脉冲中子氧活化测井技术的应用
- 格式:doc
- 大小:24.50 KB
- 文档页数:3
摘要:脉冲中子氧活化测井不受井下工具沾污及大孔道影响,能更准确地判断封隔器密封情况、漏点、漏失量等问题,为油田开发研究提供有价值的动态监测资料,本文介绍了氧活化测井资料的实际应用。
关键字:氧活化测井;沾污;窜槽;漏失脉冲中子氧活化测井在油田的应用综述冯紫薇(中国石油大庆油田有限责任公司测试技术服务分公司)0前言随着油田开发的不断深入,为了达到稳油控水、挖掘区块潜能,控制单层突进,提高驱油效率的目的,对注入井进行化堵、分级注入等作业;注入聚合物、三元液等。
另外,在部分早期投注的注水井中,受长期注水冲刷,以及酸化、压裂等作业的影响,地层的原生孔隙及裂缝增大,形成大孔道地层,这些给注入剖面测井带来了困难。
而脉冲中子氧活化测井则不受注水井管柱沾污和大孔道地层的影响,可以测量油管内和油套空间中不同方向水流速度,受流体粘度影响小,成为注聚井和疑难注入井的主要测井手段,得到用户高度认可,认识发生转变,从之前测试推荐该项目到发现问题井用户主动出具设计解决。
1氧活化测井基本原理脉冲中子氧活化测井的物理基础是脉冲中子与氧元素的相互作用。
氧的存在是根据检测氧原子的快中子活化后放射出的伽马射线来确定的。
能量超过10MeV 的快中子被用来活化氧原子核以产生氧的放射性同位素,16N 通过放射β射线而衰变,其半衰期是7.13s。
16Nβ衰变过程中发射高能γ射线,最主要是能量为6.13MeV 的射线,占16N 衰变的69%。
由于16O (n,p )反应的临界中子能量是10.2MeV,所以井筒内中子发生器产生的中子能量14MeV 非常适合于氧活化。
氧活化产生的16N 衰变后放射的6.13MeV 的伽马射线,氧核发生如下反应:当中子发生器发射一段时间中子后,仪器周围的氧被活化,放射出的伽马射线在井眼中能辐射20cm~30cm,可以穿透井眼流体、油管、套管及固井水泥。
含活化氧的水简称活化水。
在水流动方向上设置多个伽马射线探测器,由探测器测量伽马射线的能谱,活化伽马能谱可以反映出油管内、油套环形空间以及套管外含氧流体的流动状况。
氧活化测井技术在油田开发中的应用油田开发过程中油层注入状况及水流情况的监测,直接关系着油田开发方案的科学制定以及注入工程的改造,脉冲中子氧活化测井技术作为近年来井下流体监测的新技术,在油田企业的生产过程中逐渐得到了广泛的关注和应用。
文章首先概述了脉冲中子氧活化测井技术的原理及使用仪器的性能,并通过具体测井实例说明了该技术在油田注入剖面监测及注入井找漏中的独特作用,以供参考和借鉴。
标签:氧活化测井;技术;油田开发;应用0 引言目前,传统的放射性同位素示踪、流量、井温等井下水流监测方法已无法满足新时期的油田开发需求,脉冲中子氧活化测井技术应运而生,并以其无污染以及受沾污、沉降及大孔道、裂缝发育等因素影响较少等优势在监测井下流体流动速度中得到了广泛的应用。
1 氧活化测井技术概述氧活化测井技术是测量井下水流速度、方向及流量的一种技术,其物理基础是脉冲中子与氧元素发生作用,使活化后的氧原子放射出特征γ射线,再通过探测仪器来获取周围含氧流体流动的情况。
具体来说,中子源发射能量为14Mev 的快中子与水中的氧原子发生核反应生成16N,16N以半衰变期为7.13s进行衰变还原成氧同时释放出6.13Mev高能γ射线,这些高能γ射线能够穿透几英寸厚的井中油管、套管及水泥环,通过探测器获取能够反映油管内、油套环形空间及套管外含氧流体流动状态的γ射线时间谱,进而判定水流实况。
氧活化测井技术一种示踪流量测量方法,示踪剂是被高能中子活化的水,反应公式为:16O(n,p)→16N →(16O+γ)氧活化测井技术常用的脉冲氧活化测井仪器有上水流、下水流及上下水流综合测井仪器等,这些仪器的有效利用离不开中子发生器与探测器这两种设备。
当中子发生器发射后会活化仪器周围的氧元素,含有活化氧原子的水随水流流动,在水流方向上设置γ探测器,该探测器γ计数率会在活化水流经探测器时增大,通过测量活化时间谱可以计算出水流从中子源流经探测器的时间(tm),公式为:tm=ta+式中ta为中子脉冲时间宽度;f(t)是探测器计数率随时间变化的函数,若以L表示源距,水流速度v为:v=在已知流动截面A的条件下,根据计算出的水流速度v则可以计算出水流量Q为:Q=v×A2 氧活化测井技术在油田开发中的具体应用目前部分油田的水井分注采用的是油套分注技术,此技术虽然具有管柱结构简化的优势但带来了新的问题:第一,限制了油套环形空间分层注水量数据的获取,例如在管柱中无法测量电磁流量及涡轮流量等;第二,油套环形空间同位素吸水剖面测井时由于油区周围环境差及井口设施不完善,拉长了配水间注入同位素的运移距离且造成配水间的放射性污染,威胁配水间职工的身体健康;第三,在进行同位素测井时由于注水井深部管柱的腐蚀严重,导致较长井段的油、套管沾污,无法获取层位上的同位素。
摘要:针对塔木察格油田地质构造特点及其特殊油水分布情况,应用脉冲中子氧活化技术在该区块进行注入剖面测井,分析该测井方法应用情况,通过对典型井测井解释成果图分析,进行综合评价注水井管柱完整性及有效性,为下一步作业提供指导性帮助。
关键字:氧活化测井技术;应用情况;综合评价;结论氧活化测井技术在塔木察格油田的综合应用闫立成(大庆油田有限责任公司测试技术服务分公司)0引言塔木察格油田于2005年开发投产,其主要开发层位为铜钵庙组油层,属于近物源扇三角洲沉积,为复杂断块油藏,具有以下地质特点:构造复杂,断层发育。
储层物性差,53.7%以上的岩心渗透率小于0.5×10-3μm 2,总体属于低孔、特低渗油藏。
岩性复杂多样,储层敏感性弱到中等偏强。
水敏指数0.23-0.68,为弱到中等偏强水敏。
随着油田开发进入中后期,井下注采情况越来越复杂,井下层间窜槽、套管漏失情况频繁发生[1]。
由于全球对放射性同位素管理严格,办理出国及运输审批手续繁琐。
此外,塔木察格油田现场不具备放射性同位素存储及分装条件,因此在塔木察格油田注入剖面测井主要采用脉冲中子氧活化测井。
脉冲中子氧活化测井是一种直接测量的核测井新方法,克服了同位素源在聚合物中难以形成活化悬浮液的情况,脉冲中子氧活化测井适用于水、聚合物、三元所有注入介质的注入井测试[2]。
根据实际调查发现,脉冲氧活化测井技术与其他测井技术相比较,有着测量精度高,受限因素少,测量时间短等优势。
[3]1氧活化测井技术氧活化水流测井仪是新一代单芯双向脉冲中子氧活化测井仪,双向水流氧活化测井仪可一次下井测量不同方向水流的速度[4]。
氧活化测井技术适用于配注井、笼统注入井、油套混注井、笼统注入条件下的上返井以及注聚井的测量,对油管内、套管内、油套空间的水流均可以进行测量;该测井方法不使用放射性物质。
不给井下造成放射性污染。
可用于同位素沾污严重的注入井的注入剖面问题。
不受岩性和孔渗参数以及射孔孔道大、小的影响。
脉冲中子氧活化测井技术在注水井中的应用注水井在辽河油田逐渐增多,了解注水井的生产动态显得尤为重要。
常规的监测手段主要是电磁流量计或者声波流量计等,受管柱下深的影响,不能满足监测的要求。
脉冲中子氧活化测井技术是一种测量水流的技术,该技术可以准确的测量油管、油套环空、套管中的水流,同時还可以验漏、验封。
具有很好的应用前景。
1 仪器结构及测井原理1.1 仪器结构及原理脉冲中子氧活化测井仪由谣传短节、上采集短节、中子发生器短节、下采集短节及下采集二短节五部分组成,如图1。
脉冲中子氧活化反应的实质是氧原子吸收高能脉冲中子(大于10.2Mev),放出质子,产生放射性同位素N16,并引发一系列原子核反应,最后激发态的氧原子释放出高能伽玛射线,通过对伽玛射线时间谱的测量来反映油管内、环型空间、套管外含氧物质特别是水的流动状况。
通过解析时间谱可以计算出水流速度,进而计算水流量。
1.2 仪器指标1、仪器最大耐压:80MPa;2、仪器最高耐温:150℃;3、仪器尺寸:38mm;4、仪器长度:总长5738mm(不含加长采集短节)或7506mm(含加长采集短节)。
2、应用效果2.1笼统注水井的应用本井为笼统注水井,设计该井注水30 m3/d,实际测得注水量为30.5 m3/d,通过对测得的数据分析,得出17层位主吸层,11、12、13、15、16为次吸层,14层不吸。
遇阻位置下还有吸水。
2.2 分层注水井的应用本井为分层配注井,设计注水量为50m3,实测日注水量为45.5m3/d。
P1水嘴进水4.0m3/d,P2水嘴进水15.8m3/d,P3水嘴进水25.7m3/d,根据实测数据分析,47层是主吸层,36、37、38、40、44、45、46层是次吸层,22、23、27、48层是少量吸水层,其余各层不吸水。
仪器在2025.0m处遇阻,但可确定51、52层不吸水。
封隔器F1、F2、F3座封良好。
3、结论(1)可以测出油管内、油管外环套空间及套管内、外的水流,可以取代常规的测试手段,效果好、准确率高。
PNST脉冲中子全谱测井技术的应用冀東油田南堡陆地浅层油藏低阻油气层发育,经过多年滚动开发,油藏已进入中后期高含水开发阶段,油水关系复杂,剩余油分布零散,老井水淹情况认识难度逐年加大。
PNST测井碳氧比模式在中高孔隙度、中高渗透率地区能够准确区分油水层,判断油层水淹程度。
综合利用非弹、俘获伽马计数率测井信息能够准确识别气层,区分气水层,提高解释精度。
本文主要讲述PNST脉冲中子全谱测井仪可在套管井中寻找油气层、确定储层含油饱和度、监测油藏动态变化,现场应用该技术测井20余井次,具有较强的实用性,为油田制订开发措施提供有效保障。
标签:PNST ;碳氧比;南堡陆地;剩余油南堡陆地浅层油藏目前已经进入特高含水开发阶段,油气主要分布在河道、边滩或心滩微相的砂体中,岩性以细砂岩、中砂岩、含砾不等粒砂岩为主,平均孔隙度30%以上,平均渗透率1530-2330×10-3um2,属高孔高渗型储层,非均质性较强,油气藏类型以构造层状油气藏为主,边底水活跃,地层能量充足,主要依靠天然能量开采。
PNST测井碳氧比模式不受地层水矿化度的影响,在孔隙度大于15%的地层中能准确区分油水层、判断油层的水淹程度。
该技术对进入中高含水期的复杂断块油藏剩余油挖潜有一定借鉴意义。
1 PNST脉冲中子全谱测井技术简介PNST测井技术,它实现了单一元素探测到全谱全过程测量,其测量精度高,有多种测量模式,一次下井可以完成全部能谱测量。
PNST测井仪外径89mm,长4.5m,重90kg,耐温150℃/4h,耐压70MPa,适用于套管外径为140mm~244mm 的套管井。
PNST测井仪一次测井能同时实现双源距碳氧比、中子寿命、脉冲中子-中子、能谱水流4项功能;测井曲线信息丰富,主要包括剩余油评价的碳氧比、地层俘获截面、近远计数比、氧活化指数等曲线;在缺少裸眼井测井资料时也能提供评价储层岩性物性的泥质含量、孔隙度、饱和度等解释信息,独立地进行套后地层参数评价;能识别气层,指示强力出水层。
脉冲中子氧活化测井技术的应用
摘要:脉冲中子氧活化测井仪是一种测量水流速度的注入剖面测井技术,主要用于注水和聚合物的注入剖面测量,可测量笼统注水井、配注井、油套合注井的向上或向下水流的速度,在测量范围内能够准确测出注入量。
应用表明,测井过程中通过活化水中氧来直接测得油管和套管中水的流速,需要计算获得相应流量,可克服示踪剂沾污、沉淀、聚堆、地层漏失的影响。
关键词:脉冲中子活化测井应用
一、仪器结构和技术指标
(1)仪器结构。
包括磁性定位器,遥测电路,远中近探测器,中子发生器和高压驱动电路。
见图1。
磁性定位器:测量井内油管或套管节箍及井下工具深度;遥测电路:对地面仪通过电缆传送的控制命令进行解码,并实现对其他部分的控制;把磁定位数据、近中远探测器测得的伽马数据编码,通过电缆传送给地面仪。
远中近探测器:时时测量井内对应深度处的伽马数据。
中子发生器:发射中子,实现对氧的活化。
高压驱动:在控制命令控制下,向中子发生器提供高压脉冲。
(2)主要技术指标。
耐温:125℃;耐压:60MPa;仪器外经:43mm;仪器长度4.5m;近中远三个探测器的源距分别为0.45m、0.90m、1.80m。
图1 结构示意图
二、测量原理
氧活化反应使流动的水具备了短时间的能被伽马探测器探测到的放射性。
用能量大于10Mev的快中子轰击氧原子,就会发生活化反应。
氧核被激化后,产生氮的放射性同位素16N处于激发态,经β衰变后还原成氧,其半衰期为7.13s,同时释放出能量为 6.13Mev的特征伽玛射线。
反应表达式:16O+n=16N+P;16N=16O+γ。
其中时间应为水被活化到γ被探测到的时间差的平均值。
三、现场施工中应注意的问题
(1)由于该仪器造价比较昂贵,而其中的中子发生器和探测器都有易碎部件,所以在使用过程中一定要做到轻拿轻放,在长途运输过程中一定要注意仪器的保护,尽量减少仪器的颠簸。
在测井过程中一定要严格按照规定测速启下仪器。
(2)地面仪中氧活化板卡对测量信号进行处理和解码,地面仪后面板接线方式与其他测井项目不同,在给仪器供电前要把由采集箱引出的信号线和连接到示波器的信号线分别接到氧活化板卡上,在测量其他项目时,必须还原接线方式,否则无法测得正确数据,而且有可能损坏氧活化板卡。
(3)根据被测井资料,画出井下管柱示意图,并且标出射孔层位,以利于测点深度和水流方向的确定。
因为经常发现采油厂提供的测井施工设计上面的管柱图和实际井内的管柱有很大差别,在测井过程中,一定对照蓝图仔细校深,核实井下管柱节箍、工具、射孔层位实际深度,这直接关系到测点深度和水流方向的确定,测点应尽量避开节箍和工具。
层间距小于源距不能同时保证中子发生器和伽马探测器同时卡在层位之间,此时要优先考虑把探测器卡在层位之间,但会带来一定误差,使得测量值大于真实值。
(4)估计被测点流量大小选择所要使用的探测器,低流量选择近探测器,高流量选择远探测器。
(5)确定管柱内径、外径。
因为脉冲中子活化测井是一种测量水流速度的新型注入剖面测井技术,需要对应的水流的横截面积来计算流量。
(6)在氧活化测井过程中,测量油管流量得到的谱线和测量套管流量得到的谱线,大部分可以通过谱线的形状来判断。
测量套管流量得到的谱线平缓,峰位不明显。
而测量油管流量得到的谱线尖锐,峰位较明显。
根据各探测器测得的谱线综合判断。
各探测器的测量范围大约为:1探测器—油管5-20,套管10-70;2探测器—油管10-30,套管20-115;4探测器—油管15-60,套管50-220。
同一探测器相同峰位按油管峰计算流量与按套管峰计算流量大约相差四倍。
1探测器测得的峰位按油管峰计算流量在5-10m3/d时,按套管峰计算流量应为20-40m3/d。
那么如果1探测器该峰位是油管峰,2探测器就不会有峰位;如果1探测器该峰位是套管峰,2探测器就会有峰位。
四、现场应用
大庆油田某采油厂油田注水井多数是低注入井,有许多井配水器仅配注10m3/d水,而仪器对套管内水流小于10m3/d的流量测量效果不好,无法实现对各层位吸水情况进行细分。
所以我们只能对一些流量较大的井进行脉冲中子氧活化测井,并取得了较好的测量效果。
见图1,图2。
图1、图2分别是在Y51-7-S8井GIV6层位上所测得的时间谱,显示有两个峰位,但第一个峰位不全是油管峰,第二个峰位是套管峰。
比较图2和图1,图2套管峰位比图1套管峰位向后移了33ms,说明该层位吸水。
在利用峰位计算流量时,要使用峰位全的时间谱计算流量。
图1 Y51-7-S8井GIV6层上中探测
图2 Y51-7-S8井GIV6层下中探测器所
五、结束语
脉冲中子氧活化测井由于其独特测量原理,能够克服同位素测井中遇到的示
踪剂沾污、沉淀、聚堆、地层漏失等问题,能够准确的测出井内流体的流速。
但由于仪器的下限较高,使得一些层段无法细分。
对注入水量大的水井,能够较准确的测出各射孔层的吸水量,并能测出在特殊注水条件下,各层段的吸水情况,应用效果明显。
参考文献:
1.乔贺堂.生产测井资料分析和解释[M].北京:石油工业出版社,1987.。