1网络图论
- 格式:ppt
- 大小:1.35 MB
- 文档页数:10
数学中的图论与网络知识点图论是数学中一个重要的分支领域,研究图的结构、性质以及与实际问题的应用。
而网络则是现代社会中的重要组成部分,图论在网络上的应用也日益广泛。
本文将介绍数学中的图论基本概念和网络知识点,以及它们在现实中的应用。
一、图论基本概念1. 图的定义与表示图是由节点(顶点)和边组成的一种数学结构。
节点表示对象,边表示节点之间的连接关系。
图可以用邻接矩阵或邻接表等方式进行表示与存储。
2. 图的分类图可以分为有向图和无向图。
有向图中的边有方向,无向图中的边没有方向。
根据边是否具有权重,图又可以分为带权图和无权图。
3. 图的性质图具有很多重要的性质,例如连通性、度、路径等。
连通性表示图中任意两个节点之间存在一条路径,度表示节点的相邻节点个数,路径是连接节点的边的序列。
二、图论中的常见算法1. 最短路径算法最短路径算法用于求解两个节点之间的最短路径,其中最著名的算法是Dijkstra算法和Floyd-Warshall算法。
Dijkstra算法适用于边权重为非负的图,而Floyd-Warshall算法适用于任意带权图。
2. 深度优先搜索与广度优先搜索深度优先搜索(DFS)和广度优先搜索(BFS)是图的遍历算法。
DFS以深度优先的方式探索图中的节点,BFS以广度优先的方式探索。
这两种算法在解决连通性、拓扑排序等问题中有广泛应用。
3. 最小生成树算法最小生成树算法用于在带权图中找到权重和最小的生成树。
其中Prim算法和Kruskal算法是两种常用的最小生成树算法。
三、网络中的图论应用1. 社交网络与关系分析社交网络是图的一种应用,其中节点表示人,边表示人与人之间的社交关系。
基于图论的算法可以分析社交网络中的社区结构、关键人物等信息。
2. 网络流与最大流问题网络流是指在图中模拟流动的过程,最大流问题是求解从源节点到汇节点的最大流量。
网络流算法可以用于优化问题的求解,如分配问题、进程调度等。
3. 路由算法与网络优化路由算法是网络中常用的算法之一,用于确定数据从源节点到目的节点的传输路径。
电网络理论第二章图论第二章图论图论是电网络理论的重要分支,主要研究对象是图。
图是由节点和边构成的一种抽象模型,被广泛应用于计算机科学、数学和其他相关领域。
本章将介绍图论的基本概念、常用算法以及在电网络中的应用。
1. 图的定义和表示方式图由节点(也称为顶点)和边组成。
节点表示图中的元素,边表示节点之间的关联关系。
图可以分为有向图和无向图两种类型。
有向图中的边有方向性,表示从一个节点到另一个节点的单向关系。
无向图中的边没有方向性,表示节点之间的无序关系。
图可以用邻接矩阵或邻接表来表示。
邻接矩阵是一个二维数组,用于表示节点之间的关系。
邻接表则是由链表构成的数组,每个节点对应一条链表,链表中记录了该节点与其他节点的关系。
2. 图的基本术语和性质图论中有一些基本的术语和性质,包括:- 路径:指从一个节点到达另一个节点所经过的一系列边和节点。
- 简单路径:路径中不含有重复节点的路径。
- 环:起点和终点相同的路径。
- 连通图:图中任意两个节点之间都存在路径的图。
- 强连通图:有向图中任意两个节点之间都存在路径的图。
- 子图:由图中部分节点和对应的边组成的图。
- 度:节点所连接的边的数量。
- 入度和出度:有向图中节点的入边和出边的数量。
3. 常用图论算法图论中有许多重要的算法,下面介绍其中几个常用算法:- 广度优先搜索(BFS):用于查找图中从起点到终点的最短路径,同时可以用于遍历图的所有节点。
- 深度优先搜索(DFS):用于遍历图的所有节点,通过递归的方式沿着路径向前搜索,直到没有未访问的节点。
- 最小生成树(MST):通过连接图中的所有节点,使得生成的树具有最小的总权重。
- 最短路径算法:例如迪杰斯特拉算法和贝尔曼-福特算法,用于查找图中两个节点之间的最短路径。
- 拓扑排序:用于对有向无环图进行排序,使得图中的节点满足一定的顺序关系。
4. 图论在电网络中的应用图论在电网络领域有广泛的应用,包括:- 网络拓扑分析:通过图论算法可以对电网络的拓扑结构进行分析,了解网络中节点之间的连接关系。
网络图论图论是数学的一个分支,是富有趣味和应用极为广泛的一门学科。
(1)图图(a)电路,如果用抽象线段表示支路则得到图(b)所示的拓扑图,它描述了电路的点和线的连接关系,称为电路的图。
定义:图G 是描述电路结点支路连接关系的拓扑图,它是支路和结点的集合。
1)支路总是连接于两个结点上。
2)允许孤立结点存在,不允许孤立的支路存在。
移走支路,该支路连接的两个结点要保留在电路中,而移走结点,则要将连接于该结点的所有支路移走。
电路的图是用以表示电路几何结构的图形,图中的支路和结点与电路的支路和结点一一对应。
9.1 网络图论的基本概念(3)有向图:标示了参考方向的图(2)子图:图G1中的所有支路和结点都是图G中的支路和结点,则称G1是G 的一个子图。
子图示例9.1 网络图论的基本概念(4)连通图图中任何两结点之间存在由支路构成的路径,则称为连通图。
连通图和非连通图示例9.1 网络图论的基本概念(5)回路从某个结点出发,经过一些支路(一条支路仅经过一次)和一些结点(每个结点仅经过一次)又回到出发点所经闭合路径。
树和非树示例(6)树G1是G 的一个子图,且满足以下三个条件:A 、是连通的;B 、包含G 中所有结点;C 、不包含回路。
G1称为G 的一棵树。
9.1 网络图论的基本概念(7)树支、树支数构成树的支路称为树支。
树支数为:割集示例(8)连支、连支数不属于树的支路称为连支。
连支数为:(9)割集、割集方向移走某些支路,图分成了两个分离的部分,则这些支路的集合称为割集。
割集的方向:从一部分指向另一部分的方向。
9.2 关联矩阵、回路矩阵、割集矩阵、及KCL和KVL方程的矩阵形式(1)增广矩阵描述图中结点和支路关联情况的矩阵。
矩阵元素:增广矩阵为n×b 阶矩阵。
图9.2.1图的增广矩阵:9.2.1 关联矩阵A9.2 关联矩阵、回路矩阵、割集矩阵、及KCL 和KVL方程的矩阵形式(2)关联矩阵A增广矩阵每一列对应一条支路,非零元素两个,一个是1一个是-1,表示1号支路从1号结点流向2号结点;每一行代表一个结点,如第1行表示支路1、4、6连在1号结点,且支路1从1号结点流出,支路4流入1号结点,支路6流出1号结点。
图论与网络分析1-确定型网络计划图论和网络分析在计划和管理中广泛应用。
在项目管理中,确定型网络计划是一种用于规划和控制复杂项目的有效工具。
本文将介绍确定型网络计划的基本概念和常见技术,以及图论和网络分析在此过程中的应用。
确定型网络计划是一种图形化方法,用于描述和控制项目的活动和资源之间的关系。
它可以帮助项目经理和团队成员确定项目中的关键路径、前后置关系以及资源分配等重要因素,从而有效地规划和管理项目进度。
确定型网络计划通常由节点(表示活动)和连接线(表示活动之间的依赖关系)组成,形成一个有向无环图(DAG)。
在确定型网络计划中,节点表示项目中的具体活动,连接线表示活动之间的依赖关系。
每个节点都有一个时间估计,即完成该活动所需的时间。
通过连接线可以确定活动之间的前后置关系,即某些活动必须在其他活动之前完成。
通过指定这些依赖关系,项目经理可以确定项目的关键路径,即完成整个项目所需的最长时间路径。
确定型网络计划中的关键路径是整个项目的关键,因为它决定了项目的最短时间。
如果关键路径中的任何一个活动延迟,整个项目的进度都会延迟。
因此,项目经理需要重点关注关键路径上的活动,确保其按计划进行。
图论和网络分析在确定型网络计划中起到了重要的作用。
图论是研究图及其性质的数学理论,可以提供分析和解决确定型网络计划中的复杂问题的方法。
网络分析是一种基于图论的数学模型,用于分析和优化网络中的活动和资源分配。
通过图论和网络分析,项目经理可以更好地理解和管理复杂项目中的活动和资源之间的关系。
在确定型网络计划中,项目经理可以利用图论和网络分析来计算关键路径、活动和资源的最佳分配,以及项目进度和资源利用率的优化。
通过确定关键路径,项目经理可以安排和分配资源,以确保项目按计划进行。
此外,图论和网络分析还可以帮助项目经理进行风险分析,预测项目完成时间和成本,并及时采取必要的措施。
综上所述,确定型网络计划是一种重要的项目管理工具,而图论和网络分析则是实现该方法的重要工具。
图论基本知识简介对于网络的研究,最早是从数学家开始的,其基本的理论就是图论,它也是目前组合数学领域最活跃的分支。
我们在复杂网络的研究中将要遇到的各种类型的网络,无向的、有向的、加权的……这些都可以用图论的语言和符号精确简洁地描述。
图论不仅为物理学家提供了描述网络的语言和研究的平台,而且其结论和技巧已经被广泛地移植到复杂网络的研究中。
图论,尤其是随机图论已经与统计物理并驾齐驱地成为研究复杂网络的两大解析方法之一。
考虑到物理学家对于图论这一领域比较陌生,我在此专辟一章介绍图论的基本知识,同时将在后面的章节中不加说明地使用本章定义过的符号。
进一步研究所需要的更深入的图论知识,请参考相关文献[1-5]。
本章只给出非平凡的定理的证明,过于简单直观的定理的证明将留给读者。
个别定理涉及到非常深入的数学知识和繁复的证明,我们将列出相关参考文献并略去证明过程。
对于图论知识比较熟悉的读者可以直接跳过此章,不影响整体阅读。
第一节 图的基本概念图G 是指两个集合(V ,E ),其中集合E 是集合V×V 的一个子集。
集合V 称为图的顶点集,往往被用来代表实际系统中的个体,集合E 被称为图的边集,多用于表示实际系统中个体之间的关系或相互作用。
若{,}x y E ∈,就称图G 中有一条从x 到y 的弧(有向边),记为x → y ,其中顶点x 叫做弧的起点,顶点y 叫做弧的终点。
根据定义,从任意顶点x 到y 至多只有一条弧,这是因为如果两个顶点有多种需要区分的关系或相互作用,我们总是乐意在多个图中分别表示,从而不至于因为这种复杂的关系而给解析分析带来困难。
如果再假设图G 中不含自己到自己的弧,我们就称图G 为简单图,或者更精确地叫做有向简单图。
以后如果没有特殊的说明,所有出现的图都是简单图。
记G 中顶点数为()||G V ν=,边数为()||G E ε=,分别叫做图G 的阶和规模,显然有()()(()1)G G G ενν≤-。
第九章网络图论基础9.2.1 网络图论的基本概念(1)图:由“点(节点)”和“线(支路)”组成的图形称为图,通常用符号G 来表示。
(2)子图:图的一部分(允许孤立的节点,不允许孤立的支路)。
(3)有向图:若图G的每条支路都标有一个方向,则称为有向图,否则称为无向图。
(4)连通图:若图中的任意两个节点之间均至少存在一条由支路构成的路径,则称为连通图,否则称为非连通图,孤立的节点也是连通图。
(5)数、树枝、连枝:不包含回路,但包含图的所有节点的连通的子图为树;组成树的支路为树枝;其余支路为连枝。
(6)回路:从图中某一节点出发,经过若干支路和节点(均只许经过一次)又回到出发节点所形成的闭合路径称为回路。
(7)基本回路:只含一个连枝的回路,也称单连枝回路。
(8)割集:割集是一组支路的集合,如果把这些支路全部移走(保留支路的两个端点),则此图变成两个分离的部分,而少移去任一条支路,图仍是连通的。
(9)基本割集:只含一个树枝的割集,也称单树枝割集。
9.2.2 图的矩阵表示图的支路与节点、支路与回路、支路与割集的关联性质均可以用相应的矩阵来描述。
一、关联矩阵A关联矩阵A又称为节点支路关联矩阵,它反映的是节点与支路的关联情况。
设一有向图的节点数为n,支路数为b,则节点与支路的关联情况可以用一个n×b的矩阵来表示,记为Aa ,称为图的增广关联矩阵,Aa的每一行对应一个节点,每一列对应一个支路,其第i行第j列的元素aij定义为:由于Aa 的行不是彼此独立的,即Aa中的任一行都能从其他(n-1)行导出,因此,若由矩阵Aa中任意划出一行,剩下的(n-1)×b阶矩阵称为降阶关联矩阵,用A表示,又称为关联矩阵。
被划去的一行所对应的节点可当作参考节点。
二、回路矩阵B对于任一个具有n个节点,b条支路、c个回路的有向图,回路与支路的关联情况可以用一个(c×b)阶矩阵来描述,记为Ba ,Ba的每一行对应一个回路,每一列对应一个支路,其第i行第j列的元素bij定义为:若从矩阵Ba中取出独立回路所组成的(b-n+1)×b阶矩阵称为独立回路矩阵,简称回路矩阵。
第1篇网络图论第1章电网络概述第2章网络矩阵方程第3章网络撕裂法第4章多端和多端口网络第5章网络的拓扑公式第6章网络的状态方程电网络分析方法(重点:节点电压法及其应用)拓扑分析暂态分析第1章电网络概述1.1 电网络的基本性质1.2图论的术语和定义1.3树1.4割集1.5图的矩阵表示1.6关联矩阵、回路矩阵和割集矩阵之间的关系1.7 矩阵形式的基尔霍夫定律基本概念、性质矩阵表示1.1 电网络的基本性质物理模型V I P数学模型实际电系统研究对象分布参数和集中参数网络线性和非线性网络、时变和非时变网络、有源和无源网络、有损和无损网络、互易和非互易网络、性质解决问题网络分析、网络综合和网络诊断1.1 电网络的基本性质1.1.1 线性和非线性1.1.2 时变和非时变1.1.3 有源网络和无源网络1.1.4 有损网络和无损网络1.1.5 互易网络和非互易网络1.1.6 分布参数与集中参数电路传统线性网络1.1.1 线性和非线性3种定义:(1)含有非线性元件的网络称为非线性网络,否则为线性网络;(2)所建立的网络电压、电流方程是线性微分方程的称为线性网络,否则为非线性网络;(3)按输入与输出之间是否满足线性和叠加性来区分三者不完全等价线性叠加端口线性网络1.1.2 时变和非时变(1)含时变元件的网络称为时变网络,否则为定常网络;(2)建立的方程为常系数方程者为定常网络,否则为时变网络;(3)输入、输出间满足延时特性的网络为定常网络,否则为时变网络3种定义:()F t ()R t )(0t t F -)(0t t R -1.1.3 有源网络和无源网络[]12()()()()()k m t v t v t v t v t =T V []T 12()()()()()k m t i t i t i t i t =I T()()0t d τττ-∞≥⎰V I 关联参考方向无源半导体器件?1.1.4 有损网络和无损网络T()()0d τττ∞-∞=⎰VI ()()()()0-∞∞-∞∞=、、、V V I I 无损条件1.1.5 互易网络和非互易网络符合互易关系1.1.6 集中参数电路实际电路的几何尺寸远小于电路工作频率下的电磁波的波长。