力法解超静定结构时的思维方法
- 格式:docx
- 大小:23.68 KB
- 文档页数:4
用力法求解超静定结构概述超静定结构是指结构中的支座和约束条件多于结构自由度的情况。
用力法是一种经典的结构分析方法,常用于求解超静定结构。
本文将介绍用力法求解超静定结构的基本原理和步骤,并通过实例加以说明。
一、基本原理用力法的基本原理是根据平衡条件和变形约束,通过假设未知力的大小和方向,建立力的平衡方程和变形方程,解出未知力和结构的变形。
用力法适用于各种类型的结构,包括梁、柱、桁架等。
二、步骤用力法求解超静定结构的步骤如下:1. 选择合适的剖面根据结构的几何形状和约束条件,选择合适的剖面,将结构分割为若干个部分。
2. 假设未知力的方向和大小根据结构的特点和约束条件,假设未知力的方向和大小。
通常,未知力的方向可以根据结构的几何形状和外力的作用方向来确定,而未知力的大小则需要通过力的平衡方程来求解。
3. 建立力的平衡方程根据假设的未知力和结构的几何形状,建立力的平衡方程。
平衡方程包括力的平衡条件和力的矩平衡条件。
4. 建立变形方程根据结构的变形情况和约束条件,建立变形方程。
变形方程可以根据结构的刚度和约束条件来确定。
5. 解方程将力的平衡方程和变形方程联立,解方程组得到未知力和结构的变形。
6. 检验结果将求解得到的未知力和结构的变形代入原平衡方程和变形方程中,检验结果的准确性。
如果结果符合平衡和变形的要求,则求解成功;如果结果不符合要求,则需要重新假设未知力并重新求解。
三、实例分析为了更好地理解用力法求解超静定结构的步骤和原理,下面以一个简单的梁结构为例进行分析。
假设有一根悬臂梁,在梁的自重和外力作用下,需要求解支座反力和梁的变形。
1. 选择合适的剖面选择悬臂梁的剖面,将梁分割为两个部分:悬臂部分和支座部分。
2. 假设未知力的方向和大小假设支座反力的方向向上,大小为R。
3. 建立力的平衡方程根据力的平衡条件,可以得到悬臂部分的平衡方程:R - F = 0,其中F为梁的自重。
4. 建立变形方程根据梁的几何形状和约束条件,可以建立悬臂部分的变形方程,得到悬臂部分的弯矩和挠度。
建筑力学基本计算5力法计算一次超静定结构1、基本概念和计算要求在学习力法计算超静定结构的时候,要注意下列几点:1) 力法的基本原理,通过多余未知力的概念,把超静定结构问题转化为静定结构的计算问题。
2) 结构超静定次数的确定,多余约束、多余约束反力和抄静定次数的关系,基本结构的确定。
3) 力法典型方程的建立及方程中想关系数的意义。
2、基本计算方法在学习力法的基本方法时,要注意下列问题:1) 选择基本结构。
由于力法是以多余未知力作为基本未知量,首先应根据去掉多余约束的原则和方法去掉多余约束代之以多余未知力,得到与原结构相应的静定结构即基本结构。
选择基本结构应注意:基本结构必须是几何不变体系的静定结构,几何可变体系(或瞬变体系)不能用作基本结构;多余约束力的方向应该符合约束的方向;选择的基本结构应该尽量使解题步骤简化。
2) 基本方程的建立。
将基本结构与原结构以受力条件进行比较会发现:只要多余未知力就是原结构的支座反力,则基本结构与原结构受力情况完全一致;当解出多余未知力,将其视为荷载加在基本结构上,超静定结构的计算即转化为静定结构的计算。
3、计算步骤和常用方法考试要求基本是以力法计算一次超静定刚架(或梁)为主,基本计算步骤是:1) 选择基本结构。
确定超静定结构的次数,去掉多余约束,并以相应的约束力代替而得到的一个静定结构作为基本结构。
2)建立力法典型方程。
01111=∆+P X δ(一次超静定结构) 3) 计算δ11和Δ1P 。
首先要画出基本结构在荷载作用下的M P 图和基本结构在单位未知力作用下的1M 图,然后用图乘法分别计算δ11(1M 图和1M 图图乘)和Δ1P (M P 图和1M 图图乘)。
4)求多余未知力。
代入力法典型方程求出多余未知力。
5) 作内力图(一般为作弯矩图)。
可按P M X M M +⋅=11式叠加对应点的弯矩,从而画出弯矩图。
4、举例作图(a )所示超静定刚架的弯矩图。
已知刚架各杆EI 均为常数。
一次超静定结构的力法典型方程在我们生活的这个世界里,结构物无处不在,房子、桥梁、甚至那看似简单的秋千,都跟结构有着千丝万缕的关系。
说到超静定结构,哎呀,这可是一个既神秘又让人抓狂的概念。
你可能会想,什么是超静定?是不是跟超人有关系?其实不是,超静定结构的意思就是,它的稳定性和受力情况并不是那么简单,通过一些力法的经典方程,我们能一探究竟。
想象一下,你的朋友跟你说他要建个大房子,你的第一反应肯定是:这得稳得住呀,风一吹可别塌了。
说到这里,超静定结构就显得尤为重要了。
好了,咱们来聊聊力法,听起来挺高大上的,但其实呢,就是用简单的力的平衡来搞定这些复杂的结构。
想象一下,你在玩积木,拼拼凑凑,突然发现有个地方歪了,这可怎么办?这时候,你得用一些巧妙的办法来调整。
力法的经典方程就像是你的调节工具,它帮助你找出哪些地方受力不均,哪里需要加固。
就像人喝酒,喝多了总得找个地方坐下,太累了可不行。
大家知道吗,超静定结构其实可以用几个基本的力法方程来描述。
我们得了解个基本的概念,结构的自由度。
自由度听起来高深,其实就是结构能在什么情况下发生变形。
就像一只小鸟,想飞就飞,想栖就栖,但超静定结构可没这么容易。
这里有个小诀窍,咱们常用的牛顿第二定律就可以派上用场,这可是万金油,万能的。
简单来说,就是力等于质量乘以加速度,哎,这可真是个简单粗暴的真理。
再说了,力法的方程其实就是在用一些简单的数学式子,来帮我们找出各个构件的受力情况。
你想啊,建筑结构就像一个大家庭,每个成员都有自己的责任和角色。
如果有人分担过多的压力,那家里可就不太平了。
想象一下,家里的洗衣机坏了,大家伙儿都在忙,结果呢,阳台的窗户也跟着受到了影响,哎,这可就麻烦了。
力法就是要确保每个成员都在适当的负荷下,不然可就得重新分配任务了。
你看,在这些方程中,有时候会出现一些神秘的符号,比如力的方向、大小,甚至是一些角度。
这就像打麻将,牌面上的每一张都要考虑清楚。
你不能只想着自己要胡,得看看别人怎么出牌。
超静定结构及力学原理和方程重难点分析一、超静定结构的概念:超静定结构:从几何组成分析来说具有几何不变性而又有多余约束的结构。
超静定结构与静定结构相比较,主要有三个方面的优点:1从几何组成看,超静定结构未没有联系的几何不变体系,而超静定结构是具有多余联系的几何不变体系;2从静力特征看,静定结构仅凭静力平衡条件便可以完全确定它的反力和内力,而超静定结构仅凭静力平衡条件还不能确定全部反力和内力,必须建立附加方程式才能求解;3 当无外荷载作用时,超静定结构有产生内力的可能性超静定杆件结构的分类:超静定梁、刚架、桁架、拱以及组合结构。
二、超静定次数的确定1、超静定次数的概念超静定次数:结构中多余约束的数目2、方法去掉多余联系的常用方法如下:(1)去掉一根支杆或切断一根链杆,相当于去掉一个联系; (2)去掉一个单铰,相当于去掉二个约束;(3)切断一根弯杆或去掉一个固定支座,相当于去掉三个联系(4)将固定支座改成不动铰支座或将受弯杆切断改铰结,各相当去掉一个联系 3、举例例如图1所示的单跨静定梁,若去掉B 支座的支杆,代以多未知力B X ,则原梁变为静定的简支梁(即为基本结构),如图1(b )所示;若将固定端A 支座加一个单铰,代以多余未知力A X ,则原梁变为静定的简支梁(即为基本结构),如图1(c )所示,所有原结构一次超静定结构.同理,如图2所示的刚架,可将A 、B 两固定改成铰支座,代以多余力A X 、B X ,则得如图2(b )所示的静定三铰刚架;或者去掉铰C ,代以多余力1X 、2X ,则得如图2(c )所示的两各静定悬臂刚架;或者去掉铰C ,故原结构为二次超静定结构。
三、力法原理和力法方程1.力法的基本原理:将超静定结构转化为含多余力的静定结构 (一)一次超静定结构 (1)确定超静定次数:n=1次 (2)选基本结构⎩⎨⎧)几何不变体系(静定结构b a )((3)位移条件: 01=∆ (a) 根据叠加原理 :p1111∆+∆=∆ (b )11111x δ=∆ (c)(4)力法方程(一次):将(c )代入(b )式得:01111=∆+px δ…………(6-1)式中:--11δ系数(单位多余力1=X 作用时,B 点沿1x 方向的位移)--∆p1自由项(荷载单独作用时B 点沿1x 方向的位移)1x --基本未知量(多余未知力或多余力)系数(11δ) 和自由项(p1∆)都是基本结构(静定结构)在已知外力作用下的位移,可用上一章讲的单位荷载法或图乘法求得,代入(6-1)式后可求出多余未知力1x ,求得1x 之后其余的计算(支座反力和内力)同静定结构。
第六章位移法超静定结构两类解法:力法:思路及步骤,适用于所有静定结构计算。
结合位移法例题中需要用到的例子。
有时太繁,例。
别的角度:内力和位移之间的关系随外因的确定而确定。
→位移法,E,超静定梁和刚架。
于是,开始有人讨论:有没有别的方法来求解或换一个角度来分析…,what?我们知道,当结构所受外因(外荷载、支座位移、温度变化等)一定⇒内力一定⇒变形一定⇒位移一定,也就是结构的内力和位移之间有确定的关系(这也可以从位移的公式反映出来)。
力法:内力⇒位移,以多余力为基本未知量…,能否反过来,也就是先求位移⇒内力,即以结构的某些位移为基本未知量,先想办法求出这些位移,再求出内力。
这就出现了位移法。
目前通用的位移法有两种:英国的、俄罗斯的,两者的实质是相同的。
以结构的某些结点位移作为基本未知量,由静力平衡条件先求出他们,再据以求出结构的内力和其它位移。
这种方法可以用于求解一些超静定梁和刚架,十分方便。
例:上面的例子,用位移法求解,只有结点转角一个未知量。
下面,我们通过一个简单的例子来说明位移法的解题思路和步骤:一个两跨连续梁,一次超静定,等截面EI=常数,右跨作用有均布荷载q,(当然可以用力法求解),在荷载q作用下,结构会发生变形,无N,无轴向变形,B点无竖向位移,只有转角ϕB。
且B点是一个刚结点传递M;变形时各杆端不能发生相对转动和移动,刚结点所连接的杆件之间角度受力以后不变。
也就是AB、BC杆在结点B处的转角是相同的。
原结构的受力和变形情况和b是等价的。
B当作固定端又产生转角ϕB。
a(原结构)AB:BC:b如果把转角ϕB 当作支座位移这一外因看,则原结构的计算就可以变成两个单跨超静定梁来计算。
显然,只要知道ϕB ,两个单跨静定梁的计算可以用力法求解出全部反力和内力,现在的未知量是ϕB (位移法的基本未知量)。
关键:如何求ϕB ?求出ϕB 后又如何求梁的内力?又如何把a ⇒b 来计算? 我们采用了这样的方法:假定在刚结点B 附加一刚臂(▼),限制B 点转角,B ⇒固定端(无线位移,无转动)(略轴向变形)原结构就变成了AB 、BC 两个单跨超静定梁的组合体:AB : ,BC :但现在和原结构的变形不符,ϕB ,所以为保持和原结构等效,人为使B 结点发生与实际情况相同的转角ϕB (以Z 1表示,统一)。
第7章 力 法
7.1 复习笔记【知识框架】
【重点难点归纳】
一、概述(见表7-1-1) ★★
表7-1-1 概述
二、超静定次数的确定(见表7-1-2) ★★★★
表7-1-2 超静定次数的确定
三、力法的基本概念(见表7-1-3) ★★★
力法的基本概念,包括基本未知量、基本体系、基本结构以及基本方程见表7-1-3,此外,表中还归纳了超静定结构的力法分析步骤。
表7-1-3 力法的基本未知量、基本体系和基本方程
四、力法的典型方程(见表7-1-4) ★★★
表7-1-4 力法的典型方程
五、对称性的利用 ★★★★
1.对称结构及作用荷载的对称性(表7-1-5)
表7-1-5 对称结构及作用荷载的对称性
2.非对称荷载的处理(表7-1-6)
表7-1-6 非对称荷载的处理。
力法、位移法求解超静定结构讲解
超静定结构是指在结构中存在多余的支座或者杆件,使得结构的自由度小于零,即结构无法通过静力学方法求解。
在这种情况下,我们需要采用力法或者位移法来求解结构的内力和位移。
力法是指通过假设结构内力的大小和方向,来求解结构的内力和位移的方法。
在力法中,我们需要假设结构内力的大小和方向,然后通过平衡方程和变形方程来求解结构的内力和位移。
力法的优点是计算简单,适用于简单的结构,但是对于复杂的结构,力法的假设可能会导致误差较大。
位移法是指通过假设结构的位移,来求解结构的内力和位移的方法。
在位移法中,我们需要假设结构的位移,然后通过平衡方程和变形方程来求解结构的内力和位移。
位移法的优点是适用于复杂的结构,可以准确地求解结构的内力和位移,但是计算较为繁琐。
在实际工程中,我们通常采用力法和位移法相结合的方法来求解超静定结构。
首先,我们可以通过力法来确定结构的内力大小和方向,然后再通过位移法来求解结构的位移。
这种方法可以充分利用力法和位移法的优点,减小误差,提高计算精度。
超静定结构的求解需要采用力法和位移法相结合的方法,通过假设结构的内力和位移,来求解结构的内力和位移。
在实际工程中,我们需要根据具体情况选择合适的方法,以保证计算精度和效率。
第八章力法本章主要内容1)超静定结构的超静定次数2)力法的解题思路和力法典型方程(显然力法方程中所有的系数和自由项都是指静定基本结构的位移,可以由上一章的求位移方法求出(图乘或积分))3)力法的解题步骤以及用于求解超静定梁刚架桁架组合结构(排架)4)力法的对称性利用问题,对称结构的有关概念四点结论5)超静定结构的位移计算和最后内力图的校核6)§8-1超静定结构概述一、静力解答特征:静定结构:由平衡条件求出支反力及内力;超静定结构的静力特征是具有多余力,仅由静力平衡条件无法求出它的全部(有时部分可求)反力及内力,须借助位移条件(补充方程,解答的唯一性定理)。
二、几何组成特征:(结合例题说明)静定结构:无多余联系的几何不变体超静定结构:去掉其某一个或某几个联系(内或外),仍然可以是一个几何不变体系,如桁架。
即:超静定结构的组成特征是其具有多余联系,多余联系可以是外部的,也可能是内部的,去掉后不改变几何不变性。
多余联系(约束):并不是没有用的,在结构作用或调整结构的内力、位移时需要的,减小弯矩及位移,便于应力分布均匀。
多余求知力:多余联系中产生的力称为三、超静定结构的类型(五种)超静定梁、超静定刚刚架、超静定桁架、超静定拱、超静定组合结构四、超静定结构的解法综合考虑三个方面的条件:1、平衡条件:即结构的整体及任何一部分的受力状态都应满足平衡方程;2、几何条件:也称变形条件、位移条件、协调条件、相容条件等。
即结构的变形必须符合支承约束条件(边界条件)和各部分之间的变形连续条件。
3、物理条件:即变形或位移与内力之间的物理关系。
精确方法:力法(柔度法):以多余未知力为基本未知量位移法(刚度法):以位移为基本未知量。
力法与位移法的联合应用:力法与位移法的混合使用:混合法近似方法:力矩分配法、矩阵位移法、分层总和法、D值法、反弯点法等本章主要讲力法。
五、力法的解题思路(结合例子)把不会算的超静定结构通过会算的基本结构来计算。