,然后根据a+b>0,进一步确定a、b的值,再代入求解即可.【解答】解:∵|a|=3,|b|=2,∴a=±3,b=±2;∵a+b>0,∴a=3,b=±2.当a=3,b=﹣2时,a﹣b=5;当a=3,b=2时,a﹣b=1.故a﹣b的值为5或1.故选A.【点评】此题主要考查了绝对值的性质,能够根据已知条件正确地判断出a、b 的值是解答此题的关键.9.计算(﹣3)﹣(﹣9)的结果等于()A.12 B.﹣12 C.6 D.﹣6【分析】根据减去一个数等于加上这个数相反数,可得答案.【解答】解:原式=(﹣3)+9=(9﹣3)=6,故选:C.【点评】本题考查了有理数的加法,先转化成加法,再进行加法运算.10.已知室内温度为3℃,室外温度为﹣3℃,则室内温度比室外温度高()A.6℃B.﹣6℃C.0℃D.3℃【分析】用室内温度减去室外温度,然后根据减去一个是等于加上这个数的相反数进行计算即可得解.【解答】解:3﹣(﹣3)=3+3=6℃.故选A.【点评】本题考查了有理数的减法运算,熟记减去一个是等于加上这个数的相反数是解题的关键.11.计算﹣2﹣1的结果是()A.﹣3 B.﹣2 C.﹣1 D.3【分析】根据几个负数相加,取相同的符号,并把绝对值相加,计算后直接选取答案.【解答】解:﹣2﹣1=﹣(2+1)=﹣3.故选A.【点评】本题主要考查有理数的减法运算,熟练掌握运算法则是解题的关键.12.比﹣3小1的数是()A.2 B.﹣2 C.4 D.﹣4【分析】根据有理数的减法,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:﹣3﹣1=﹣4.故选D.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.13.某地一天的最高气温是12℃,最低气温是﹣2℃,则该地这天的温差是()A.﹣10℃B.10℃C.14℃D.﹣14℃【分析】根据题意用最高气温12℃减去最低气温﹣2℃,根据减去一个数等于加上这个数的相反数即可得到答案.【解答】解:12﹣(﹣2)=14(℃).故选:C.【点评】本题主要考查有理数的减法运算,关键在于认真的列式计算.14.计算(﹣3)﹣(﹣5)=()A.2 B.﹣2 C.8 D.﹣8【分析】先将减法转化为加法,然后再按照加法法则计算即可.【解答】解:(﹣3)﹣(﹣5)=﹣3+5=2.故选:A.【点评】本题主要考查的是有理数的减法,掌握有理数的减法法则是解题的关键.15.某天的最高气温是11℃,最低气温是﹣1℃,则这一天的最高气温与最低气温的差是()A.2℃B.﹣2℃C.12℃D.﹣12℃【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:11﹣(﹣1),=11+1,=12(℃).故选C.【点评】本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.16.计算(﹣3)﹣(﹣6)的结果等于()A.3 B.﹣3 C.9 D.18【分析】原式利用减法法则变形,计算即可得到结果.【解答】解:原式=﹣3+6=3,故选A【点评】此题考查了有理数的减法,熟练掌握减法法则是解本题的关键.17.比﹣1小2017的数是()A.﹣2016 B.2016 C.2018 D.﹣2018【分析】先依据题意列出算式,然后利用有理数的减法法则计算即可.【解答】解:﹣1﹣2017=﹣1+(﹣2017)=﹣2018.故选D.【点评】本题主要考查的是有理数的减法,依据题意列出算式是解题的关键.18.计算:|﹣2|﹣3=()A.﹣5 B.5 C.﹣1 D.1【分析】先算绝对值,然后再计算减法即可.【解答】解:|﹣2|﹣3=2﹣3=﹣1.故选:C.【点评】此题主要考查了有理数的减法,关键是掌握有理数减法法则:减去一个数,等于加上这个数的相反数.19.我市4月份某天的最高气温是22℃,最低气温是8℃,那么这天的温差是()A.30℃B.14℃C.﹣14℃D.12℃【分析】根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:22﹣8=14(℃)故这天的温差是14℃.故选B.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.20.某日西安气温﹣2℃~10℃,温差是()A.8℃B.﹣8℃C.12℃D.﹣12℃【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:10﹣(﹣2)=10+2=12℃,故选C【点评】此题考查了有理数的减法,熟练掌握减法法则是解本题的关键.21.我市4月份某天的最高气温是15℃,最低气温是﹣2℃,那么这天的温差(最高气温减最低气温)是()A.﹣13℃B.13℃C.﹣17℃D.17℃【分析】用最高气温减最低气温减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:15﹣(﹣2),=15+2,=17℃.故选D.【点评】本题考查了有理数的减法,熟练掌握减去一个数等于加上这个数的相反数是解题的关键.22.甲、乙、丙三地的海拔高度分别为20m、﹣15m和﹣10m,那么最高的地方比最低的地方高()A.5m B.10m C.25m D.35m【分析】根据正负数的意义确定出甲地最高,乙地最低,然后列出算式,再利用减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:甲地20m最高,乙地﹣15m最低,20﹣(﹣15),=20+15,=35(m).故选D.【点评】本题考查了有理数的减法,正数和负数,熟记减去一个数等于加上这个数的相反数是解题的关键.23.已知a,b是有理数,若表示它们的点在数轴上的位置如图所示,则|a|﹣|b|的值为()A.正数B.负数C.零D.非负数【分析】根据数轴判断出a、b的正负情况以及绝对值的大小,然后去掉绝对值号,再判断出正负即可.【解答】解:由图可知,a<0,b>0且|a|<|b|,∴|a|﹣|b|=﹣a﹣b<0,∴|a|﹣|b|的值为负数.故选B.【点评】本题考查了有理数的减法,数轴,是基础题,根据数轴判断出a、b的正负情况是解题的关键.24.甲、乙、丙三地海拔高度分别为20米,﹣14米,﹣9米,那么最高的地方比最低的地方高()A.11米B.29米C.34米D.6米【分析】根据正数大于一切负数,用最高的20米减去最低得到﹣9米,然后根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可求解.【解答】解:最高的是20米,最低的是﹣14米,20﹣(﹣14)=20+14=34(米).故选C.【点评】本题考查了有理数的减法运算法则,以及正负数,熟记运算法则是解题的关键.25.若x的相反数是5,|y|=8,且x+y<0,那么x﹣y的值是()A.3 B.3或﹣13 C.﹣3或﹣13 D.﹣13【分析】由相反数的定义可知x=﹣5,由绝对值的性质可知y=±8,由x+y<0可知x=﹣5,y=﹣8,最后代入计算即可.【解答】解:∵﹣5的相反数是5,∴x=﹣5.∵|y|=8,∴y=±8.∵x+y<0,∴x=﹣5,y=﹣8.∴x﹣y=﹣5﹣(﹣8)=﹣5+8=3.故选:A.【点评】本题主要考查的是有理数的减法、绝对值、相反数,根据题意确定出x、y的值是解题的关键.26.天义地区某天的最高气温是8℃,最低气温是﹣2℃,则该地这一天的温差是()A.10℃B.﹣6℃C.6℃D.﹣10℃【分析】用最高温度减去最低温度,再根据减去一个数等于加上这个数的相反数进行计算即可得解,【解答】解:8﹣(﹣2),=8+2,=10(℃).故选A.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.27.小明家冰箱冷冻室温度为﹣7℃,此时房屋内的温度为9℃,则房屋内的温度比冰箱冷冻室的温度高()A.16℃B.2℃C.﹣16℃D.﹣2℃【分析】用室内温度减去室外温度即可.【解答】解:9﹣(﹣7)=9+7=16.故选:A.【点评】本题主要考查的是有理数的减法,依据题意列出算式是解题的关键.28.甲、乙、丙三地海拔高度分别为﹣100米、﹣300米、500米,那么最高的地方比最低的地方高()A.400米B.600米C.200米D.800米【分析】根据有理数的减法运算,可得两地的距离差,再用最大数减最小数,可得最高的地方比最低的地方高多少米.【解答】解:500﹣(﹣300)=800(米).答:最高的地方比最低的地方高800米.故选:D.【点评】本题考查了有理数的减法,减一个数等于加这个数的相反数.29.济南市某日的天气:多云/晴,微风4级,全天气温﹣3℃~5℃.则该日的温差是()A.8℃B.5℃C.4℃D.﹣3℃【分析】用最高温度减去最低温度,再跟减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:5﹣(﹣3),=5+3,=8℃.故选A.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.30.﹣6的绝对值与4的相反数的差,再加上﹣7,结果为()A.﹣5 B.﹣9 C.﹣3 D.3【分析】根据题意列出算式,再根据绝对值的性质以及有理数的加减法运算法则进行计算即可得解.【解答】解:|﹣6|﹣(﹣4)+(﹣7),=6+4﹣7,=10﹣7,=3.故选D.【点评】本题考查了有理数的减法,有理数的加法,相反数以及绝对值的性质,熟记运算法则和性质是解题的关键.31.下列计算结果正确的是()A.(﹣3.8)﹣7=(﹣3.8)+7=3.2 B.4.2﹣4.7=4.7﹣4.2=0.5C. D.【分析】根据减去一个数等于加上这个数的相反数对各选项分析判断后利用排除法求解.【解答】解:A、(﹣3.8)﹣7=﹣3.8﹣7=﹣10.8,故本选项错误;B、4.2﹣4.7=﹣(4.7﹣4.2)=﹣0.5,故本选项错误;C、(﹣1)﹣(﹣)=﹣1+=﹣,故本选项错误;D、(﹣1)﹣(﹣1)=﹣1+1=,故本选项正确.故选D.【点评】本题考查了有理数的减法,熟记运算法则是解题的关键.32.的值是()A.﹣11110 B.﹣11101 C.﹣11090 D.﹣11909【分析】先将原式进行化简,然后再按照有理数的减法法则:减去一个数等于加上这个数的相反数,进行计算.【解答】解:,=10﹣100﹣1000﹣10000,=﹣11090,故选C.【点评】本题是对有理数减法的考查,减去一个数等于加上这个数的相反数.33.下列说法中,正确的是()A.两个数的差一定小于被减数B.两个互为相反数的数相减,差为0C.若两个数的差为正数,则这两个数都是正数D.若两个数的差为0,则这两个数必相等【分析】利用有理数的减法法则判断即可.【解答】解:A、两个数的差不一定小于被减数,不符合题意;B、两个互为相反数的数相减,差不为0,不符合题意;C、若两个数的差是正数,则这两个数不一定都是正数,不符合题意;D、若两个数的差为0,则这两个数必相等,符合题意,故选D【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.二.填空题(共17小题)34.已知|x|=4,|y|=12,且x+y<0,则x﹣y的值等于8或16.【分析】根据绝对值的性质求出x、y的值,然后根据有理数的加法运算法则确定出x、y的对应情况,再根据有理数的减法运算法则计算x﹣y的值.【解答】解:∵|x|=4,|y|=12,∴x=±4,y=±12,又∵x+y<0,∴x=4,y=﹣12或x=﹣4,y=﹣12,∴x﹣y=16或8,故答案为:8或16.【点评】本题考查了有理数的减法,绝对值的性质、加法法则,根据有理数的加法运算法则确定出x、y的对应情况是解题的关键.35.若a>0,b<0,则a﹣b>0√(判断对错)【分析】根据有理数的减法法则:减去一个数,等于加上这个数的相反数进行计算计算即可.【解答】解:若a>0,b<0,则a﹣b>0,正确,故答案为:√.【点评】此题主要考查了有理数的减法,关键是掌握有理数的减法法则.36.已知|a|=8,|b|=3,且a<b,则a﹣b的值是﹣11和﹣5.【分析】根据绝对值的性质求出a、b的值,再判断出a、b的对应关系,然后根据有理数的减法运算法则进行计算即可得解.【解答】解:∵|a|=8,|b|=3,∴a=±8,b=±3,∵a<b,∴a=﹣8,b=3或a=﹣8,b=﹣3,∴a﹣b=﹣8﹣3=﹣11,或a﹣b=﹣8﹣(﹣3)=﹣8+3=﹣5,∴a﹣b的值是﹣11和﹣5.故答案为:﹣11和﹣5.【点评】本题考查了有理数的减法,绝对值的性质,熟记运算法则和性质并判断出a、b的对应情况是解题的关键.37.月球表面的温度中午是101℃,半夜是﹣153℃,则中午时的温度比半夜时的温度高254℃.【分析】用中午的温度减去半夜的温度,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:101﹣(﹣153),=101+153,=254℃.故答案为:254.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.38.于太空没有大气层保护,太阳照射时温度高达100℃,无阳光时温度低为﹣200℃,二者温度相差为300℃.【分析】根据题意可以列出算式,再进行计算即可.【解答】解:根据题意可列算式,即100﹣(﹣200)=300,故答案为:300.【点评】本题主要考查有理数的减法,注意温差即为高温减低温得到.39.﹣1比1小2.【分析】用1减去﹣1可得出答案.【解答】解:由题意得:1﹣(﹣1)=2.故填2.【点评】本题考查有理数的减法运算,比较简单,关键是理解题意.40.已知|x|=3,|y|=1,且x+y<0,则x﹣y的值是﹣4或﹣2.【分析】根据绝对值的性质求出x、y的值,再根据有理数的加法运算法则判断出x、y的对应情况,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:∵|x|=3,|y|=1,∴x=±3,y=±1,∵x+y<0,∴x=﹣3,y=±1,∴x﹣y=﹣3﹣1=﹣4,或x﹣y=﹣3﹣(﹣1)=﹣3+1=﹣2.故答案为:﹣4或﹣2.【点评】本题考查了有理数的减法,有理数的加法,绝对值的性质,熟记性质与运算法则是解题的关键,难点在于判断出x、y的对应情况.41.若a>0,b<0,则a﹣b一定是正数(填“正数”或“负数”)【分析】首先根据有理数的减法法则可得a﹣b=a+(﹣b),再根据b<0,可判断出﹣b>0,然后根据有理数的加法法则:同号两数相加取相同的符号,再把绝对值相加可判断出答案.【解答】解:a﹣b=a+(﹣b),∵b<0,∴﹣b>0,又∵a>0,∴a+(﹣b)>0,∴a﹣b>0,故答案为:正数.【点评】此题主要考查了有理数的加法和减法,关键是掌握熟练掌握有理数的加、减法法则.42.据探测,月球表面白天阳光垂直照射的地方温度高达127℃,而夜晚温度可降低到零下183℃.根据以上数据推算,在月球上昼夜温差有310℃.【分析】由题意列出算式,根据减去一个数等于加上这个数的相反数计算即可得到结果.【解答】解:根据题意得:127﹣(﹣183)=127+183=310(℃).故答案为:310【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.43.冰箱冷冻室的温度为﹣5℃,此时房屋内的温度为20℃,则房屋内的温度比冰箱冷冻室的温度高25℃.【分析】用房屋内的温度减去冰箱冷冻室的温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:20﹣(﹣5),=20+5,=25(℃).故答案为:25.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.44.如果一个数的实际值为a,测量值为b,我们把|a﹣b|称为绝对误差,称为相对误差.若有一种零件实际长度为5.0cm,测量得4.8cm,则测量所产生的绝对误差是0.2cm,相对误差是0.04.绝对误差和相对误差都可以用来衡量测量的准确程度,它们的区别是绝对误差可以表示一个测量结果的准确程度,相对误差可以比较多个测量结果的准确程度.【分析】根据绝对误差,相对误差的定义解答即可.【解答】解:零件实际长度为5.0cm,测量得4.8cm,则测量所产生的绝对误差是:|5﹣4.8|=0.2.相对误差是=0.04.绝对误差可以表示一个测量结果的准确程度,相对误差可以比较多个测量结果的准确程度.故答案为:0.2,0.04,绝对误差可以表示一个测量结果的准确程度,相对误差可以比较多个测量结果的准确程度.【点评】本题考查了有理数的减法和绝对值,正确理解绝对误差,相对误差的意义是解题的关键.45.已知|x|=3,y2=16,xy<0,则x﹣y=±7.【分析】本题是绝对值、平方根和有理数减法的综合试题,同时本题还渗透了分类讨论的数学思想.【解答】解:因为|x|=3,所以x=±3.因为y2=16,所以y=±4.又因为xy<0,所以x、y异号,当x=3时,y=﹣4,所以x﹣y=7;当x=﹣3时,y=4,所以x﹣y=﹣7.【点评】本题是一道综合试题,本题中有分类的数学思想,求解时要注意分类讨论.46.某市2011年元旦的最高气温为2℃,最低气温为﹣8℃,那么这天的最高气温比最低气温高10℃.【分析】根据有理数的减法,即可解答.【解答】解:2﹣(﹣8)=2+8=10(℃),故答案为:10.【点评】本题考查了有理数的减法,解决本题的关键是熟记有理数的减法.47.若|a|=8,|b|=5,且a+b>0,那么a﹣b=3或13.【分析】先根据绝对值的性质,判断出a、b的大致取值,然后根据a+b>0,进一步确定a、b的值,再代入求解即可.【解答】解:∵|a|=8,|b|=5,∴a=±8,b=±5;∵a+b>0,∴a=8,b=±5.当a=8,b=5时,a﹣b=3;当a=8,b=﹣5时,a﹣b=13;故a﹣b的值为3或13.【点评】此题主要考查了绝对值的性质,能够根据已知条件正确地判断出a、b 的值是解答此题的关键.48.如图是我市十二月份某一天的天气预报,该天最高气温比最低气温高7℃.【分析】用最高气温减去最低气温列出算式,然后再依据有理数的减法法则计算即可.【解答】解:5﹣(﹣2)=5+2=7(℃).故答案为:7.【点评】本题主要考查的是有理数的减法,掌握减法法则是解题的关键.49.已知,|a|=﹣a,=﹣1,|c|=c,化简|a+b|﹣|a﹣c|﹣|b﹣c|=﹣2c.【分析】根据题意,利用绝对值的代数意义判断出a,b,c的正负,原式利用绝对值的代数意义化简即可得到结果.【解答】解:∵|a|=﹣a,=﹣1,|c|=c,∴a为非正数,b为非正数,c为非负数,∴a+b≤0,a﹣c≤0,b﹣c≤0,则原式=﹣a﹣b+a﹣c+b﹣c=﹣2c,故答案为:﹣2c【点评】此题考查了有理数的减法,以及绝对值,熟练掌握绝对值的代数意义是解本题的关键.50.我省旅游胜地三清山二月份某天最高气温是11℃,最低气温是﹣2℃,那么这天的温差(最高气温与最低气温的差)是13℃.【分析】用最高气温减去最低气温,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:11﹣(﹣2),=11+2,=13℃.故答案为:13.【点评】本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.。
初中数学·人教版·七年级上册——第一章有理数1.3.2 有理数的减法测试时间:20分钟一、选择题1.下列等式计算正确的是( )A.(-2)+3=-1B.3-(-2)=1C.(-3)+(-2)=6D.(-3)+(-2)=-5答案 D (-2)+3=1,故选项A错误;3-(-2)=3+2=5,故选项B错误;(-3)+(-2)=-5,故选项C错误,选项D正确,故选D.2.-3,-14,7的和比它们的绝对值的和小( )A.-34B.-10C.10D.34答案 D 可列式:(|-3|+|-14|+|7|)-(-3-14+7)=24-(-10)=34.3.某日的最高气温为3 ℃,最低气温为-9 ℃,则这一天的最高气温比最低气温高( )A.-12 ℃B.-6 ℃C.6 ℃D.12 ℃答案 D 3-(-9)=3+9=12(℃).4.下列各式中与a-b-c不相等的是( )A.a-(b-c)B.a-(b+c)C.(a-b)+(-c)D.(-b)+(a-c)答案 A a-(b-c)=a-b+c.5.为计算简便,把(-2.4)-(-4.7)-(+0.5)+(+3.4)+(-3.5)写成省略括号的代数和的形式,并适当交换加数的位置,正确的是( )A.-2.4+3.4-4.7-0.5-3.5B.-2.4+3.4+4.7+0.5-3.5C.-2.4+3.4+4.7-0.5-3.5D.-2.4+3.4+4.7-0.5+3.5答案 C (-2.4)-(-4.7)-(+0.5)+(+3.4)+(-3.5)=-2.4+3.4+4.7-0.5-3.5.故选C.二、填空题6.式子-6-(-4)+(+7)-(-3)写成省略括号的代数和的形式是.答案-6+4+7+3解析-6-(-4)+(+7)-(-3)=-6+4+7+3.7.如果一个数的实际值为a,测量值为b,我们把|a-b|称为绝对误差,-称为相对误差.若有一种零件实际长度为5.0 cm,测量得4.8 cm,则测量所产生的绝对误差是cm,相对误差是.答案0.2;0.04解析零件实际长度为5.0 cm,测量得4.8 cm,则测量所产生的绝对误差为|5-4.8|=0.2 cm,相对误差为-.=0.04.8.如果数轴上的点A所对应的数为-3,那么与点A相距2个单位长度的点所表示的数是.答案-5或 -1解析这个点有可能在A点的左边,也可能在A点的右边.9.某天上午的温度是5 ℃,中午上升了3 ℃,下午由于冷空气南下,到夜间下降了9 ℃,则这天夜间的温度是℃.答案-1解析依题意列式为5+3+(-9)=5+3-9=8-9=-1(℃).所以这天夜间的温度是-1 ℃.三、解答题10.根据题意列出式子计算:(1)一个加数是1.8,和是-0.81,求另一个加数;(2)求-的绝对值的相反数与的相反数的差.解析(1)另一个加数为-0.81-1.8=-2.61.(2)----=.11.计算:(1)-2.4+3.5-4.6+3.5;(2)---+--. 解析(1)-2.4+3.5-4.6+3.5=(-2.4-4.6)+(3.5+3.5)=(-7)+7=0.(2)---+--=-+5+-+-=---+5=-+5=-8.12.计算:(1)-2-5+3+6-7;(2)-40-28-(-19)+(-24)-(-32);(3)2.25+3-4-5;(4)-+----.解析(1)原式=(-2-5-7)+(3+6) =-14+9=-5.(2)原式=-40-28+19-24+32=(-40-28-24)+(19+32)=-92+51=-41.(3)原式=+--=6-9=-3.(4)原式=--+-=---+=-+=-.13.识图理解:请认真观察下图给出的未来一周某市的每天的最高气温和最低气温,并回答下列问题:(1)这一周该市的最高气温和最低气温分别是多少?(2)这一周中,星期几的温差最大?是多少?解析(1)最高气温和最低气温分别是9 ℃和-4 ℃.(2)这一周中,星期四的温差最大,温差是4-(-4)=8 ℃.14.请根据图示的对话解答下列问题.求:(1)a,b的值;(2)8-a+b-c的值.解析(1)∵a的相反数是3,b的绝对值是7,∴a=-3,b=±7.(2)∵b=±7,c和b的和是-8,∴当b=7时,c=-15;当b=-7时,c=-1.当a=-3,b=7,c=-15时,8-a+b-c=8-(-3)+7-(-15)=33; 当a=-3,b=-7,c=-1时,8-a+b-c=8-(-3)+(-7)-(-1)=5.。
欠风丹州匀乌凤市新城学校有理数的减法一.选择题1.如果a<0,那么a 和它的相反数的差的绝对值等于〔 〕A .aB .0C .-aD .-2a2.假设两个有理数的差是正数,那么〔 〕A .被减数是正数,减数是负数;B .被减数和减数都是正数;C .被减数大于减数;D .被减数和减数不能同为负数. 3.以下等式成立的是〔 〕A .0=-+a aB .-a-a=0C .0=--a aD .-a-a =0 4.如果的关系是则n m n m ,,0=-() A. 互为相反数B. m=±n,且n ≥0C. 相等且都不小于0D. m 是n 的绝对值5.a,b 是两个有理数,那么a-b 与a 比较,必定是( )A.a-b>aB.a-b<aC.a-b>-aD.大小关系取决于b6.两数相减后的差比减数还大,那么减数应该是〔 〕A. 正数B.负数C. 0D.不确定7.-5的绝对值与5的相反数的差是〔 〕A. 0B.10C.-10D.5 8.以下说法正确的选项是〔 〕A. 两个数之差一定小于被减数B.两个负数之差一定是负数C. 一个正数减去一个负数,差一定是正数D.0减去任何数,差都是负数 二.填空题:1. 比-10℃低3℃的气温是_________,-2比_______小3.2. 填上适当的数:______-8=-15,-3-______=-9,〔-17〕+_____=23. 甲地海拔高度为-12m ,乙地海拔高度为20m ,乙地比甲地高_______.4.比 -3小5的数是 ,比 -5小 -7的数是,比a 小-5的数是 . 5.-32与52的差的相反数是 ,比 -32小 -52的数的绝对值是 6.〔1〕267-=276 〔2〕 -〔-31〕=2〔3〕341-552= 〔4〕-64--三.计算 〔1〕〔-52〕-〔-53〕 〔2〕(-1)-(+121) 〔3〕 〔4〕152-(-) (5)0-(-74) (6) (-21)-(-21) 〔7〕〔-23〕-〔+30〕 〔8〕3-431 (9) (-7)-( -9) (10)-(-132)-(+331 三、综合应用 1.a=-341,b=-841,c=-221,求以下各式的值: 〔1〕a-b-c 〔2〕b-(a-c) 〔3〕c b a -- 〔4〕b c a --2.m 是5的相反数,n 比m 的相反数小6,求n 比m 大多少?3.如果| a|=15, | b|=7,求a-b 的值 .4.如果| a|=15, | b|=7且| a+b| =a+b,求a-b 的值.5.|5x -2|+|3y -6| = 0, 求x -y 的绝对值和相反数.6.某城一年中最高气温是35℃,最低气温-15℃,该城这年的温差是多少?。
1.3.2 有理数的减法同步练习卷一、选择题(共11小题).1.下列计算结果中等于3的数是()A.|﹣7|+|+4|B.|(﹣7)+(+4)|C.|+7|+|﹣4|D.|(﹣7)﹣(﹣3)|2.与(﹣a)﹣(﹣b)相等的式子是()A.(+a)+(﹣b)B.(﹣a)+(﹣b)C.(﹣a)+(+b)D.(+a)+(﹣b)3.当a<0时,2,2+a,2﹣a,a中最大的是()A.2B.2+a C.2﹣a D.a4.下列计算正确的是()A.﹣6+(﹣3)+(﹣2)=﹣1B.7+(﹣0.5)+2﹣3=5.5C.﹣3﹣3=0D.5+(﹣0.5)+7﹣3=5.55.下列算式正确的是()A.(﹣14)﹣5=﹣9B.0﹣(﹣3)=3C.(﹣3)﹣(﹣3)=﹣6D.|5﹣3|=﹣(5﹣3)6.计算(﹣2)﹣5的结果等于()A.﹣7B.﹣3C.3D.77.下列说法正确的是()A.两个数的差一定小于被减数B.减去一个正数,差一定大于被减数C.0减去任何数,差都是负数D.减去一个负数,差一定大于被减数8.把8﹣(+4)+(﹣6)﹣(﹣5)写成省略加号的和的形式是()A.8﹣4﹣6+5B.8﹣4﹣6﹣5C.8+(﹣4)+(﹣6)+5D.8+4﹣6﹣59.有理数a、b在数轴上的位置如图所示,则a﹣b的值()A.大于0B.小于0C.等于0D.大于a10.下列算式中:①2﹣(﹣2)=0;②(﹣3)﹣(+3)=0;③(﹣3)﹣|﹣3|=0;④0﹣(﹣1)=1.其中正确的有()A.1个B.2个C.3个D.4个11.某地一天早晨的气温是﹣5℃,中午上升了10℃,午夜又下降了8℃,则午夜的气温是()A.﹣3℃B.﹣5℃C.5℃D.﹣9℃二、填空题12.两个有理数的差是7,被减数是﹣2,减数为.13.气温由﹣4℃下降5℃后的温度,列式表示为,结果为℃.14.式子﹣6﹣8+10﹣5读作或读作.15.计算:0﹣10=.16.比﹣3小8的数是.17.计算:3﹣(﹣5)+7=;计算﹣2﹣|﹣6|的结果是.18.某小河的水在汛期变化无常,第一天测得水位上升了3米,第二天测得水位回落了1.5米,第三天测得水位回落了2.5米,则此时的水位比刚开始的水位米.三、解答题19.计算:16+(﹣25)+24﹣15.20.把几个数用大括号围起来,中间用逗号断开,如:{1,2,﹣3}、,我们称之为集合,其中的数称其为集合的元素.如果一个集合满足:当有理数a是集合的元素时,有理数5﹣a也必是这个集合的元素,这样的集合我们称为好的集合.例如集合{5,0}就是一个好集合.(1)请你判断集合{1,2},{﹣2,1,2.5,4,7}是不是好的集合?(2)请你再写出两个好的集合(不得与上面出现过的集合重复).(3)写出所有好的集合中,元素个数最少的集合.21.下表列出了国外几个城市与首都北京的时差(带正号的表示同一时刻比北京时间早的时数),如北京时间的上午10:00时,东京时间的10点已过去了1小时,现在已是10+1=11:00.城市时差/时纽约﹣13巴黎﹣7东京+1芝加哥﹣14(1)如果现在是北京时间8:00,那么现在的纽约时间是多少;(2)此时(北京时间8:00)小明想给远在巴黎姑妈打电话,你认为合适吗?为什么?(3)如果现在是芝加哥时间上午6:00,那么现在北京时间是多少?22.河里水位第一天上升8cm,第二天下降7cm,第三天又下降了9cm,第四天又上升了3cm,经测量此时的水位为62.6cm,试求河里水位初始值.参考答案一、选择题1.下列计算结果中等于3的数是()A.|﹣7|+|+4|B.|(﹣7)+(+4)|C.|+7|+|﹣4|D.|(﹣7)﹣(﹣3)|解:A、结果是11,故本选项错误;B、结果是﹣3,故本选项正确;C、结果是11,故本选项错误;D、结果是﹣4,故本选项错误;故选:B.2.与(﹣a)﹣(﹣b)相等的式子是()A.(+a)+(﹣b)B.(﹣a)+(﹣b)C.(﹣a)+(+b)D.(+a)+(﹣b)解:(﹣a)﹣(﹣b)=﹣a+b,A、(+a)+(﹣b)=a﹣b,故本选项错误;B、(﹣a)+(﹣b)=﹣a﹣b,故本选项错误;C、(﹣a)+(+b)=﹣a+b,故本选项正确;D、(+a)+(﹣b)=a﹣b,故本选项错误.故选:C.3.当a<0时,2,2+a,2﹣a,a中最大的是()A.2B.2+a C.2﹣a D.a解:∵a<0,∴2﹣a>2>2+a>a.故选:C.4.下列计算正确的是()A.﹣6+(﹣3)+(﹣2)=﹣1B.7+(﹣0.5)+2﹣3=5.5C.﹣3﹣3=0D.5+(﹣0.5)+7﹣3=5.5解:A、﹣6+(﹣3)+(﹣2)=﹣11,故此选项错误;B、7+(﹣0.5)+2﹣3=5.5,正确;C、﹣3﹣3=﹣6,故此选项错误;D、5+(﹣0.5)+7﹣3=8.5,故此选项错误;故选:B.5.下列算式正确的是()A.(﹣14)﹣5=﹣9B.0﹣(﹣3)=3C.(﹣3)﹣(﹣3)=﹣6D.|5﹣3|=﹣(5﹣3)解:A、(﹣14)﹣5=﹣19,故本选项错误;B、0﹣(﹣3)=0+3=3,故本选项正确;C、(﹣3)﹣(﹣3)=﹣3+3=0,故本选项错误;D、|5﹣3|=2,﹣(5﹣3)=﹣2,故本选项错误.故选:B.6.计算(﹣2)﹣5的结果等于()A.﹣7B.﹣3C.3D.7解:(﹣2)﹣5=(﹣2)+(﹣5)=﹣(2+5)=﹣7,故选:A.7.下列说法正确的是()A.两个数的差一定小于被减数B.减去一个正数,差一定大于被减数C.0减去任何数,差都是负数D.减去一个负数,差一定大于被减数解:A、两个数的差不一定小于被减数,如3﹣(﹣1)=4>3,故本选项错误;B、减去一个正数,差一定小于被减数,如6﹣3=3<6,故本选项错误;C、0减去负数,差是正数,如0﹣(﹣1)=1,故本选项错误;D、减去一个负数,差一定大于被减数,3﹣(﹣1)=4>3,正确.故选:D.8.把8﹣(+4)+(﹣6)﹣(﹣5)写成省略加号的和的形式是()A.8﹣4﹣6+5B.8﹣4﹣6﹣5C.8+(﹣4)+(﹣6)+5D.8+4﹣6﹣5解:8﹣(+4)+(﹣6)﹣(﹣5)=8﹣4﹣6+5.故选:A.9.有理数a、b在数轴上的位置如图所示,则a﹣b的值()A.大于0B.小于0C.等于0D.大于a【解答】解;由图可知,a<0,b>0,∴a﹣b=a+(﹣b)<0.故选:B.10.下列算式中:①2﹣(﹣2)=0;②(﹣3)﹣(+3)=0;③(﹣3)﹣|﹣3|=0;④0﹣(﹣1)=1.其中正确的有()A.1个B.2个C.3个D.4个解:①2﹣(﹣2)=2+2=4,故本小题错误;②(﹣3)﹣(+3)=﹣3﹣3=﹣6,故本小题错误;③(﹣3)﹣|﹣3|=﹣3﹣3=﹣6,故本小题错误;④0﹣(﹣1)=0+1=1,故本小题正确;综上所述,正确的有④共1个.故选:A.11.某地一天早晨的气温是﹣5℃,中午上升了10℃,午夜又下降了8℃,则午夜的气温是()A.﹣3℃B.﹣5℃C.5℃D.﹣9℃解:(﹣5)+10﹣8=5﹣8=﹣3(℃)答:午夜的气温是﹣3℃.故选:A.二、填空题12.两个有理数的差是7,被减数是﹣2,减数为﹣9.解:﹣2﹣7=﹣9,故答案为:﹣9.13.气温由﹣4℃下降5℃后的温度,列式表示为﹣4﹣5,结果为﹣9℃.解:﹣4﹣5=﹣9℃.故答案为:﹣4﹣5;﹣9.14.式子﹣6﹣8+10﹣5读作负6、负8、正10、负5的和或读作﹣6减8加10减5.解:式子﹣6﹣8+10﹣5读作负6、负8、正10、负5的和或读作﹣6减8加10减5,故答案为:负6、负8、正10、负5的和,﹣6减8加10减5.15.计算:0﹣10=﹣10.解:0﹣10=0+(﹣10)=﹣10,故答案为:﹣10.16.比﹣3小8的数是﹣11.解:由题意得:﹣3﹣8=﹣3+(﹣8)=﹣(3+8)=﹣11.故答案为:﹣11.17.计算:3﹣(﹣5)+7=15;计算﹣2﹣|﹣6|的结果是﹣8.解:3﹣(﹣5)+7=8+7=15﹣2﹣|﹣6|=﹣2﹣6=﹣8故答案为:15、﹣8.18.某小河的水在汛期变化无常,第一天测得水位上升了3米,第二天测得水位回落了1.5米,第三天测得水位回落了2.5米,则此时的水位比刚开始的水位低1米.解:3﹣1.5﹣2.5=﹣1(m).答:此时的水位比刚开始的水位低1m.故答案为:低1.三、解答题19.计算:16+(﹣25)+24﹣15.解:16+(﹣25)+24﹣15=16+24+[(﹣25)+(﹣15)]=40+(﹣40)=0.20.把几个数用大括号围起来,中间用逗号断开,如:{1,2,﹣3}、,我们称之为集合,其中的数称其为集合的元素.如果一个集合满足:当有理数a是集合的元素时,有理数5﹣a也必是这个集合的元素,这样的集合我们称为好的集合.例如集合{5,0}就是一个好集合.(1)请你判断集合{1,2},{﹣2,1,2.5,4,7}是不是好的集合?(2)请你再写出两个好的集合(不得与上面出现过的集合重复).(3)写出所有好的集合中,元素个数最少的集合.解:(1)∵5﹣1=4∴{1,2}不是好的集合,∵5﹣4=1,5﹣(﹣2)=7,5﹣2.5=2.5,∴{﹣2,1,2.5,4,7}是好的集合;(2){8,﹣3};(3)由题意得:a=5﹣a,解得:a=2.5,故元素个数最少的好集合{2.5}.21.下表列出了国外几个城市与首都北京的时差(带正号的表示同一时刻比北京时间早的时数),如北京时间的上午10:00时,东京时间的10点已过去了1小时,现在已是10+1=11:00.城市时差/时纽约﹣13巴黎﹣7东京+1芝加哥﹣14(1)如果现在是北京时间8:00,那么现在的纽约时间是多少;(2)此时(北京时间8:00)小明想给远在巴黎姑妈打电话,你认为合适吗?为什么?(3)如果现在是芝加哥时间上午6:00,那么现在北京时间是多少?解:(1)8+(﹣13)=8﹣13=﹣5,∵一天有24小时,∴24+(﹣5)=19.答:现在的纽约时间是前一天晚上7点(或前一天19点);(2)8+(﹣7)=8﹣7=1答:不合适,因为巴黎现在当地时间是凌晨1点;(3)设北京时间为x则x+(﹣14)=6解得x=6﹣(﹣14)x=20.答:现在北京时间是当天20点.22.河里水位第一天上升8cm,第二天下降7cm,第三天又下降了9cm,第四天又上升了3cm,经测量此时的水位为62.6cm,试求河里水位初始值.解:设河里水位初始值为xcm.由题意x+8﹣7﹣9+3=62.6,解得x=67.6cm.答:河里水位初始值为67.6cm.。
1.3.2第1课时有理数的减法法则一、选择题1.下列计算错误的是()A.-2-(-2)=0B.4-(-5)=9C.-7-(-3)=-10D.12-15=-32.计算|(-3)-4|的结果是()A.-7B.-1C.1D.73.如图,数轴上点A表示的数减去点B表示的数,结果是()A.8B.-8C.2D.-24.某市冬季里某一天的最低气温是-10 ℃,最高气温是5 ℃,则这一天的温差为()A.-5 ℃B.5 ℃C.10 ℃D.15 ℃5.如图,有理数a,b在数轴上对应的点分别为M,N,则下列式子的结果为负数的个数是()①a+b;②a-b;③-a+b;④-a-b.A.1B.2C.3D.46.若x是2的相反数,|y|=3,则x-y的值是()A.-5B.1C.-1或5D.1或-57.有下列说法:(1)两个负数相加,和一定是负数;(2)两个正数相减,差不是正数就是负数;(3)正数减负数,差不一定是正数;(4)负数减负数,差不一定是负数.其中正确的是()A.(1)(3)B.(1)(4)C.(1)(2)(4)D.(2)(4)二、非选择题8.在下列横线上填上适当的数.(1)(-5)-4=(-5)+=;(2)(-7)-(-3)=(-7)+ = ; (3)0-(-2.5)=0+ = . 9.若( )+(-2)=3,则括号内的数是 . 10.比-9小4的数是 . 11.计算: (1)0-(-22); (2)8.5-(-1.5);(3)(-12)-14;(4)-312--213.12.列式计算:(1)一个数与-0.12的和为-0.012,求这个数;(2)差为-7.8,被减数是0.18,减数是多少?13.已知甲、乙、丙三地的海拔分别为30 m,-15 m,-9 m,那么最高的地方比最低的地方高m .14.七年级(4)班开展了“环保知识”抢答比赛活动,一共分了五个小组.规定答对一题加50分,答错一题扣10分,活动结束时,记分员公布了各个小组的得分情况如下:小组 1组 2组 3组 4组 5组 得分(分)100150-400350-100(1)第一名超出第二名多少分? (2)第一名超出第五名多少分? 15.计算: (1)--1749--1759;(2)0-|-237|;(3)-|-13|-14;(4)(+3.14)-(-0.59)-(+4.09)-+61.416.甲、乙、丙三家商场都以8万元购进了同一种货物,一周后全部销售完,结果甲、乙、丙收回资金分别为10万元,7.8万元,8.2万元,若记盈利为正.(1)用正、负数表示三家商场的盈利情况;(2)哪家商场的效益最好?哪家最差?相差多少万元?17.有理数a,b,c在数轴上对应的点的位置如图所示,且a,b互为相反数.(1)a-b0,c-b0,a-c0;(填“>”“<”或“=”)(2)若|a|=3,|c|=5,求a-b-c的值.参考答案一、选择题 1.C 2.D 3.B 4.D 5.B6.D [解析] 因为2的相反数是-2, 所以x=-2;因为3和-3的绝对值都是3, 所以y=±3.当x=-2,y=3时,x -y=-5; 当x=-2,y=-3时,x -y=1.故选D . 7.B二、非选择题8.(1)(-4) -9 (2)3 -4 (3)2.5 2.5 9.5 10.-1311.解:(1)原式=0+22=22. (2)原式=8.5+1.5=10. (3)原式=(-12)+(-14)=-34. (4)原式=-312+213=-336+226=-116.12.解:(1)-0.012-(-0.12)=0.108. (2)0.18-(-7.8)=7.98.13.45 [解析] 因为30>-9>-15, 所以30-(-15)=45(m).14.解:由表格信息知:第一名得了350分,第二名得了150分,第五名得了-400分.(1)350-150=200(分). 答:第一名超出第二名200分. (2)350-(-400)=350+400=750(分). 答:第一名超出第五名750分. 15.解:(1)原式=1749+1759=35.(2)原式=0-237=0+-237=-237.(3)原式=-13+-14=-13+14=-712. (4)原式=3.14+0.59+(-4.09)+(-6.25)=3.73+(-10.34)=-6.61. 16.解:(1)甲:+2万元,乙:-0.2万元,丙:+0.2万元. (2)甲商场的效益最好,乙商场的效益最差. 2-(-0.2)=2.2(万元). 故相差2.2万元. 17.解:(1)> < >(2)由题图可知a>0,b<0,c<0. 因为|a|=3,|c|=5,所以a=3,c=-5. 所以a -b -c=3-(-3)-(-5)=3+3+5=11. 因为a ,b 互为相反数,所以b=3, 故a -b -c 的值为11.。