第四章 能控性和能观测性
- 格式:ppt
- 大小:1.28 MB
- 文档页数:80
第4章(1)线性控制系统的能控性和能观性第四章线性控制系统的能控性和能观性在现代控制理论中,能控性(Controllability)和能观性(Observ- ability)是两个重要的概念,它是卡尔曼(Kalman)在1960年提出的,是最优控制和最优估计的设计基础。
能观(测)性针对的是系统状态空间模型中的状态的可观测性,它反映系统的内部状态x(t)(通常是不可以直接测量的)被系统的输出量y(t)(通常是可以直接测量的)所反映的能⼒。
能控性严格上说有两种,⼀种是系统控制输⼊u(t)对系统内部状态x(t)的控制能⼒,另⼀种是控制输⼊u(t)对系统输出y(t)的控制能⼒。
但是⼀般没有特别指明时,指的都是状态的可控性。
所以,系统的能控性和能观性研究⼀般都是基于系统的状态空间表达式的。
4-1 线性连续定常系统的能控性定义对于单输⼊n 阶线性定常连续系统bu Ax x+= 若存在⼀个分段连续的控制函数u(t),能在有限的时间段 []f t t ,0内把系统从0t 时刻的初始状态()0t x 转移到任意指定的终态()f t x ,那么就称系统在0t 时刻的状态()0t x 是能控的;如果系统每⼀个状态()0t x 都能控,那么就称系统是状态完全可控的。
反之,只要有⼀个状态不可控,我们就称系统不可控。
对于线性定常连续系统,为简便计,可以假设00=t ,()0=f t x ,即00=t 时刻的任意初始状态()0x ,在有限时间段转移到零状态()0=f t x (原点)。
4-2线性连续定常系统的能控性判别4-2-1具有约旦标准型系统的能控性判别 1.单输⼊系统具有约旦标准型系统bu x x+Λ==Λn λλλλ0000000000000321n λλλλ≠≠≠≠ 321即为n 个互异根或bu Jx x+==++n m m J λλλλλλ000000000000000100000000121111m 个重根1λn-m 个互异根n m m λλλ≠≠≠++ 21 例:分析下列系统的能控性(1)u b x x+??=221000λλ[]x c c y 21=解:?=111x xλ 1x 与u ⽆关,即不受u 控制 ?+=u b x x2222λ 2x 为能控状态该系统为状态不完全能控,因⽽为不能控系统。
能控性与能观测性现代控制理论的能控性能观测性是建立在状态空间描述的基础上,状态方程描述了输入u(t)引起状态x(t)的变化过程,输出方程则描述了由状态的变化引起输出y(t)的变化,能控性能观测性就是分析输入u(t)对状态x(t)的控制能力和输出y(t)对状态的反映能力,一个系统若具有能控性和能观测性,人们就可以对它实施最优控制。
一、引言1960年卡尔曼提出系统的能控性和能观测性问题,它是系统的两个基本特征。
对经典控制理论所讨论的SISO(单输入单输出系统),它的输入量和输出量之间的动态关系可唯一的由系统的传递函数确定,即唯一输入对应唯一输出,而且输出可观测也可唯一确定输入。
现代控制理论着眼于分析、优化和控制MIMO(多输入多输出)系统内部特性和动态变化状态,其状态变量向量维数一般比输入向量维数高,并且有时还不能测量,所以存在系统内部状态能量控制和能观测问题。
二、能控性能控系统:假设系统初时刻处于状态空间任一点x=x(t0),倘若能够找到容许控制函数(输入)u在有限时间区间j内将系统由初态x转移到状态空间原点x(tj)=0则称为能控系统。
能达系统:假设系统初始时刻位于状态原点x(t)=0,倘若能够找到容许函数(输入)u 在有限时间内将系统由初态转移到状态空间任一点x(t)=x则称系统为能达系统。
对于线性连续系统,能控和能达是等价的,对线性离散系统则不同。
线性定常系统状态完全能控的充要条件是其能控性矩阵QK=[B AB……An-1B]满秩(代数判据),如果A为某个特征值有一个或者多个约旦矩阵则系统能控的充要条件是对于A的每个特征值的约旦块的B分块的最后一行都不全为零。
线性定常连续系统的输出的能控性判据为能控矩阵[CB CAB……CAn-1B]满秩(模态判据)。
能控性判据可以通过MATLAB直接得出矩阵的秩。
三、能观测性为了抑制干扰,降低参数灵敏度以构成最优系统,控制系统大多采用反馈形式,而反馈信息一般由系统的状态变量组合而成,但并非所有的状态变量在物理上都能测取到,于是提出能否通过输出的测量获得全部变量信息的问题,既可观测性。
系统的能控性能观测性稳定性分析1. 能控性(Controllability)能控性是指系统输出能否通过适当的输入方式对系统进行控制。
如果一个系统是能控的,意味着通过控制器的输入信号,我们能够将系统的输出发展到我们所期望的状态。
对于一个线性时不变(LTI)系统,能控性可以通过判断其控制矩阵的秩来确定。
控制矩阵(也称为控制可达矩阵)是由系统的状态方程和控制器的输入方程组成的。
如果控制矩阵的秩等于系统的状态数量,则系统是能控的;否则,系统是无法被完全控制的。
能控性的分析可以帮助我们选择合适的控制策略和控制器设计。
当系统的能控性差时,我们可能需要通过增加或修改系统的状态变量或控制器的输入方式来提高系统的能控性。
2. 能观测性(Observability)能观测性是指系统的内部状态能否通过系统的输出信号来判断。
一个能观测的系统意味着我们可以通过观测系统的输出来估计系统的状态。
对于一个线性时不变系统,能观测性可以通过判断其观测矩阵的秩来确定。
观测矩阵(也称为观测可达矩阵)是由系统的状态方程和输出方程组成的。
如果观测矩阵的秩等于系统的状态数量,则系统是能观测的;否则,系统的一些状态是无法通过输出来观测到的。
能观测性的分析可以帮助我们选择合适的观测器设计,以实现对系统状态的估计。
当系统的能观测性差时,我们可能需要增加或改变系统的输出方程来提高系统的能观测性。
3. 稳定性(Stability)稳定性是指系统在受到扰动后是否会逐渐恢复到原来的状态。
对于线性时不变系统,稳定性可以分为几种类型:零状态稳定、有限状态稳定和无限状态稳定。
零状态稳定(Zero-state stability)是指当系统受到初始条件扰动时,输出信号会在有限时间内收敛到零。
有限状态稳定(Finite state stability)是指当系统受到初始条件扰动时,输出信号会在有限时间内收敛到一些有限值。
无限状态稳定(Infinite state stability)是指当系统受到初始条件扰动时,输出信号会在无限时间内收敛到一些有限值。
4 线性系统的能控性与能观性内容提要能观性与能控性是现代控制理论中的两个重要问题。
比如在设计最优控制系统时,目的在于通过控制变量的作用,使系统的状态按预期的轨迹运行,如果状态变量不受控制,当然无法实现最优控制。
另外,一个系统的状态变量往往难以测取,需要由输出量来估计状态,不能观测的系统就无法实现此目的。
本章主要介绍线性系统的能控能观方面的基本知识,内容包括:1) 能控性与能观性两个基础性概念,它们的判别准则以及对偶关系;2) 分析系统的内在结构,按能控性与能观性进行的标准分解;3) 系统能控性、能观性和传递函数矩阵间的关系,即系统状态空间描述法与输入输出描述法的关系;4) 能控标准形和能观标准形;5) 系统的实现和传递函数矩阵的最小实现问题。
习题与解答4.1 判断下列系统的能控性。
1) u x x x x⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡10 01112121 2) ⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡21321321111001 342100010u u x x x x x x3) ⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡21321321020011 100030013u u x x x x x x4) u x x x x x x x x⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1110 000000000001432111114321λλλλ 5) u x x x x x x⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡031 2025016200340321321解:1) 由于该系统控制矩阵⎥⎦⎤⎢⎣⎡=01b ,系统矩阵⎥⎦⎤⎢⎣⎡=0111A ,所以⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=1101 0111Ab 从而系统的能控性矩阵为[]⎥⎦⎤⎢⎣⎡==1011Ab bU C 显然有[]n Ab b U C ===2rank rank满足能控性的充要条件,所以该系统能控。
第4章 控制系统的能控性和能观性第1节 能控性和能观性的定义◆设线性连续时变系统为()()x A t x B t u =+ ()y C t x =如果在[f t t ,0]上,对任意初始状态00)(x t x =,必能找到控制作用()u t ,能使)(t x 由0x 转移到0)(=f t x ,则称系统在0t 时刻是状态完全能控的,简称系统能控。
如果由[f t t ,0]上的)t y (,能惟一地确定0t 时刻的初始状态00)(x t x =,则称系统在0t 时刻是状态完全能观的,简称系统能观。
注意:能控性描述入)(t u 支配状态)(t x 的能力,能观性描述)(t y 反映)(t x 的能力。
能控性和能观性的定义要求初始状态的任意性。
◆线性定常连续系统x Ax Bu =+ y Cx =的能控性和能观性与0t 无关,常取00=t 。
对线性定常系统,能控性实质上是描述)(t u 支配模态(1,2,,)i te i n λ=的能力,若有任一模态不受输入的控制,系统便不能控;能观性实质上是)(t y 反映模态(1,2,,)i te i n λ=的能力,若有任一模态在输出中得不到反映,系统便不能观。
第2节 线性时变系统的能控性能观性判据1、格拉姆矩阵判据n 阶线性时变连续系统((),(),())S A t B t C t 在0t 时刻能控的充要条件是能控性格拉姆(Gramian )矩阵000(,)(,)()()(,)d ft t tC f t W t t t t B t B t t t t =ΦΦ⎰满秩;在0t 时刻能观的充要条件是能观性格拉姆矩阵000(,)(,)()()(,)d ft t tO f t W t t t t C t C t t t t =ΦΦ⎰满秩。
证明:1)能控性判据证明◆充分性证明。
假设),(0f C t t W 满秩,则),(01f ct t W -存在。
用构造法。
对任意的初始状态0()x t ,系统的状态解为00()()(,)(,)(()d tt x t t B u t t x t ττττ=-Φ+Φ⎰)]d )((),()()[,(0000ττττu B t t x t t tt )⎰Φ+Φ-=选择0100((),)(,))ttCf u t B t t t t W t x t -=-Φ()(代入系统状态解式并令f t t =,则有1000000()(,)[()(,)()()(,)(,)()d ]ft t tf f Cf t x t t t x t t t B t B t t t W t t x t t -=-Φ-ΦΦ⎰)()],(),()[,(00100t x t t W t t W I t t f Cf C f --Φ-=0)(])[,(00=-Φ-=t x I I t t f充分性得证。