6曲线与曲面
- 格式:ppt
- 大小:1.66 MB
- 文档页数:5
曲线与曲面的参数方程曲线与曲面是数学中的基本概念,它们在几何学、物理学和工程学等领域中有着重要的应用。
本文将介绍曲线与曲面的参数方程,以及它们在实际问题中的应用。
一、曲线的参数方程曲线是平面或空间中的一条连续的线段,它可以用参数方程来表示。
参数方程是指将曲线上的点的坐标用参数表示,而不是直接用坐标表示。
对于二维平面曲线,参数方程通常形式为:x = f(t)y = g(t)其中,t为参数,f(t)和g(t)是与参数t有关的函数。
通过不同的参数t取值,可以得到曲线上的各个点,从而描述整个曲线。
举个例子,考虑单位圆的参数方程。
圆的方程为x² + y² = 1,而参数方程为:x = cos(t)y = sin(t)其中,参数t的取值范围为0到2π。
当t取0时,x = cos(0) = 1,y= sin(0) = 0,即得到圆的右端点;当t取π/2时,x = cos(π/2) = 0,y =sin(π/2) = 1,即得到圆的上端点;依此类推,当t取2π时,又得到圆的右端点,从而完成了整个圆的参数方程描述。
二、曲面的参数方程曲面是空间中的一片连续的平面区域,它可以用参数方程来表示。
参数方程是指将曲面上的点的坐标用参数表示,而不是直接用坐标表示。
对于三维空间中的曲面,参数方程通常形式为:x = f(u, v)y = g(u, v)z = h(u, v)其中,u和v为参数,f(u, v)、g(u, v)和h(u, v)是与参数u和v有关的函数。
通过不同的参数u和v的取值,可以得到曲面上的各个点,从而描述整个曲面。
举个例子,考虑球面的参数方程。
球面的方程为x² + y² + z² = r²,而参数方程为:x = r sinθ cosφy = r sinθ sinφz = r c osθ其中,r为球的半径,θ为极角,范围是0到π,φ为方位角,范围是0到2π。
第六章曲线和曲面§6-1曲线§6-2曲面的形成§6-3回转面§6-4非回转直纹曲面§6-5平螺旋面曲线的投影特性曲线由点运动而形成,分为平面曲线和空间曲线两大类。
凡曲线上所有点都在同一平面上的,称为平面曲线。
凡曲线上四个连续的点不在同一平面上的,称为空间曲线。
⒈曲线的割线和切线与曲线相交于两个点的直线,称为曲线的割线。
如图所示,割线CD与曲线AB相交于K、G两点。
进行投射时,割线的投影cd必与曲线的投影ab 交于K、G 两点的投影k和g。
当割线CD 绕其中一交点K转动并始终与曲线AB接触时,另一交点G 便沿着曲线经G1逐渐接近点K,最后与点K重合。
此时割线CD 变为切线EF,与曲线AB相切于点K。
它们的投影也从割线cd变为切线ef,与ab 相切于点k。
⒉曲线的交点和重影点曲线本身、或曲线与直线、或两曲线在某一点处相交,其投影也在该交点的投影处相交。
圆柱螺旋线当一个动点M 沿着一直线等速移动,而该直线同时绕与它平行的一轴线O 等速旋转,动点的轨迹是一根圆柱螺旋线。
直线旋转时形成一个圆柱面,圆柱螺旋线是该圆柱面上的一根空间曲线。
当直线旋转一周,回到原来位置时,动点M 移到位置M 1,在该直线上移动的距离MM 1,称为螺旋线的导程,以Ph 标记。
只要给出圆柱的直径Φ 、螺旋线的导程Ph 以及动点移动的方向,就能确定该圆柱螺旋线的形状。
M ●M 1●导程圆柱螺旋线OO§6-2曲面的形成圆柱面的形成圆锥面的形成球面的形成曲面是由直线或曲线在一定约束条件下运动而形成。
这根运动的直线或曲线,称为曲面的母线。
母线运动时所受的约束,称为运动的约束条件。
由于母线的不同,或者约束条件的不同,形成不同的曲面。
只要给出曲面的母线和母线运动的约束条件,就可以确定该曲面。
§6-3 回转面某由直母线或曲母线绕一轴线旋转而形成的曲面,称为回转面。
圆柱面例【教材例6-2】给出圆柱面上点A 的V 投影a′,求作它的其余两投影。
解析几何是数学的一个分支,它研究的是几何图形在坐标系中的表示和性质。
其中一个重要的概念就是空间曲线和曲面的关系。
本文将从几何角度探讨空间曲线与曲面之间的关系。
空间曲线是指在三维坐标系中的曲线,可以用参数方程表示。
曲面则是指在三维坐标系中的平面或者弯曲的曲面。
空间曲线与曲面的关系可以通过曲线与曲面的交点来刻画。
当一个曲线与一个曲面相交时,我们可以通过求解曲线与曲面的方程联立方程组来得到交点的坐标。
在解析几何中,曲线与曲面的交点数目可能有三种情况:零个交点、一个交点和多个交点。
当曲线与曲面没有交点时,我们可以得出结论这条曲线不与这个曲面相交。
当曲线与曲面有一个交点时,我们可以得出结论这条曲线与这个曲面相切于交点。
当曲线与曲面有多个交点时,我们需要进一步研究求出这些交点的坐标。
对于曲线与曲面多个交点的情况,我们可以通过求解曲线与曲面的参数方程联立方程组来得到交点的坐标。
将曲线的参数方程代入曲面的方程中,然后解方程组,得到交点的坐标。
这种方法可以准确求解交点的坐标,从而得到曲线与曲面的关系。
在解析几何中,还有一种特殊的情况,即曲线与曲面相切于一个点。
当曲线与曲面相切于一个点时,我们称这个点为曲线在曲面上的切点。
切点是曲线和曲面之间的特殊关系,可以用来研究曲线在曲面上的运动轨迹。
通过研究切点的性质,我们可以得到曲线在曲面上的切线方向和曲面的法线方向。
曲线在曲面上的切线方向是曲线在切点处的切线方向。
切线方向与曲线的斜率有关,可以通过求解曲线在切点处的导数得到。
曲线在曲面上的切线方向可以用来研究曲线与曲面的相切性质。
曲面的法线方向是曲面在切点处的法线方向。
法线方向与曲面的切平面垂直,可以用来研究曲面的性质和方向。
曲线在曲面上的切线方向和曲面的法线方向可以用来研究曲线与曲面的相对位置和变化趋势。
综上所述,解析几何中的空间曲线与曲面的关系可以通过曲线与曲面的交点来刻画。
当曲线与曲面有交点时,我们可以通过求解方程组来得到交点的坐标。
第十一章解题方法归纳一、曲线积分与曲面积分的计算方法1.曲线积分与曲面积分的计算方法归纳如下:(1) 利用性质计算曲线积分和曲面积分.(2) 直接化为定积分或二重积分计算曲线或曲面积分 (3) 利用积分与路径无关计算对坐标的曲线积分. (4) 利用格林公式计算平面闭曲线上的曲线积分. (5) 利用斯托克斯公式计算空间闭曲线上的曲线积分. (6) 利用高斯公式计算闭曲面上的曲面积分. 2. 在具体计算时,常用到如下一些结论: (1)若积分曲线L 关于y 轴对称,则1(,)2(,)LL f x f x y ds f x y ds f x ⎧⎪=⎨⎪⎩⎰⎰对为奇函数对为偶函数 10 (,)2(,)L L P x P x y dx P x y dy P x ⎧⎪=⎨⎪⎩⎰⎰对为奇函数对为偶函数10 (,)2(,)L L Q x Q x y dy Q x y dy Q x ⎧⎪=⎨⎪⎩⎰⎰对为偶函数对为奇函数其中1L 是L 在右半平面部分.若积分曲线L 关于x 轴对称,则1(,)2(,)LL f y f x y ds f x y ds f y ⎧⎪=⎨⎪⎩⎰⎰对为奇函数对为偶函数 10 (,)2(,)L L P y P x y dx P x y dy P y ⎧⎪=⎨⎪⎩⎰⎰对为偶函数对为奇函数10 (,)2(,)L L Q y Q x y dy Q x y dy Q y ⎧⎪=⎨⎪⎩⎰⎰对为奇函数对为偶函数其中1L 是L 在上半平面部分.(2)若空间积分曲线L 关于平面=y x 对称,则()()=⎰⎰LLf x ds f y ds .(3)若积分曲面∑关于xOy 面对称,则10 (,,)2(,,)f z f x y z dS R x y z dS f z ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为奇函数对为偶函数10 (,,)2(,,)R z R x y z dxdy R x y z dxdy R z ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为偶函数对为奇函数 其中1∑是∑在xOy 面上方部分.若积分曲面∑关于yOz 面对称,则10 (,,)2(,,)f x f x y z dS R x y z dS f x ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为奇函数对为偶函数10 (,,)2(,,)P x P x y z dydz P x y z dydz P x ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为偶函数对为奇函数 其中1∑是∑在yOz 面前方部分.若积分曲面∑关于zOx 面对称,则10 (,,)2(,,)f y f x y z dS R x y z dS f y ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为奇函数对为偶函数10 (,,)2(,,)Q y Q x y z dzdx Q x y z dzdx Q y ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为偶函数对为奇函数 其中1∑是∑在zOx 面右方部分.(4)若曲线弧():()()αβ=⎧≤≤⎨=⎩x x t L t y y t ,则[(,)(),()()βααβ=<⎰⎰Lf x y ds f x t y t若曲线弧:()()θαθβ=≤≤L r r (极坐标),则[(,)()cos ,()sin βαθθθθθ=⎰⎰Lf x y ds f r r若空间曲线弧():()()()αβ=⎧⎪Γ=≤≤⎨⎪=⎩x x t y y t t z z t ,则[(,,)(),(),()()βααβΓ=<⎰⎰f x y z ds f x t y t z t(5)若有向曲线弧():(:)()αβ=⎧→⎨=⎩x x t L t y y t ,则[][]{}(,)(,)(),()()(),()()βα''+=+⎰⎰LP x y dx Q x y dy P x t y t x t Q x t y t y t dt若空间有向曲线弧():()(:)()αβ=⎧⎪Γ=→⎨⎪=⎩x x t y y t t z z t ,则(,,)(,,)(,,)Γ++⎰P x y z dx Q x y z dy R x y z dz[][][]{}(),(),()()(),(),()()(),(),()()βα'''=++⎰P x t y t z t x t Q x t y t z t y t R x t y t z t z t dt(6)若曲面:(,)((,))xy z z x y x y D ∑=∈,则[(,,),,(,)xyD f x y z dS f x y z x y ∑=⎰⎰⎰⎰其中xy D 为曲面∑在xOy 面上的投影域.若曲面:(,)((,))yz x x y z y z D ∑=∈,则[(,,)(,),,yzD f x y z dS f x y z y z ∑=⎰⎰⎰⎰其中yz D 为曲面∑在yOz 面上的投影域.若曲面:(,)((,))zx y y x z x z D ∑=∈,则[(,,),(,),zxD f x y z dS f x y x z z ∑=⎰⎰⎰⎰其中zx D 为曲面∑在zOx 面上的投影域.(7)若有向曲面:(,)z z x y ∑=,则(,,)[,,(,)]xyD R x y z dxdy R x y z x y dxdy ∑=±⎰⎰⎰⎰(上“+”下“-”) 其中xy D 为∑在xOy 面上的投影区域.若有向曲面:(,)x x y z ∑=,则(,,)[(,),,]yzD P x y z dydz P x y z y z dydz ∑=±⎰⎰⎰⎰(前“+”后“-”) 其中yz D 为∑在yOz 面上的投影区域.若有向曲面:(,)y y x z ∑=,则(,,)[,(,),]zxD Q x y z dzdx Q x y x z z dzdx ∑=±⎰⎰⎰⎰(右“+”左“-”) 其中zx D 为∑在zOx 面上的投影区域. (8)d d +⎰LP x Q y 与路径无关d d 0⇔+=⎰cP x Q y (c 为D 内任一闭曲线)(,)⇔=+du x y Pdx Qdy (存在(,)u x y ) ∂∂⇔=∂∂P Qy x其中D 是单连通区域,(,),(,)P x y Q x y 在D 内有一阶连续偏导数.(9)格林公式(,)(,)⎛⎫∂∂+=- ⎪∂∂⎝⎭⎰⎰⎰L D Q P P x y dx Q x y dy dxdy x y 其中L 为有界闭区域D 的边界曲线的正向,(,),(,)P x y Q x y 在D 上具有一阶连续偏导数.(10)高斯公式(,,)(,,)(,,)P Q R P x y z dydz Q x y z dzdx R x y z dxdy dv x y z ∑Ω⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰ 或(cos cos cos )P Q R P Q R dS dv x y z αβγ∑Ω⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰ 其中∑为空间有界闭区域Ω的边界曲面的外侧,(,,),(,,),(,,)P x y z Q x y z R x y z 在Ω上具有一阶连续偏导数,cos ,cos ,cos αβγ为曲面∑在点(,,)x y z 处的法向量的方向余弦.(11)斯托克斯公式dydz dzdx dxdy Pdx Qdy Rdz x y z PQRΓ∑∂∂∂++=∂∂∂⎰⎰⎰其中Γ为曲面∑的边界曲线,且Γ的方向与∑的侧(法向量的指向)符合右手螺旋法则,,,P Q R 在包含∑在内的空间区域内有一阶连续偏导数.1. 计算曲线积分或曲面积分的步骤:(1)计算曲线积分的步骤:1)判定所求曲线积分的类型(对弧长的曲线积分或对坐标的曲线积分); 2)对弧长的曲线积分,一般将其化为定积分直接计算;对坐标的曲线积分:① 判断积分是否与路径无关,若积分与路径无关,重新选取特殊路径积分; ② 判断是否满足或添加辅助线后满足格林公式的条件,若满足条件,利用格林公式计算(添加的辅助线要减掉);③ 将其化为定积分直接计算.④ 对空间曲线上的曲线积分,判断是否满足斯托克斯公式的条件,若满足条件,利用斯托克斯公式计算;若不满足,将其化为定积分直接计算.(2)计算曲面积分的步骤:1)判定所求曲线积分的类型(对面积的曲面积分或对坐标的曲面积分); 2)对面积的曲面积分,一般将其化为二重积分直接计算;对坐标的曲面积分:① 判断是否满足或添加辅助面后满足高斯公式的条件,若满足条件,利用高斯公式计算(添加的辅助面要减掉);② 将其投影到相应的坐标面上,化为二重积分直接计算. 例1 计算曲线积分2+=++⎰Ldx dyI x y x,其中L 为1+=x y 取逆时针方向. 解 2222111++===++++++⎰⎰⎰⎰LL L L dx dy dx dy dx dyI x y x x x x 由于积分曲线L 关于x 轴、y 轴均对称,被积函数211==+P Q x对x 、y 均为偶函数,因此220,011==++⎰⎰L L dxdyx x故 20+==++⎰Ldx dyI x y x『方法技巧』 对坐标的曲线积分的对称性与对弧长的曲线积分对称性不同,记清楚后再使用.事实上,本题还可应用格林公式计算.例 2 计算曲面积分2()∑=+++⎰⎰I ax by cz n dS ,其中∑为球面2222++=x y z R .解 2()∑=+++⎰⎰I ax by cz n dS2222222(222222)∑=+++++++++⎰⎰a x b y c z n abxy acxz bcyz anx bny cnz dS由积分曲面的对称性及被积函数的奇偶性知0∑∑∑∑∑∑======⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰xydS xzdS yzdS xdS ydS zdS又由轮换对称性知222∑∑∑==⎰⎰⎰⎰⎰⎰x dS y dS z dS 故 2222222∑∑∑∑=+++⎰⎰⎰⎰⎰⎰⎰⎰I a x dS b y dS c z dS n dS22222()∑∑=+++⎰⎰⎰⎰a b c x dS n dS22222222()43π∑++=+++⎰⎰a b c xy z dS R n22222222222244[()]33ππ∑++=+=+++⎰⎰a b c R R dS R n R a b c n『方法技巧』 对面积的曲面积分的对称性与对坐标的曲面积分的对称性不同,理解起来更容易些.若碰到积分曲面是对称曲面,做题时可先考虑一下对称性.例3 计算曲面积分222()∑++⎰⎰x y z dS ,其中∑为球面2222++=x y z ax .解 2222()22()2∑∑∑∑++==-+⎰⎰⎰⎰⎰⎰⎰⎰x y z dS axdS a x a dS a dS 222402248ππ∑=+==⎰⎰a dS a a a『方法技巧』 积分曲面∑是关于0-=x a 对称的,被积函数-x a 是-x a 的奇函数,因此()0∑-=⎰⎰x a dS例4 计算曲线积分2222-+⎰Lxy dy x ydxx y L 为圆周222(0)+=>x y a a 的逆时针方向.解法1 直接计算. 将积分曲线L 表示为参数方程形式cos :(:02)sin θθπθ=⎧→⎨=⎩x a L y a代入被积函数中得22232222[cos sin cos cos sin (sin )]πθθθθθθθ-=--+⎰⎰Lxy dy x ydxad x y2232232202sin cos 2sin (1sin )ππθθθθθθ==-⎰⎰a d a d324332013118(sin sin )8224222πππθθθπ⎛⎫=-=-= ⎪⎝⎭⎰ad a a解法2 利用格林公式2222222211()-=-=++⎰⎰⎰⎰LLDxy dy x ydxxy dy x ydx x y dxdy aa x y 其中222:+≤D x y a ,故222232200112πθρρρπ-==+⎰⎰⎰a Lxy dy x ydxd d a a x y『方法技巧』 本题解法1用到了定积分的积分公式:213223sin 13312422πθθπ--⎧⎪⎪-=⎨--⎪⎪-⎩⎰n n n n n n d n n n nn 为奇数为偶数解法2中,一定要先将积分曲线222+=x y a 代入被积函数的分母中,才能应用格林公式,否则不满足,P Q 在D 内有一阶连续偏导数的条件.例5 计算曲线积分22()()+--+⎰L x y dx x y dyx y,其中L 为沿cos π=y x 由点 (,)ππ-A 到点(,)ππ--B 的曲线弧.解 直接计算比较困难.由于 2222,+-+==++x y x yP Q x y x y,222222()∂--∂==∂+∂P x y xy Q y x y x 因此在不包含原点(0,0)O 的单连通区域内,积分与路径无关.取圆周2222π+=x y 上从(,)ππ-A 到点(,)ππ--B 的弧段'L 代替原弧段L ,其参数方程为:cos 5:(:)44sin θππθθ⎧=⎪'-→⎨=⎪⎩x L y ,代入被积函数中得 222()()1()()2π'+--=+--+⎰⎰LL x y dx x y dy x y dx x y dy x y544[(cos sin )(sin )(cos sin )cos ]ππθθθθθθθ-=+---⎰d54432ππθπ-=-=-⎰d『方法技巧』 本题的关键是选取积分弧段'L ,既要保证'L 简单,又要保证不经过坐标原点.例6 计算曲面积分∑++⎰⎰xdydz ydzdx zdxdy ,其中∑1=的法向量与各坐标轴正向夹锐角的侧面.解 由于曲面∑具有轮换对称性,∑∑∑==⎰⎰⎰⎰⎰⎰xdydz ydzdx zdxdy ,∑投影到xOy面的区域{}(,)1=≤xy D x y ,故233(1∑∑∑++==⎰⎰⎰⎰⎰⎰xdydz ydzdx zdxdy zdxdy dxdy21(1223(13(1==⎰⎰⎰⎰xyD dxdy dxdy 1401(12=⎰dx411(1)30--=⎰t t dt 『方法技巧』 由于积分曲面∑具有轮换对称性,因此可以将,dydz dzdx 直接转换为dxdy ,∑只要投影到xOy 面即可.例7 计算曲面积分222()()()∑-+-+-⎰⎰x y dydz y z dzdx z x dxdy ,其中∑为锥面222=+z x y 在0≤≤z h 部分的上侧.解 利用高斯公式. 添加辅助面2221:()∑=+≤z h x y h ,取下侧,则222()()()∑-+-+-⎰⎰x y dydz y z dzdx z x dxdy 1222()()()∑+∑=-+-+-⎰⎰x y dydz y z dzdx z x dxdy1222()()()∑--+-+-⎰⎰x y dydz y z dzdx z x dxdy123()Ω∑=---⎰⎰⎰⎰⎰dxdydz h x dxdy 23()Ω=-+-⎰⎰⎰⎰⎰xyD dxdydz h x dxdy其中Ω为∑和1∑围成的空间圆锥区域,xy D 为∑投影到xOy 面的区域,即{}222(,)=+≤xy D x y x y h ,由xy D 的轮换对称性,有2221()2=+⎰⎰⎰⎰xyxyD D x dxdy x y dxdy 故222()()()∑-+-+-⎰⎰x y dydz y zdzdx z x dxdy222113()32π=-+-+⎰⎰⎰⎰xyxyD D h h h dxdy x y dxdy23234001124πππθρρπ=-+-=-⎰⎰h h h h d d h『方法技巧』 添加辅助面时,既要满足封闭性,又要满足对侧的要求.本题由于积分锥面取上侧(内侧),因此添加的平面要取下侧,这样才能保证封闭曲面取内侧,使用高斯公式转化为三重积分时,前面要添加负号.例8 计算曲线积分()()()-+-+-⎰Lz y dx x z dy x y dz ,其中221:2⎧+=⎨-+=⎩x y L x y z 从z 轴的正向往负向看,L 的方向是顺时针方向.解 应用斯托克斯公式计算. 令22:2(1)∑-+=+≤x y z x y 取下侧,∑在xOy 面的投影区域为{}22(,)1=+≤xy D x y x y ,则()()()∑∂∂∂-+-+-=∂∂∂---⎰⎰⎰Ldydzdzdx dxdy z y dx x z dy x y dz x y z z yx zx y222π∑==-=-⎰⎰⎰⎰xyD dxdy dxdy『方法技巧』 本题用斯托克斯公式计算比直接写出曲线L 的参数方程代入要简单,所有应用斯托克斯公式的题目,曲面∑的选取都是关键,∑既要简单,又要满足斯托克斯的条件,需要大家多加练习.二、曲线积分与曲面积分的物理应用1.曲线积分与曲面积分的物理应用归纳如下: (1) 曲线或曲面形物体的质量. (2) 曲线或曲面的质心(形心). (3) 曲线或曲面的转动惯量. (4) 变力沿曲线所作的功. (5) 矢量场沿有向曲面的通量. (6) 散度和旋度.2. 在具体计算时,常用到如下一些结论: (1)平面曲线形物体 (,)ρ=⎰LM x y ds空间曲线形物体 (,,)ρ=⎰LM x y z ds曲面形构件 (,,)ρ∑=⎰⎰M x y z dS(2) 质心坐标平面曲线形物体的质心坐标: (,)(,),(,)(,)ρρρρ==⎰⎰⎰⎰L L LLx x y ds y x y ds x y x y dsx y ds空间曲线形物体的质心坐标:(,,)(,,)(,,),,(,)(,)(,)ρρρρρρ===⎰⎰⎰⎰⎰⎰LLLLLLx x y z dsy x y z dsz x y z dsx y z x y dsx y dsx y ds曲面形物体的质心坐标:(,,)(,,)(,,),,(,,)(,,)(,,)ρρρρρρ∑∑∑∑∑∑===⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰x x y z dSy x y z dSz x y z dSx y z x y z dSx y z dSx y z dS当密度均匀时,质心也称为形心.(3) 转动惯量平面曲线形物体的转动惯量:22(,),(,)ρρ==⎰⎰x y LLI y x y ds I x x y ds空间曲线形物体的转动惯量:2222()(,,),()(,,)ρρ=+=+⎰⎰x y LLI y z x y z ds I z x x y z ds22()(,,)ρ=+⎰z LI x y x y z ds曲面形物体的转动惯量:2222()(,,),()(,,)ρρ∑∑=+=+⎰⎰⎰⎰x y I y z x y z dS I z x x y z dS22()(,,)ρ∑=+⎰⎰z I x y x y z dS其中(,)ρx y 和(,,)ρx y z 分别为平面物体的密度和空间物体的密度.(4) 变力沿曲线所作的功平面上质点在力F (,)=P x y i +(,)Q x y j 作用下,沿有向曲线弧L 从A 点运动到B 点,F 所做的功(,)(,)=+⎰ABW P x y dx Q x y dy 空间质点在力F (,,)=P x y z i +(,,)Q x y z j +(,,)R x y z k 作用下,沿有向曲线弧L 从A 点运动到B 点,F 所做的功(,,)(,,)(,,)=++⎰ABW P x y z dx Q x y z dy R x y z dz (2) 矢量场沿有向曲面的通量矢量场A (,,)=P x y z i +(,,)Q x y z j +(,,)R x y z k 通过有向曲面∑指定侧的通量(,,)(,,)(,,)∑Φ=++⎰⎰P x y z dydz Q x y z dzdx R x y z dxdy(3) 散度和旋度矢量场A (,,)=P x y z i +(,,)Q x y z j +(,,)R x y z k 的散度div A ∂∂∂=++∂∂∂P Q R x y z矢量场A (,,)=P x y z i +(,,)Q x y z j +(,,)R x y z k 的旋度rot A ()∂∂=-∂∂R Q y z i ()∂∂+-∂∂P R z xj +()∂∂-∂∂Q P x y k xy z P Q R∂∂∂=∂∂∂ 1. 曲线积分或曲面积分应用题的计算步骤:ij k(1)根据所求物理量,代入相应的公式中;(2)计算曲线积分或曲面积分.例9 设质点在场力F {}2,=-k y x r 的作用下,沿曲线π:cos 2=L y x 由(0,)2πA 移动到(,0)2πB ,求场力所做的功.(其中=r k解 积分曲线L 如图11.7所示. 场力所做的功为(,)(,)=+⎰AB W P x y dx Q x y dy 22=-⎰AB y x k dx dy r r 令22,==-y x P Q r r ,则22224()(∂-∂==+≠∂∂P k x y Q x y y r x 即在不含原点的单连通区域内,积分与路径无关. 另取由A 到B 的路径:1πππ:cos ,sin (:0)222θθθ==→L x y 1022222π(sin cos )d 2πθθθ=-=-+=⎰⎰L y x W k dx dy k k r r 『方法技巧』 本题的关键是另取路径1L ,一般而言,最简单的路径为折线路径,比如AO OB ,但不可以选取此路径,因为,P Q 在原点处不连续. 换句话说,所取路径不能经过坐标原点,当然路径1L 的取法不是唯一的.例10 设密度为1的流体的流速v 2=xz i sin +x k ,曲面∑是由曲线(12)0⎧⎪=≤≤⎨=⎪⎩y z x 饶z 轴旋转而成的旋转曲面,其法向量与z 轴正向的夹角为锐角,求单位时间内流体流向曲面∑正侧的流量Q .解 旋转曲面为222:1(12)∑+-=≤≤x y z z ,令1∑为平面1=z 在∑内的部分取上侧,2∑为平面2=z 在∑内的部分取下侧,则12∑+∑+∑为封闭曲面的内侧,故(,,)(,,)(,,)∑=++⎰⎰Q P x y z dydz Q x y z dzdx R x y z dxdy2sin ∑=+⎰⎰xz dydz xdxdy1212222sin sin sin ∑+∑+∑∑∑=+-+-+⎰⎰⎰⎰⎰⎰xz dydz xdxdy xz dydz xdxdy xz dydz xdxdy 122sin sin Ω∑∑=---⎰⎰⎰⎰⎰⎰⎰z dxdydz xdxdy xdxdy2222222221125sin sin +≤++≤+≤=--+⎰⎰⎰⎰⎰⎰⎰x y z x y x y z dz dxdy xdxdy xdxdy2221128(1)0015ππ=-+-+=-⎰z z dz 『方法技巧』 本题的关键是写出旋转曲面∑的方程,其次考虑封闭曲面的侧,以便应用高斯公式,最后用截痕法计算三重积分,用对称性计算二重积分.。
第十一章:曲线积分与曲面积分一、对弧长的曲线积分⎰⎰+=LLy d x d y x f ds y x f 22),(),(若 ⎩⎨⎧==)()(:t y y t x x L βα≤≤t则 原式=dt t y t x t y t xf ⎰'+'βα)()())(),((22对弧长的曲线积分(,,)((),(),(LLf x y z ds f x t y t z t =⎰⎰若 ():()()x x t L y y t z z t =⎧⎪=⎨⎪=⎩βα≤≤t则 原式=((),(),(f x t y t z t βα⎰常见的参数方程为:特别的:22222.2x y LLLeds e ds e ds e π+===⎰⎰⎰22=2(0)L x y y +≥为上半圆周二、对坐标的曲线积分⎰+Ldy y x q dx y x p ),(),(计算方法一: 若 ⎩⎨⎧==)()(:t y y t x x L 起点处α=t ,终点处β=t 则原式=dt t y t y t x q dt t x t y t x p )())(),(()())(),(('+'⎰βα对坐标的曲线积分(,,)(,,)(,,)LP x y z dx Q x y z dy R x y z dz ++⎰():()()x x t L y y t z z t =⎧⎪=⎨⎪=⎩起点处α=t ,终点处β=t 则原式=((),(),())()((),(),())()((),(),())()P x t y t z t x t dt Q x t y t z t y t dt R x t y t z t z t dt βα'''++⎰计算方法二:在计算曲线积分时,通过适当的添加线段或曲线,是之变成一个封闭曲线上的曲线积分与所添加线段或曲线上的曲线积分之差,从而对前者利用格林公式,后者利用参数方程。
11(,)(,)(,)(,)L L L p x y dx q x y dy p x y dx q x y dy ++-+⎰⎰1()(,)(,)L Dq pdxdy p x y dx q x y dy x y∂∂=±--+∂∂⎰⎰⎰如图:三、格林公式⎰⎰=∂∂-∂∂Ddxdy ypx q )(⎰+Ldy y x q dx y x p ),(),( 其中L 为D 的正向边界特别地:当yp x q ∂∂=∂∂时,积分与路径无关, 且⎰⎰⎰+=+21212211),(),(),(),(21),(),(y y x x y x y x dy y x q dx y x p dy y x q dx y x p(,)(,)(,)P x y dx Q x y dy dU x y +=是某个函数的全微分Q Px y∂∂⇔=∂∂ 注:在计算曲线积分时,通过适当的添加线段或曲线,是之变成一个封闭曲线上的曲线积分与所添加线段或曲线上的曲线积分之差,从而对前者利用格林公式。
微分几何中的曲线与曲面微分几何是现代数学的重要分支之一,研究的对象是曲线和曲面。
曲线与曲面是微分几何的基础概念,本文将通过介绍曲线和曲面的定义、性质和应用等方面,探讨微分几何中的曲线与曲面。
一、曲线的定义与性质在微分几何中,曲线是指一条连续的路径,可以用数学模型来描述。
常用的曲线方程有参数方程、隐式方程和显式方程等形式。
1. 参数方程曲线的参数方程形式为:x = f(t)y = g(t)z = h(t)其中t是参数,f(t)、g(t)和h(t)是关于t的函数,描述了曲线在坐标系中的运动轨迹。
参数方程形式的优点是能够较清晰地表示曲线的几何特性。
2. 隐式方程曲线的隐式方程形式为:F(x, y, z) = 0其中F是关于x、y、z的函数。
隐式方程描述了曲线上的点满足的方程,通过求解该方程可以确定曲线的位置。
隐式方程形式的优点是能够在一定程度上简化计算。
3. 显式方程曲线的显式方程形式为:z = f(x, y)其中f是关于x、y的二元函数。
显式方程描述了曲线在平面上的投影,可直观地展示曲线的形状和特征。
曲线的性质包括长度、弧长、切线、曲率等。
长度是曲线上两点之间的距离,弧长是曲线上一部分的长度。
切线是曲线某一点处与曲线相切的直线,切线的方向与曲线在该点的切向量方向一致。
曲率是描述曲线的弯曲程度的量,曲率越大,曲线越弯曲。
二、曲面的定义与性质曲面是三维空间中的二维对象,可以用数学模型来描述。
常用的曲面方程有参数方程和隐式方程等形式。
1. 参数方程曲面的参数方程形式为:x = f(u, v)y = g(u, v)z = h(u, v)其中u和v是参数,描述了曲面在坐标系中的位置。
参数方程形式的优点是能够较清晰地表示曲面的几何特性。
2. 隐式方程曲面的隐式方程形式为:F(x, y, z) = 0其中F是关于x、y、z的函数。
隐式方程描述了曲面上的点满足的方程,通过求解该方程可以确定曲面的位置。
隐式方程形式的优点是能够在一定程度上简化计算。