图论和网络分析算法及Matlab实现
- 格式:pptx
- 大小:837.96 KB
- 文档页数:74
运筹学算法matlab程序西北工业大学数学系2009级1.顺向Dijkstra 算法M=[ 0 5 9 Inf Inf Inf InfInf 0 Inf Inf 12 Inf InfInf 3 0 15 Inf 23 InfInf 6 Inf 0 Inf 8 7Inf 12 Inf 5 0 Inf 14Inf Inf Inf Inf Inf 0 10Inf Inf Inf Inf Inf Inf 0];first=1;last=7;[m,n]=size(M);L=zeros(1,m);symbol=zeros(1,m);direction=zeros(1,m);for i=1:mif(i~=first)L(i)=inf;enddirection(i)=first;endjudge=1;while judgefor i=1:mif(symbol(i)==0)min=L(i);temporary=i;breakendendfor i=1:mif(symbol(i)==0)if(L(i)<min)min=L(i);temporary=i;endendendk=temporary;for j=1:mif(symbol(1,j)==0)if(M(k,j)==inf)continue;elseif(L(k)+M(k,j)<L(j))L(j)=L(k)+M(k,j);direction(j)=k;endendendendsymbol(k)=1;num=0;for i=1:mif(symbol(i)==1)num=num+1;endendif(num==m)judge=0;endendp=last;arrow=zeros(1,m);arrow(1)=last;i=2;while p~=firstarrow(1,i)=direction(p);i=i+1;p=direction(p);enddistance=L(last);M=[ 0 5 9 Inf Inf Inf Inf Inf 0 Inf Inf 12 Inf InfInf 3 0 15 Inf 23 Inf Inf 6 Inf 0 Inf 8 7 Inf 12 Inf 5 0 Inf 14 Inf Inf Inf Inf Inf 0 10Inf Inf Inf Inf Inf Inf 0]; [m,n]=size(M);first=1;last=7;L=zeros(1,m);direction=zeros(1,m);symbol=zeros(1,m);for i=1:mdirection(i)=last;if(i~=last)L(i)=inf;endendjudge=1;while judgefor i=1:mif(symbol(i)==0)min=L(i);temporary=i;breakendendfor i=1:mif(symbol(i)==0)if(L(i)<min)min=L(i);temporary=i;endendendk=temporary;for i=1:mif(M(i,k)==inf)continueelseif(M(i,k)+L(k)<L(i))L(i)=L(k)+M(i,k);direction(i)=k;endendendsymbol(k)=1;sum=0;for i=1:mif(symbol(i)==1)sum=sum+1;endendif(sum==m)judge=0;endendp=first;i=2;arrow=zeros(1,m);arrow(1)=first;while p~=lastarrow(i)=direction(p);i=i+1;p=direction(p);endd=[0 7 5 12 inf infinf 0 inf 3 inf infinf inf 0 6 inf 1512 inf 6 0 inf 86 inf 13 inf 0 infinf 4 15 inf 9 0];[m,n]=size(d);p=zeros(m,n);for i=1:np(:,i)=i;endfor k=1:nfor i=1:mfor j=1:nif(d(i,k)+d(k,j)<d(i,j))d(i,j)=d(i,k)+d(k,j);p(i,j)=p(i,k);endendendend4.仿floyd 算法d=[inf 6 0 4 0 0 00 inf 0 0 5 0 04 7 inf 0 05 00 0 4 inf 0 3 00 0 2 0 inf 0 00 0 0 0 4 inf 50 0 0 0 6 0 inf];[m,n]=size(d);first=1;last=7;direction=zeros(m,m);for i=1:mdirection(:,i)=i;endfor i=1:mfor j=1:mfor k=1:msmall=min(d(i,k),d(k,j));if d(i,j)<smalld(i,j)=small;direction(i,j)=direction(i,k);endendendendarrow=zeros(1,m);arrow(1)=first;i=2;p=first;while p~=lastp=direction(p,last);arrow(i)=p;i=i+1;end—dijkstra算法d=[0 inf 3 5 inf10 0 14 inf 8inf inf 0 7 -6inf inf inf 0 infinf inf inf -1 0];[m,n]=size(d);first=2;last=4;L=zeros(1,n);z=zeros(m,n);symbol=zeros(1,n);direction=zeros(1,n);for i=1:nfor j=1:mif d(i,j)~=0if d(i,j)~=infz(i,j)=1;endendenddirection(i)=first;if i~=firstL(i)=inf;endendjudge=1;while judgemini=10;for j=1:nif symbol(j)==0sum=0;for i=1:mp=z(i,j)*(1-symbol(i));sum=sum+p;endif(sum==0)mini=j;breakendendendfor j=1:nif symbol(j)==0&&z(mini,j)==1if L(mini)+d(mini,j)<L(j)L(j)=L(mini)+d(mini,j);direction(j)=mini;endendendsymbol(mini)=1;num=0;for i=1:nif symbol(i)==1num=num+1;endendif num==m;judge=0;endendarrow=zeros(1,m);p=last;arrow(1)=last;i=2;while p~=firstp=direction(p);arrow(i)=p;i=i+1;end—dijkstra算法d=[0 inf 3 5 inf10 0 14 inf 8inf inf 0 7 -6inf inf inf 0 infinf inf inf -1 0];[m,n]=size(d);first=2;last=4;L=zeros(1,n);z=zeros(m,n);symbol=zeros(1,n);direction=zeros(1,n);for i=1:nfor j=1:mif d(i,j)~=0if d(i,j)~=infz(i,j)=1;endendenddirection(i)=last;if i~=lastL(i)=inf;endendjudge=1;while judgemini=10;for i=1:nif symbol(i)==0sum=0;for j=1:mp=z(i,j)*(1-symbol(j));sum=sum+p;endif(sum==0)mini=i;breakendendendfor i=1:nif symbol(i)==0&&z(i,mini)==1if L(mini)+d(i,mini)<L(i)L(i)=L(mini)+d(i,mini);direction(i)=mini;endendendsymbol(mini)=1;num=0;for i=1:nif symbol(i)==1num=num+1;endendif num==m;judge=0;endendarrow=zeros(1,m);p=first;arrow(1)=first;i=2;while p~=lastp=direction(p);arrow(i)=p;i=i+1;endM=[ 0 17 11 inf inf inf17 0 13 12 28 1511 13 0 inf 19 infinf 12 inf 0 inf 16inf 28 19 inf 0 10inf 15 inf 16 10 0];[m,n]=size(M);X=zeros(m,n);Y=zeros(m);Z=zeros(m);Y(1)=1;for i=2:mZ(i)=i;endjudge=1;while judgefor i=1:mif(Y(i)~=0)for j=1:mif(Z(j)~=0)min=M(i,j);a=i;b=j;endendendendfor i=1:mif(Y(i)~=0)for j=1:mif(Z(j)~=0)if(M(i,j)<min)min=M(i,j);a=i;b=j;endendendendendY(b)=b;Z(b)=0;X(a,b)=1;X(b,a)=1;c=0;for i=1:mif(Y(i)~=0)c=c+1;endendif(c==m)judge=0;endend网络最大流Ford—Fulkersen算法d=[inf 12 17 0 0 00 inf 0 8 0 00 6 inf 0 12 00 0 5 inf 0 150 0 0 4 inf 90 0 0 0 0 inf];[m,n]=size(d);X=zeros(m,n);first=1;last=6;recognize=1;while recognizeL=zeros(1,m);L(first)=inf;direction=ones(1,m);symbol=zeros(1,m);judge=1;while judgefor i=1:mif symbol(i)==0big=L(i);k=i;break;endendfor i=1:mif symbol(i)==0if L(i)>bigbig=L(i);k=i;endendendif k==nif L(n)==0breakendelsefor j=1:mif d(k,j)>0u=min(L(k),d(k,j)-X(k,j));if u>L(j)L(j)=u;direction(j)=k;endelseif d(j,k)>0u=min(L(k),X(j,k));if u>L(j)L(j)=u;direction(j)=k;endendendendendsymbol(k)=1;num=0;for i=1:mif symbol(i)==1num=num+1;endendif num==mjudge=0;endendafter=last;before=after;while before~=firstbefore=direction(after);if d(before,after)>0X(before,after)=X(before,after)+L(n); elseX(before,after)=X(before,after)-L(n); endafter=before;endif L(m)==0recognize=0;end end。
如何使用MATLAB进行网络分析与建模网络分析与建模是数据科学领域中的重要研究方法之一,它涉及到了计算机科学、数学、统计学等多个学科领域。
而在现代信息爆炸的时代,网络数据的规模和复杂性不断增加,对于分析和建模工具的要求也越来越高。
MATLAB作为一个强大的数学计算软件,提供了丰富的功能和工具,可以帮助我们进行网络分析与建模。
本文将介绍如何使用MATLAB进行网络分析与建模。
第一部分:网络分析基础网络分析是研究网络结构、功能和演化规律的一种方法。
在网络分析中,我们通常需要描述网络的拓扑结构、节点与边的关系、节点的属性等信息。
而MATLAB提供了一些常用的工具和函数,可以方便地进行网络分析。
首先,我们需要将网络数据导入到MATLAB中。
MATLAB支持导入各种格式的网络数据,如邻接矩阵、边列表、节点属性等。
使用MATLAB的数据导入和读取函数,我们可以将网络数据转换成MATLAB中的矩阵或表格,方便后续的分析和建模。
其次,我们可以使用MATLAB提供的函数和工具来计算网络的基本属性,如网络的度分布、聚类系数、平均路径长度等。
这些属性可以帮助我们了解网络的结构和功能,并进行比较和分类。
MATLAB还提供了可视化工具,可以直观地展示网络的拓扑结构和属性分布。
第二部分:网络建模与预测网络建模是研究网络演化和行为规律的关键内容。
借助MATLAB的数学建模和机器学习工具,我们可以构建各种网络模型,并使用这些模型来预测网络的演化和行为。
常用的网络建模方法包括随机网络模型、小世界网络模型、无标度网络模型等。
我们可以使用MATLAB的随机数生成函数和图论工具,生成各种类型的网络模型,并进行参数调节和性能评估。
此外,MATLAB还提供了机器学习和深度学习工具箱,可以用于网络模型的训练和预测。
网络预测是网络分析与建模的重要应用之一。
通过分析网络的演化规律和行为模式,我们可以预测网络的未来走向和趋势。
MATLAB提供了一些预测模型和函数,如时间序列分析、回归分析、神经网络等。
如何进行MATLAB网络数据分析和可视化引言:网络数据分析和可视化是当今信息时代的重要技能之一。
无论是在科学研究、商业决策还是社会分析中,对网络数据的理解和分析都发挥着重要的作用。
MATLAB作为一款强大的数学和编程软件,提供了丰富的工具和函数,可以帮助我们进行网络数据的分析和可视化。
本文将介绍如何使用MATLAB进行网络数据分析和可视化的基本方法和技巧。
一、网络数据的获取在进行网络数据分析和可视化之前,首先需要获取网络数据。
网络数据可以来自于各种渠道,比如社交媒体、网页访问日志、传感器数据等。
MATLAB提供了多种方式来获取网络数据,比如通过API调用、爬取网页等。
根据实际需求选择适合的数据获取方法,并将数据保存为csv、txt等格式。
二、数据预处理获取到网络数据后,通常需要进行数据预处理,以清洗和整理数据,为后续的分析和可视化做准备。
常见的数据预处理包括数据清洗(去除重复数据、空值数据等)、数据转换(日期时间格式、数值型数据等)、数据标准化(归一化、标准化等)、数据排序等。
MATLAB提供了一系列的函数和工具箱来帮助进行数据预处理,可以根据具体情况选择使用。
三、网络数据分析网络数据分析是对网络数据进行统计和计算的过程,可以帮助我们了解网络数据的特征和规律。
常见的网络数据分析包括数据聚类、数据分类、数据预测等。
MATLAB提供了丰富的数据分析函数和工具箱,比如聚类分析函数clusterdata、分类模型函数classify等。
根据具体的分析需求,选择合适的函数进行网络数据分析。
四、网络数据可视化网络数据可视化是将分析结果以图表等形式展示出来,便于观察和理解数据。
通过可视化可以更直观地揭示网络数据的特征和规律,为决策提供依据。
MATLAB提供了丰富的绘图函数和工具箱,比如绘制二维图像的plot函数、绘制三维图像的surf函数等。
根据具体的数据特点和需求选择合适的绘图函数,制作出精美的网络数据可视化图表。
图论实验三个案例单源最短路径问题 1.1 Dijkstra 算法Dijkstra 算法是解单源最短路径问题的一个贪心算法。
其基本思想是,设置 一个顶点集合S 并不断地作贪心选择来扩充这个集合。
一个顶点属于集合S 当且 仅当从源到该顶点的最短路径长度已知。
设 v 是图中的一个顶点,记l(v)为顶点 v 到源点V 1的最短距离,V i,V jV ,若(V i,V j)E ,记“到百的权w 。
Dijkstra 算法:① S {V J I(V J 0 ; V V {可 1(V ) i i S V {V J ;J7JJJ7②S,停止,否则转③;l(v) min{ l(v) , d(V j ,v)}V j S④ 存在Vi 1,使l (V i l) min{l(V)},V S ;⑤SSU{v i 1}S S {v i 1}i i 1实际上,Dijkstra 算法也是最优化原理的应用:如果V 1V 2LV n1Vn是从V1到Vn的最短路径,贝UV 1V 2L Vn1也必然是从V1到Vn 1的最优路径。
在下面的MATLA 实现代码中,我们用到了距离矩阵,矩阵第 i 行第j 行元 素表示顶点Vi到Vj的权Wj,若v 到V j无边,则W ijrealmax,其中realmax 是 MATLA 常量,表示最大的实数(1.7977e+308)function re=Dijkstra(ma)%用Dijkstra 算法求单源最短路径%俞入参量ma是距离矩阵%输出参量是一个三行n 列矩阵,每列表示顶点号及顶点到源的最短距离和前顶点n=size(ma,1);% 得到距离矩阵的维数s=ones(1,n);s(1)=0;% 标记集合S和S 的补r=zeros(3,n);r(1,:)=1:n;r(2,2:end)=realmax;% 初始化for i=2:n;% 控制循环次数mm=realmax;for j=find(s==0);% 集合S中的顶点for k=find(s==1);% 集合S补中的顶点if(r(2,j)+ma(j,k)<r(2,k))r(2,k)=r(2,j)+ma(j,k);r(3,k)=j;endif(mm>r(2,k))mm=r(2,k);t=k;endendends(1,t)=0;%找到最小的顶点加入集合Send re=r;1.2动态规划求解最短路径动态规划是美国数学家 Richard Bellman 在1951年提出来的分析一类多阶 段决策过程的最优化方法,在工程技术、工业生产、经济管理、军事及现代化控 制工程等方面均有着广泛的应用。
在Matlab中使用网络分析工具箱进行社交网络分析在Matlab中使用网络分析工具进行社交网络分析社交网络是指由各种社会关系构成的网状结构,它主要通过人们之间的联系和互动来传播信息、分享资源和建立社会关系。
而随着信息技术的迅速发展,人们对于社交网络的研究越来越重要。
在这个时候,使用网络分析工具箱就成为了进行社交网络分析的一种重要手段。
Matlab是一种强大的科学计算与数据分析工具,它不仅拥有丰富的数学计算函数库,而且还提供了一系列用于网络分析的工具箱。
在Matlab中,我们可以使用network对象来表示和操作网络结构。
这个对象可以通过添加节点和边的方式来构建网络。
而对于实际的社交网络,可以通过抓取社交媒体上的数据或者通过人工调查的方式来获取。
首先,我们需要导入网络数据。
在Matlab中,我们可以将网络数据以邻接矩阵的形式读入,并使用network对象的createFromAdjacencyMatrix方法将其转换为network对象。
邻接矩阵描述了网络中节点之间的连接关系,其中的每一个元素代表了两个节点之间的连接强度。
在社交网络中,通常使用1表示两个节点之间存在联系,0表示不存在。
除了邻接矩阵,我们还可以使用边表和节点表来描述网络结构。
接下来,我们可以使用network对象提供的各种方法来分析网络结构。
例如,我们可以使用degree函数计算网络中每个节点的度数,即与该节点相连的边的数量。
度数反映了节点在网络中的重要性,度数越高,说明节点的连接越多,影响力也就越大。
我们也可以使用betweennessCentrality函数来计算每个节点的介数中心性。
介数中心性反映了节点在网络中的中介程度,介于节点之间流通的信息越多,说明该节点在信息传播中具有更重要的角色。
除了节点分析,我们还可以进行网络的整体分析。
例如,我们可以使用clusterCoefficiency函数计算网络的聚类系数。
聚类系数是网络中节点之间形成闭合三角形的概率,聚类系数越高,说明网络中的节点之间联系更加紧密。
Matlab中的复杂网络与图论分析方法在当今数字时代,数据网络正在成为各行各业的核心,这就给研究网络结构和分析网络行为提供了前所未有的机会。
而复杂网络和图论分析方法则成为了研究数据网络的一种重要手段。
本文将介绍在Matlab中应用的复杂网络和图论分析方法,探讨其原理和应用。
一、复杂网络:拓扑结构的研究复杂网络是指由大量节点和链接组成的网络,其中节点代表实体,链接代表实体之间的关系。
通过研究复杂网络的拓扑结构,我们可以揭示数据网络中的规律和性质,了解网络中节点的连接模式和信息传播机制。
1.1 网络拓扑结构的描述在复杂网络研究中,一种常用的描述方法是邻接矩阵和度矩阵。
邻接矩阵是一个由0和1组成的矩阵,其中的元素表示节点之间的连接关系,1表示连接,0表示未连接。
度矩阵是一个对角矩阵,用于描述每个节点的度数,即与该节点相连的链接数。
1.2 网络节点的度分布节点的度数是指与该节点相连的链接数,而节点的度分布则是指不同度数的节点在网络中的分布情况。
在复杂网络中,节点的度分布往往符合幂律分布,即少数节点的度数非常大,而大部分节点的度数相对较小。
通过分析节点的度分布,可以了解网络中的核心节点和边缘节点,以及网络的鲁棒性和可靠性。
1.3 网络中的社区结构社区结构是指网络中节点的聚集现象,即节点之间的连接更密集,而与其他社区的联系较弱。
通过识别和研究网络中的社区结构,可以帮助我们揭示网络中的隐含规律、发现重要节点和子网络,并理解网络的分层结构和功能。
二、图论分析:探索网络行为的机制图论是研究网络结构和图形模型的数学理论,主要关注网络中节点和链接之间的关系。
通过图论分析,我们可以量化和描述网络中的节点和链接的特性,揭示网络的演化机制和行为规律。
2.1 网络中的中心性度量中心性是衡量网络中节点重要性的指标,可以帮助我们识别重要节点和影响网络动态行为的因素。
在复杂网络中,常用的中心性度量包括度中心性、接近中心性和介数中心性等。
图论算法及其MATLAB 程序代码求赋权图G = (V , E , F )中任意两点间的最短路的Warshall-Floyd 算法:设A = (a ij )n ×n 为赋权图G = (V , E , F )的矩阵, 当v i v j ∈E 时a ij = F (v i v j ), 否则取a ii =0, a ij = +∞(i ≠j ), d ij 表示从v i 到v j 点的距离, r ij 表示从v i 到v j 点的最短路中一个点的编号.① 赋初值. 对所有i , j , d ij = a ij , r ij = j . k = 1. 转向②② 更新d ij , r ij . 对所有i , j , 若d ik + d k j <d ij , 则令d ij = d ik + d k j , r ij = k , 转向③.③ 终止判断. 若d ii <0, 则存在一条含有顶点v i 的负回路, 终止; 或者k = n 终止; 否则令k = k + 1, 转向②.最短路线可由r ij 得到.例1 求图6-4中任意两点间的最短路.解:用Warshall-Floyd 算法, MATLAB 程序代码如下:n=8;A=[0 2 8 1 Inf Inf Inf Inf2 0 6 Inf 1 Inf Inf Inf8 6 0 7 5 1 2 Inf1 Inf 7 0 Inf Inf 9 InfInf 1 5 Inf 0 3 Inf 8Inf Inf 1 Inf 3 0 4 6Inf Inf 2 9 Inf 4 0 3Inf Inf Inf Inf 8 6 3 0]; % MATLAB 中, Inf 表示∞D=A; %赋初值for (i=1:n)for (j=1:n)R(i,j)=j;end ;end %赋路径初值for (k=1:n)for (i=1:n)for (j=1:n)if (D(i,k)+D(k,j)<D(i,j))D(i,j)=D(i,k)+D(k,j); %更新dijR(i,j)=k;end ;end ;end %更新rijk %显示迭代步数D %显示每步迭代后的路长R %显示每步迭代后的路径pd=0;for i=1:n %含有负权时if (D(i,i)<0)pd=1;break ;end ;end %存在一条含有顶点vi 的负回路if (pd)break ;end %存在一条负回路, 终止程序end %程序结束图6-4Kruskal避圈法:将图G中的边按权数从小到大逐条考察, 按不构成圈的原则加入到T 中(若有选择时, 不同的选择可能会导致最后生成树的权数不同), 直到q (T ) = p (G ) − 1为止, 即T的边数= G的顶点数− 1为止.Kruskal避圈法的MATLAB程序代码如下:n=8;A=[0 2 8 1 0 0 0 02 0 6 0 1 0 0 08 6 0 7 5 1 2 01 0 7 0 0 0 9 00 1 5 0 0 3 0 80 0 1 0 3 0 4 60 0 2 9 0 4 0 30 0 0 0 8 6 3 0];k=1; %记录A中不同正数的个数for(i=1:n-1)for(j=i+1:n) %此循环是查找A中所有不同的正数if(A(i,j)>0)x(k)=A(i,j); %数组x记录A中不同的正数kk=1; %临时变量for(s=1:k-1)if(x(k)==x(s))kk=0;break;end;end%排除相同的正数k=k+kk;end;end;endk=k-1 %显示A中所有不同正数的个数for(i=1:k-1)for(j=i+1:k) %将x中不同的正数从小到大排序if(x(j)<x(i))xx=x(j);x(j)=x(i);x(i)=xx;end;end;endT(n,n)=0; %将矩阵T中所有的元素赋值为0q=0; %记录加入到树T中的边数for(s=1:k)if(q==n)break;end%获得最小生成树T, 算法终止for(i=1:n-1)for(j=i+1:n)if (A(i,j)==x(s))T(i,j)=x(s);T(j,i)=x(s); %加入边到树T中TT=T; %临时记录Twhile(1)pd=1;%砍掉TT中所有的树枝for(y=1:n)kk=0;for(z=1:n)if(TT(y,z)>0)kk=kk+1;zz=z;end;end%寻找TT中的树枝if(kk==1)TT(y,zz)=0;TT(zz,y)=0;pd=0;end;end%砍掉TT中的树枝if(pd)break;end;end%已砍掉了TT中所有的树枝pd=0;%判断TT中是否有圈for(y=1:n-1)for(z=y+1:n)if(TT(y,z)>0)pd=1;break;end;end;endif(pd)T(i,j)=0;T(j,i)=0;%假如TT中有圈else q=q+1;end;end;end;end;endT %显示近似最小生成树T, 程序结束求二部图G的最大匹配的算法(匈牙利算法), 其基本思想是:从G的任意匹配M开始, 对X中所有M的非饱和点, 寻找M−增广路. 若不存在M−增广路, 则M为最大匹配; 若存在M−增广路P, 则将P中M与非M的边互换得到比M多一边的匹配M1 , 再对M1重复上述过程.设G = ( X, Y, E )为二部图, 其中X = {x1, x2, … , x n }, Y = { y1, y2, … , y n}. 任取G的一初始匹配M (如任取e∈E, 则M = {e}是一个匹配).①令S = φ , T = φ , 转向②.②若M饱和X \S的所有点, 则M是二部图G的最大匹配. 否则, 任取M的非饱和点u∈X \ S , 令S = S ∪{ u }, 转向③.③记N (S ) = {v | u∈S, uv∈E}. 若N (S ) = T, 转向②. 否则取y∈N (S ) \T. 若y是M 的饱和点, 转向④, 否则转向⑤.④设x y∈M, 则令S = S ∪{ x }, T = T ∪{ y }, 转向③.⑤u −y路是M−增广路, 设为P, 并令M = M⊕P, 转向①. 这里M⊕P = M∪P \M∩P, 是对称差.由于计算M−增广路P比较麻烦, 因此将迭代步骤改为:①将X中M的所有非饱和点(不是M中某条边的端点)都给以标号0和标记*, 转向②.②若X中所有有标号的点都已去掉了标记*, 则M是G的最大匹配. 否则任取X中一个既有标号又有标记*的点x i , 去掉x i的标记*, 转向③.③找出在G中所有与x i邻接的点y j (即x i y j∈E ), 若所有这样的y j都已有标号, 则转向②, 否则转向④.④对与x i邻接且尚未给标号的y j都给定标号i. 若所有的y j都是M的饱和点, 则转向⑤, 否则逆向返回. 即由其中M的任一个非饱和点y j的标号i找到x i, 再由x i的标号k找到y k , … , 最后由y t的标号s找到标号为0的x s时结束, 获得M−增广路x s y t…x i y j, 记P = {x s y t, …, x i y j }, 重新记M为M⊕P, 转向①.⑤将y j在M中与之邻接的点x k (即x k y j∈M), 给以标号j和标记*, 转向②.例1求图6-9中所示的二部图G的最大匹配.图6-9匈牙利算法的MATLAB程序代码如下:m=5;n=5;A=[0 1 1 0 01 1 0 1 10 1 1 0 00 1 1 0 00 0 0 1 1];M(m,n)=0;for(i=1:m)for(j=1:n)if(A(i,j))M(i,j)=1;break;end;end%求初始匹配Mif(M(i,j))break;end;end%获得仅含一条边的初始匹配Mwhile(1)for(i=1:m)x(i)=0;end%将记录X中点的标号和标记*for(i=1:n)y(i)=0;end%将记录Y中点的标号和标记*for(i=1:m)pd=1;%寻找X中M的所有非饱和点for(j=1:n)if(M(i,j))pd=0;end;endif(pd)x(i)=-n-1;end;end%将X中M的所有非饱和点都给以标号0和标记*, 程序中用n+1表示0标号, 标号为负数时表示标记*pd=0;while(1)xi=0;for(i=1:m)if(x(i)<0)xi=i;break;end;end%假如X中存在一个既有标号又有标记*的点, 则任取X中一个既有标号又有标记*的点xiif(xi==0)pd=1;break;end%假如X中所有有标号的点都已去掉了标记*, 算法终止x(xi)=x(xi)*(-1); %去掉xi的标记*k=1;for(j=1:n)if(A(xi,j)&y(j)==0)y(j)=xi;yy(k)=j;k=k+1;end;end%对与xi邻接且尚未给标号的yj都给以标号iif(k>1)k=k-1;for(j=1:k)pdd=1;for(i=1:m)if(M(i,yy(j)))x(i)=-yy(j);pdd=0;break;end;end%将yj在M中与之邻接的点xk (即xkyj∈M), 给以标号j和标记*if(pdd)break;end;endif(pdd)k=1;j=yy(j); %yj不是M的饱和点while(1)P(k,2)=j;P(k,1)=y(j);j=abs(x(y(j))); %任取M的一个非饱和点yj, 逆向返回if(j==n+1)break;end%找到X中标号为0的点时结束, 获得M-增广路Pk=k+1;endfor(i=1:k)if(M(P(i,1),P(i,2)))M(P(i,1),P(i,2))=0; %将匹配M在增广路P中出现的边去掉else M(P(i,1),P(i,2))=1;end;end%将增广路P中没有在匹配M中出现的边加入到匹配M中break;end;end;endif(pd)break;end;end%假如X中所有有标号的点都已去掉了标记*, 算法终止M %显示最大匹配M, 程序结束利用可行点标记求最佳匹配的算法步骤如下:设G = ( X , Y , E , F )为完备的二部赋权图, L 是其一个初始可行点标记, 通常取.,,0)(},|)(max{)(Y y X x y L Y y xy F x L ∈∈ =∈= M 是G L 的一个匹配. ① 若X 的每个点都是M 的饱和点, 则M 是最佳匹配. 否则取M 的非饱和点u ∈X , 令S = {u }, T = φ , 转向②.② 记N L (S ) = {v | u ∈S , uv ∈E L }. 若N L ( S ) = T , 则G L 没有完美匹配, 转向③. 否则转向④.③ 调整可行点标记, 计算a L = min { L ( x ) + L ( y ) − F (x y ) | x ∈S , y ∈Y \T }.由此得新的可行顶点标记H (v ) =,,),(,)(,)(T v S v v L a v L a v L L L ∈∈+−令L = H , G L = G H , 重新给出G L 的一个匹配M , 转向①.④ 取y ∈N L ( S ) \T , 若y 是M 的饱和点, 转向⑤. 否则, 转向⑥.⑤ 设x y ∈M , 则令S = S ∪{ x }, T = T ∪{ y }, 转向②.⑥ 在G L 中的u − y 路是M −增广路, 记为P , 并令 M = M ⊕P , 转向①.利用可行点标记求最佳匹配算法的MATLAB 程序代码如下:n=4;A=[4 5 5 12 2 4 64 2 3 35 0 2 1];for (i=1:n)L(i,1)=0;L(i,2)=0;endfor (i=1:n)for (j=1:n)if (L(i,1)<A(i,j))L(i,1)=A(i,j);end ; %初始可行点标记LM(i,j)=0;end ;endfor (i=1:n)for (j=1:n) %生成子图Glif (L(i,1)+L(j,2)==A(i,j))Gl(i,j)=1;else Gl(i,j)=0;end ;end ;endii=0;jj=0;for (i=1:n)for (j=1:n)if (Gl(i,j))ii=i;jj=j;break ;end ;endif (ii)break ;end ;end %获得仅含Gl 的一条边的初始匹配MM(ii,jj)=1;for (i=1:n)S(i)=0;T(i)=0;NlS(i)=0;endwhile (1)for (i=1:n)k=1;否则.for(j=1:n)if(M(i,j))k=0;break;end;endif(k)break;end;endif(k==0)break;end%获得最佳匹配M, 算法终止S(1)=i;jss=1;jst=0;%S={xi}, T=φwhile(1)jsn=0;for(i=1:jss)for(j=1:n)if(Gl(S(i),j))jsn=jsn+1;NlS(jsn)=j;%NL(S)={v|u∈S,uv∈EL}for(k=1:jsn-1)if(NlS(k)==j)jsn=jsn-1;end;end;end;end;endif(jsn==jst)pd=1; %判断NL(S)=T?for(j=1:jsn)if(NlS(j)~=T(j))pd=0;break;end;end;endif(jsn==jst&pd)al=Inf; %如果NL(S)=T, 计算al, Inf为∞for(i=1:jss)for(j=1:n)pd=1;for(k=1:jst)if(T(k)==j)pd=0;break;end;endif(pd&al>L(S(i),1)+L(j,2)-A(S(i),j))al=L(S(i),1)+L(j,2)-A(S(i),j);end;end;end for(i=1:jss)L(S(i),1)=L(S(i),1)-al;end%调整可行点标记for(j=1:jst)L(T(j),2)=L(T(j),2)+al;end%调整可行点标记for(i=1:n)for(j=1:n) %生成子图GLif(L(i,1)+L(j,2)==A(i,j))Gl(i,j)=1;else Gl(i,j)=0;endM(i,j)=0;k=0;end;endii=0;jj=0;for(i=1:n)for(j=1:n)if(Gl(i,j))ii=i;jj=j;break;end;endif(ii)break;end;end%获得仅含Gl的一条边的初始匹配MM(ii,jj)=1;breakelse%NL(S)≠Tfor(j=1:jsn)pd=1;%取y∈NL(S)\Tfor(k=1:jst)if(T(k)==NlS(j))pd=0;break;end;endif(pd)jj=j;break;end;endpd=0;%判断y是否为M的饱和点for(i=1:n)if(M(i,NlS(jj)))pd=1;ii=i;break;end;endif(pd)jss=jss+1;S(jss)=ii;jst=jst+1;T(jst)=NlS(jj); %S=S∪{x}, T=T∪{y}else%获得Gl的一条M-增广路, 调整匹配Mfor(k=1:jst)M(S(k),T(k))=1;M(S(k+1),T(k))=0;endif(jst==0)k=0;endM(S(k+1),NlS(jj))=1;break;end;end;end;endMaxZjpp=0;for(i=1:n)for(j=1:n)if(M(i,j))MaxZjpp=MaxZjpp+A(i,j);end;end;endM %显示最佳匹配MMaxZjpp %显示最佳匹配M的权, 程序结束从一个可行流f 开始, 求最大流的Ford--Fulkerson 标号算法的基本步骤:⑴ 标号过程① 给发点v s 以标号(+, +∞) , δ s = +∞.② 选择一个已标号的点x , 对于x 的所有未给标号的邻接点y , 按下列规则处理:当yx ∈E , 且f yx >0时, 令δ y = min { f yx , δ x }, 并给y 以标号 ( x − , δ y ).当xy ∈E , 且f xy <C xy 时, 令δ y = min {C xy − f xy , δ x }, 并给y 以标号 ( x + , δ y ). ③ 重复②直到收点v t 被标号或不再有点可标号时为止. 若v t 得到标号, 说明存在一条可增广链, 转⑵调整过程; 若v t 未得到标号, 标号过程已无法进行时, 说明f 已经是最大流.⑵ 调整过程④ 决定调整量δ =δ vt , 令u = v t .⑤ 若u 点标号为( v +, δ u ), 则以f vu + δ 代替f vu ; 若u 点标号为( v −, δ u ), 则以 f vu − δ 代替f vu .⑥ 若v = v s , 则去掉所有标号转⑴重新标号; 否则令u = v , 转⑤.算法终止后, 令已有标号的点集为S , 则割集(S , S c )为最小割, 从而W f = C (S , S c ). 例1 求图6-19所示网络的最大流.利用Ford--Fulkerson 标号法求最大流算法的MATLAB 程序代码如下:n=8;C=[0 5 4 3 0 0 0 00 0 0 0 5 3 0 00 0 0 0 0 3 2 00 0 0 0 0 0 2 00 0 0 0 0 0 0 40 0 0 0 0 0 0 30 0 0 0 0 0 0 50 0 0 0 0 0 0 0]; %弧容量for (i=1:n)for (j=1:n)f(i,j)=0;end ;end %取初始可行流f 为零流for (i=1:n)No(i)=0;d(i)=0;end %No,d 记录标号图6-19while(1)No(1)=n+1;d(1)=Inf; %给发点vs标号while(1)pd=1;%标号过程for(i=1:n)if(No(i)) %选择一个已标号的点vifor(j=1:n)if(No(j)==0&f(i,j)<C(i,j)) %对于未给标号的点vj, 当vivj为非饱和弧时No(j)=i;d(j)=C(i,j)-f(i,j);pd=0;if(d(j)>d(i))d(j)=d(i);endelseif(No(j)==0&f(j,i)>0) %对于未给标号的点vj, 当vjvi为非零流弧时No(j)=-i;d(j)=f(j,i);pd=0;if(d(j)>d(i))d(j)=d(i);end;end;end;end;endif(No(n)|pd)break;end;end%若收点vt得到标号或者无法标号, 终止标号过程if(pd)break;end%vt未得到标号, f已是最大流, 算法终止dvt=d(n);t=n; %进入调整过程, dvt表示调整量while(1)if(No(t)>0)f(No(t),t)=f(No(t),t)+dvt; %前向弧调整elseif(No(t)<0)f(No(t),t)=f(No(t),t)-dvt;end%后向弧调整if(No(t)==1)for(i=1:n)No(i)=0;d(i)=0; end;break;end%当t的标号为vs时, 终止调整过程t=No(t);end;end; %继续调整前一段弧上的流fwf=0;for(j=1:n)wf=wf+f(1,j);end%计算最大流量f %显示最大流wf %显示最大流量No %显示标号, 由此可得最小割, 程序结束设网络G = ( V , E , C ), 取初始可行流 f 为零流, 求解最小费用流问题的迭代步骤: ① 构造有向赋权图 G f = ( V , E f , F ), 对于任意的v i v j ∈E , E f , F 的定义如下:当f ij = 0时, v i v j ∈E f , F ( v i v j ) = b ij ;当f ij = C ij 时, v j v i ∈E f , F ( v j v i ) = −b ij ;当0< f ij <C ij 时, v i v j ∈E f , F ( v i v j ) = b ij , v j v i ∈E f , F ( v j v i ) = −b ij .转向②.② 求出有向赋权图G f = (V , E f , F )中发点v s 到收点v t 的最短路µ , 若最短路µ存在转向③; 否则f 是所求的最小费用最大流, 停止.③ 增流. 同求最大流的方法一样, 重述如下:令.,,,−+∈∈ −=µµδj i j i ij ij ij ij v v v v f f C δ = min {δ ij | v i v j ∈µ}, 重新定义流f = { f ij }为 f ij =,,,,−+∈∈ −+µµδδj i j i ijij ij v v v v f f f如果W f 大于或等于预定的流量值, 则适当减少δ 值, 使W f 等于预定的流量值, 那么 f 是所求的最小费用流, 停止; 否则转向①.求解含有负权的有向赋权图G = ( V , E , F )中某一点到其它各点最短路的Ford 算法. 当v i v j ∈E 时记w ij = F (v i v j ), 否则取w ii =0, w ij = +∞(i ≠j ). v 1到v i 的最短路长记为π ( i ), v 1到v i 的最短路中v i 的前一个点记为θ ( i ). Ford 算法的迭代步骤:① 赋初值π (1) = 0, π ( i ) = +∞, θ ( i ) = i , i = 2, 3, … , n .② 更新π ( i ), θ ( i ). 对于i = 2, 3, … , n 和j = 1, 2, … , n , 如果π ( i )<π ( j ) + w ji , 则令π ( i ) = π ( j ) , θ ( i ) = j . ③ 终止判断:若所有的π ( i )都无变化, 停止; 否则转向②. 在算法的每一步中, π ( i )都是从v 1到v i 的最短路长度的上界. 若不存在负长回路, 则从v 1到v i 的最短路长度是π ( i )的下界, 经过n −1次迭代后π ( i )将保持不变. 若在第n 次迭代后π ( i )仍在变化时, 说明存在负长回路.其它.例2 在图6-22所示运输网络上, 求s 到t 的最小费用最大流, 括号内为(C ij , b ij ).求最小费用最大流算法的MATLAB 程序代码如下:n=5;C=[0 15 16 0 00 0 0 13 140 11 0 17 00 0 0 0 80 0 0 0 0]; %弧容量b=[0 4 1 0 00 0 0 6 10 2 0 3 00 0 0 0 20 0 0 0 0]; %弧上单位流量的费用wf=0;wf0=Inf; %wf 表示最大流量, wf0表示预定的流量值for (i=1:n)for (j=1:n)f(i,j)=0;end ;end %取初始可行流f 为零流while (1)for (i=1:n)for (j=1:n)if (j~=i)a(i,j)=Inf;end ;end ;end %构造有向赋权图for (i=1:n)for (j=1:n)if (C(i,j)>0&f(i,j)==0)a(i,j)=b(i,j);elseif (C(i,j)>0&f(i,j)==C(i,j))a(j,i)=-b(i,j);elseif (C(i,j)>0)a(i,j)=b(i,j);a(j,i)=-b(i,j);end ;end ;endfor (i=2:n)p(i)=Inf;s(i)=i;end %用Ford 算法求最短路, 赋初值for (k=1:n)pd=1; %求有向赋权图中vs 到vt 的最短路for (i=2:n)for (j=1:n)if (p(i)>p(j)+a(j,i))p(i)=p(j)+a(j,i);s(i)=j;pd=0;end ;end ;endif (pd)break ;end ;end %求最短路的Ford 算法结束if (p(n)==Inf)break ;end %不存在vs 到vt 的最短路, 算法终止. 注意在求最小费用最大流时构造有向赋权图中不会含负权回路, 所以不会出现k=ndvt=Inf;t=n; %进入调整过程, dvt 表示调整量while (1) %计算调整量if (a(s(t),t)>0)dvtt=C(s(t),t)-f(s(t),t); %前向弧调整量elseif (a(s(t),t)<0)dvtt=f(t,s(t));end %后向弧调整量if (dvt>dvtt)dvt=dvtt;endif (s(t)==1)break ;end %当t 的标号为vs 时, 终止计算调整量t=s(t);end %继续调整前一段弧上的流fpd=0;if (wf+dvt>=wf0)dvt=wf0-wf;pd=1;end %如果最大流量大于或等于预定的流量值t=n;while (1) %调整过程if (a(s(t),t)>0)f(s(t),t)=f(s(t),t)+dvt; %前向弧调整elseif (a(s(t),t)<0)f(t,s(t))=f(t,s(t))-dvt;end %后向弧调整if (s(t)==1)break ;end %当t 的标号为vs 时, 终止调整过程t=s(t);endif (pd)break ;end %如果最大流量达到预定的流量值wf=0; for (j=1:n)wf=wf+f(1,j);end ;end %计算最大流量zwf=0;for (i=1:n)for (j=1:n)zwf=zwf+b(i,j)*f(i,j);end ;end %计算最小费用f %显示最小费用最大流图6-22wf %显示最小费用最大流量zwf %显示最小费用, 程序结束。