2020年天津市和平区中考三模数学试卷
- 格式:doc
- 大小:395.00 KB
- 文档页数:19
天津市和平区2019-2020学年中考第三次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,若a∥b,∠1=60°,则∠2的度数为()A.40°B.60°C.120°D.150°2.用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是()A.2cm B.32cm C.42cm D.4cm3.等腰三角形底角与顶角之间的函数关系是()A.正比例函数B.一次函数C.反比例函数D.二次函数4.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间x(min)的关系如图所示,水温从100℃降到35℃所用的时间是()A.27分钟B.20分钟C.13分钟D.7分钟5.如图,在正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,连接AF交CG于M点,则FM=()A.52B.32C.352D.726.如图,矩形ABCD中,E为DC的中点,AD:AB=3:2,CP:BP=1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O.下列结论:①EP平分∠CEB;②2BF=PB•EF;③PF•EF=22AD;④EF•EP=4AO•PO.其中正确的是()A.①②③B.①②④C.①③④D.③④7.“保护水资源,节约用水”应成为每个公民的自觉行为.下表是某个小区随机抽查到的10户家庭的月用水情况,则下列关于这10户家庭的月用水量说法错误的是()月用水量(吨) 4 5 6 9户数(户) 3 4 2 1A.中位数是5吨B.众数是5吨C.极差是3吨D.平均数是5.3吨8.某学校组织艺术摄影展,上交的作品要求如下:七寸照片(长7英寸,宽5英寸);将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的3倍.设照片四周外露衬纸的宽度为x英寸(如图),下面所列方程正确的是()A.(7+x)(5+x)×3=7×5 B.(7+x)(5+x)=3×7×5C.(7+2x)(5+2x)×3=7×5 D.(7+2x)(5+2x)=3×7×59.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价20%,现售价为a元,则原售价为()A.(a﹣20%)元B.(a+20%)元C.a元D.a元10.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.11.如图的几何体是由一个正方体切去一个小正方体形成的,它的主视图是()A.B.C.D.12.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为()A.O1B.O2C.O3D.O4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在每个小正方形的边长为1的网格中,点O,A,B,M均在格点上,P为线段OM上的一个动点.(1)OM的长等于_______;(2)当点P在线段OM上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的.14.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE 的度数为()A.144°B.84°C.74°D.54°15.已知二次函数y=ax2+bx(a≠0)的最小值是﹣3,若关于x的一元二次方程ax2+bx+c=0有实数根,则c的最大值是_____.16.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数kyx(k≠0,x>0)的图象过点B,E.若AB=2,则k的值为________.17.如果当a≠0,b≠0,且a≠b时,将直线y=ax+b和直线y=bx+a称为一对“对偶直线”,把它们的公共点称为该对“对偶直线”的“对偶点”,那么请写出“对偶点”为(1,4)的一对“对偶直线”:______.18.因式分解:mn(n﹣m)﹣n(m﹣n)=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知△ABC,按如下步骤作图:①分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;②连接MN,分别交AB、AC于点D、O;③过C作CE∥AB交MN于点E,连接AE、CD.(1)求证:四边形ADCE是菱形;(2)当∠ACB=90°,BC=6,△ADC的周长为18时,求四边形ADCE的面积.20.(6分)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D,过点D作⊙O的切线DE 交AC于点E,交AB延长线于点F.(1)求证:BD=CD;(2)求证:DC2=CE•AC;(3)当AC=5,BC=6时,求DF的长.21.(6分)某商场柜台销售每台进价分别为160元、120元的A、B两种型号的电器,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入—进货成本)(1)求A、B两种型号的电器的销售单价;(2)若商场准备用不多于7500元的金额再采购这两种型号的电器共50台,求A种型号的电器最多能采购多少台?(3)在(2)中商场用不多于7500元采购这两种型号的电器共50台的条件下,商场销售完这50台电器能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.22.(8分)如图,已知点A,B,C在半径为4的⊙O上,过点C作⊙O的切线交OA的延长线于点D.(Ⅰ)若∠ABC=29°,求∠D的大小;(Ⅱ)若∠D=30°,∠BAO=15°,作CE⊥AB于点E,求:①BE的长;②四边形ABCD的面积.23.(8分)我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图1中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.特例探索(1)如图1,当∠ABE=45°,c=22时,a=,b=;如图2,当∠ABE=10°,c=4时,a=,b=;归纳证明(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,请利用图1证明你发现的关系式;拓展应用(1)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG,AD=25,AB=1.求AF的长.24.(10分)某中学采用随机的方式对学生掌握安全知识的情况进行测评,并按成绩高低分成优、良、中、差四个等级进行统计,绘制了下面两幅尚不完整的统计图.请根据有关信息解答:(1)接受测评的学生共有________人,扇形统计图中“优”部分所对应扇形的圆心角为________°,并补全条形统计图;(2)若该校共有学生1200人,请估计该校对安全知识达到“良”程度的人数;(3)测评成绩前五名的学生恰好3个女生和2个男生,现从中随机抽取2人参加市安全知识竞赛,请用树状图或列表法求出抽到1个男生和1个女生的概率.25.(10分)如图,在△ABC中,AB=AC=4,∠A=36°.在AC边上确定点D,使得△ABD与△BCD 都是等腰三角形,并求BC的长(要求:尺规作图,保留作图痕迹,不写作法)26.(12分)如图,平行四边形ABCD的对角线AC,BD相交于点O,延长CD到E,使DE=CD,连接AE.(1)求证:四边形ABDE是平行四边形;(2)连接OE,若∠ABC=60°,且AD=DE=4,求OE的长.27.(12分)随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:本次调查中,一共调查了位好友.已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】如图:∵∠1=60°,∴∠3=∠1=60°,又∵a∥b,∴∠2+∠3=180°,∴∠2=120°,故选C.点睛:本题考查了平行线的性质,对顶角相等的性质,熟记性质是解题的关键.平行线的性质定理:两直线平行,同位角相等,内错角相等,同旁内角互补,两条平行线之间的距离处处相等.2.C【解析】【分析】利用扇形的弧长公式可得扇形的弧长;让扇形的弧长除以2π即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高.【详解】L=1206180π⨯=4π(cm);圆锥的底面半径为4π÷2π=2(cm),=cm).故选C.【点睛】此题考查了圆锥的计算,用到的知识点为:圆锥侧面展开图的弧长=2n r180π;圆锥的底面周长等于侧面展开图的弧长;圆锥的底面半径,母线长,高组成以母线长为斜边的直角三角形.3.B【解析】【分析】根据一次函数的定义,可得答案.【详解】设等腰三角形的底角为y,顶角为x,由题意,得x+2y=180,所以,y=﹣12x+90°,即等腰三角形底角与顶角之间的函数关系是一次函数关系,故选B.【点睛】本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键. 4.C【解析】【分析】先利用待定系数法求函数解析式,然后将y=35代入,从而求解.【详解】解:设反比例函数关系式为:kyx=,将(7,100)代入,得k=700,∴700yx =,将y=35代入700yx =,解得20x=;∴水温从100℃降到35℃所用的时间是:20-7=13,故选C.【点睛】本题考查反比例函数的应用,利用数形结合思想解题是关键.5.C【解析】【分析】由正方形的性质知DG=CG-CD=2、AD∥GF,据此证△ADM∽△FGM得AD DMFG GM=, 求出GM的长,再利用勾股定理求解可得答案.【详解】解:∵四边形ABCD和四边形CEFG是正方形,∴AD=CD=BC=1、CE=CG=GF=3,∠ADM=∠G=90°,∴DG=CG-CD=2,AD∥GF,则△ADM∽△FGM,∴AD DMFG GM=,即123GMGM-=,解得:GM=32,∴=,故选:C.【点睛】本题主要考查相似三角形的判定与性质,解题的关键是熟练掌握正方形的性质、相似三角形的判定与性质及勾股定理等知识点.6.B【解析】【分析】由条件设,AB=2x,就可以表示出,x,用三角函数值可以求出∠EBC的度数和∠CEP的度数,则∠CEP=∠BEP,运用勾股定理及三角函数值就可以求出就可以求出BF、EF的值,从而可以求出结论.【详解】解:设x,AB=2x∵四边形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴,CD=2x∵CP:BP=1:2∴,x∵E为DC的中点,∴CE=12CD=x,∴tan∠CEP=PCEC=33,tan∠EBC=ECBC=33∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正确;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴BE BP EF BF∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴2BF=PB·EF,故②正确∵∠F=30°,∴PF=2PB=43x,过点E作EG⊥AF于G,∴∠EGF=90°,∴3∴PF·EF=433x·322AD2=2×3)2=6x2,∴PF·EF≠2AD2,故③错误.在Rt △ECP 中,∵∠CEP=30°,∴x∵tan ∠PAB=PB AB ∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt △AOB 和Rt △POB 中,由勾股定理得,,∴4AO·2又EF·2 ∴EF·EP=4AO·PO .故④正确.故选,B【点睛】本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度是关键.7.C【解析】【分析】根据中位数、众数、极差和平均数的概念,对选项一一分析,即可选择正确答案.【详解】解:A 、中位数=(5+5)÷2=5(吨),正确,故选项错误;B 、数据5吨出现4次,次数最多,所以5吨是众数,正确,故选项错误;C 、极差为9﹣4=5(吨),错误,故选项正确;D 、平均数=(4×3+5×4+6×2+9×1)÷10=5.3,正确,故选项错误.故选:C .【点睛】此题主要考查了平均数、中位数、众数和极差的概念.要掌握这些基本概念才能熟练解题.8.D【解析】试题分析:由题意得;如图知;矩形的长="7+2x" 宽=5+2x ∴矩形衬底的面积=3倍的照片的面积,可得方程为(7+2X)(5+2X)=3×7×5考点:列方程点评:找到题中的等量关系,根据两个矩形的面积3倍的关系得到方程,注意的是矩形的间距都为等量的,从而得到大矩形的长于宽,用未知数x的代数式表示,而列出方程,属于基础题.9.C【解析】【分析】根据题意列出代数式,化简即可得到结果.【详解】根据题意得:a÷(1−20%)=a÷= a(元),故答案选:C.【点睛】本题考查的知识点是列代数式,解题的关键是熟练的掌握列代数式.10.D【解析】【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A. 是轴对称图形,但不是中心对称图形,故不符合题意;B. 不是轴对称图形,是中心对称图形,故不符合题意;C. 是轴对称图形,但不是中心对称图形,故不符合题意;D. 既是轴对称图形又是中心对称图形,故符合题意.故选D.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.11.D【解析】试题分析:根据三视图的法则可知B为俯视图,D为主视图,主视图为一个正方形.12.A【解析】试题分析:因为A点坐标为(-4,2),所以,原点在点A的右边,也在点A的下边2个单位处,从点B 来看,B(2,-4),所以,原点在点B的左边,且在点B的上边4个单位处.如下图,O1符合.考点:平面直角坐标系.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(1)42;(2)见解析;【解析】【分析】解:(1)由勾股定理可得OM的长度(2)取格点F , E, 连接EF , 得到点N ,取格点S, T, 连接ST, 得到点R, 连接NR交OM于P,则点P即为所求。
天津市和平区2019-2020学年中考第三次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知点A (0,﹣4),B (8,0)和C (a ,﹣a ),若过点C 的圆的圆心是线段AB 的中点,则这个圆的半径的最小值是( ) A .22B .2C .3D .22.二次函数y=ax2+bx+c (a≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c >3b;③8a+7b+2c >0;④当x >-1时,y 的值随x 值的增大而增大.其中正确的结论有( )A .1个B .2个C .3个D .4个3.将抛物线向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为( )A .B .C .D .4.下列方程中,是一元二次方程的是( ) A .2x ﹣y=3B .x 2+1x=2 C .x 2+1=x 2﹣1 D .x (x ﹣1)=05.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC=62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°6.已知直线2y kx =-与直线32y x =+的交点在第一象限,则k 的取值范围是( ) A .3k =B .3k <-C .3k >D .33k -<<7.如图,AB ∥CD ,FH 平分∠BFG ,∠EFB =58°,则下列说法错误的是( )A.∠EGD=58°B.GF=GH C.∠FHG=61°D.FG=FH8.如图在△ABC中,AC=BC,过点C作CD⊥AB,垂足为点D,过D作DE∥BC交AC于点E,若BD=6,AE=5,则sin∠EDC的值为()A.35B.725C .45D.24259.如图,与∠1是内错角的是( )A.∠2 B.∠3C.∠4 D.∠510.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是()A.16B.13C.12D.2311.等式组26058xx x+⎧⎨≤+⎩>的解集在下列数轴上表示正确的是().A.B.C.D.12.如图1,在矩形ABCD中,动点E从A出发,沿AB→BC方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是25,则矩形ABCD的面积是()A.235B.5 C.6 D.254二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,),∠OCB=60°,∠COB=45°,则OC= .14.如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=3,则BC的长是_____.15.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.(1)计算△ABC的周长等于_____.(2)点P、点Q(不与△ABC的顶点重合)分别为边AB、BC上的动点,4PB=5QC,连接AQ、PC.当AQ⊥PC时,请在如图所示的网格中,用无刻度的直尺,画出线段AQ、PC,并简要说明点P、Q的位置是如何找到的(不要求证明).___________________________.16.用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干图案:第4个图案有白色地面砖______块;第n 个图案有白色地面砖______块.17.已知方程x 2﹣5x+2=0的两个解分别为x 1、x 2,则x 1+x 2﹣x 1•x 2的值为______.18.如图,平行于x 轴的直线AC 分别交抛物线21x y =(x≥0)与22x y 5=(x≥0)于B 、C 两点,过点C作y 轴的平行线交y 1于点D ,直线DE ∥AC ,交y 2于点E ,则DEAB=_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,点D 为⊙O 上一点,点C 在直径BA 的延长线上,且∠CDA=∠CBD .判断直线CD 和⊙O 的位置关系,并说明理由.过点B 作⊙O 的切线BE 交直线CD 于点E ,若AC=2,⊙O 的半径是3,求BE 的长.20.(6分)如图所示,AB 是⊙O 的直径,AE 是弦,C 是劣弧AE 的中点,过C 作CD ⊥AB 于点D ,CD 交AE 于点F ,过C 作CG ∥AE 交BA 的延长线于点G .求证:CG 是⊙O 的切线.求证:AF =CF .若sinG =0.6,CF =4,求GA 的长.21.(6分)如图山坡上有一根旗杆AB ,旗杆底部B 点到山脚C 点的距离BC 为63BC 的坡度i=13F 处测量旗杆的高,点C 到测角仪EF 的水平距离CF=1米,从E 处测得旗杆顶部A的仰角为45°,旗杆底部B的仰角为20°.(1)求坡角∠BCD;(2)求旗杆AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)22.(8分)为了了解某校学生对以下四个电视节目:A《最强大脑》,B《中国诗词大会》,C《朗读者》,D《出彩中国人》的喜爱情况,随机抽取了部分学生进行调查,要求每名学生选出并且只能选出一个自己最喜爱的节目,根据调查结果,绘制了如下两幅不完整的统计图.请你根据图中所提供的信息,完成下列问题:本次调查的学生人数为________;在扇形统计图中,A部分所占圆心角的度数为________;请将条形统计图补充完整:若该校共有3000名学生,估计该校最喜爱《中国诗词大会》的学生有多少名?23.(8分)关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根.(1)求m的取值范围;(2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22﹣x1x2=8,求m的值.24.(10分)如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF.(1)判断直线EF与⊙O的位置关系,并说明理由;(2)若∠A=30°,求证:DG=12 DA;(3)若∠A=30°,且图中阴影部分的面积等于2233p-,求⊙O的半径的长.25.(10分)已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.求m的取值范围;如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.26.(12分)在一个不透明的布袋里装有4个标有1、2、3、4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x,王芳在剩下的3个小球中随机取出一个小球,记下数字为x,yy,这样确定了点M的坐标()()1画树状图列表,写出点M所有可能的坐标;()2求点()M x,y在函数y x1=+的图象上的概率.27.(12分)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】首先求得AB的中点D的坐标,然后求得经过点D且垂直于直线y=-x的直线的解析式,然后求得与y=-x 的交点坐标,再求得交点与D之间的距离即可.【详解】AB的中点D的坐标是(4,-2),∵C(a,-a)在一次函数y=-x上,∴设过D且与直线y=-x垂直的直线的解析式是y=x+b,把(4,-2)代入解析式得:4+b=-2,解得:b=-1,则函数解析式是y=x-1.根据题意得:6{y x y x--==,解得:3{3x y ==-,则交点的坐标是(3,-3).则这个圆的半径的最小值是:22(43)(23)-+-+=2. 故选:B 【点睛】本题考查了待定系数法求函数的解析式,以及两直线垂直的条件,正确理解C (a ,-a ),一定在直线y=-x 上,是关键. 2.B 【解析】 【分析】根据抛物线的对称轴即可判定①;观察图象可得,当x=-3时,y <0,由此即可判定②;观察图象可得,当x=1时,y >0,由此即可判定③;观察图象可得,当x >2时,的值随值的增大而增大,即可判定④. 【详解】由抛物线的对称轴为x=2可得=2,即4a+b=0,①正确;观察图象可得,当x=-3时,y <0,即9a-3b+c <0,所以,②错误;观察图象可得,当x=1时,y >0,即a+b+c >0,③正确; 观察图象可得,当x >2时,的值随值的增大而增大,④错误. 综上,正确的结论有2个. 故选B. 【点睛】本题考查了二次函数图象与系数的关系:二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置,当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定,△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点. 3.C【解析】试题分析:∵抛物线向右平移1个单位长度,∴平移后解析式为:,∴再向上平移1个单位长度所得的抛物线解析式为:.故选C.考点:二次函数图象与几何变换.4.D【解析】试题解析:A.含有两个未知数,B.不是整式方程,C没有二次项.故选D.点睛:一元二次方程需要满足三个条件:()1含有一个未知数,()2未知数的最高次数是2,()3整式方程. 5.D【解析】【分析】先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE的度数.【详解】解:∵四边形ABCD为矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿对角线BD折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故选D.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.6.C【解析】【分析】根据题意画出图形,利用数形结合,即可得出答案.【详解】根据题意,画出图形,如图:当3k =时,两条直线无交点;当3k >时,两条直线的交点在第一象限. 故选:C . 【点睛】本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键. 7.D 【解析】 【分析】根据平行线的性质以及角平分线的定义,即可得到正确的结论. 【详解】解:AB CD EFB 58∠︒Q P ,=,EGD 58=∠∴︒,故A 选项正确;FH BFG ∠Q 平分, BFH GFH ∠∠∴=, 又AB CD Q P BFH GHF ∠∠∴=, GFH GHF ∠∠∴=, GF GH =,∴故B 选项正确; BFE 58FH ∠︒Q =,平分BFG ∠,()118058612BFH ︒︒︒∴∠=-=, AB CD Q PBFH GHF 61∠∠∴︒==,故C 选项正确;FGH FHG ∠∠≠Q ,FG FH ∴≠,故D 选项错误;故选D . 【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等. 8.A 【解析】 【分析】由等腰三角形三线合一的性质得出AD=DB=6,∠BDC=∠ADC=90°,由AE=5,DE ∥BC 知AC=2AE=10,∠EDC=∠BCD ,再根据正弦函数的概念求解可得. 【详解】∵△ABC 中,AC =BC ,过点C 作CD ⊥AB , ∴AD =DB =6,∠BDC =∠ADC =90°, ∵AE =5,DE ∥BC ,∴AC =2AE =10,∠EDC =∠BCD , ∴sin ∠EDC =sin ∠BCD =63105BD BC ==, 故选:A . 【点睛】本题主要考查解直角三角形,解题的关键是熟练掌握等腰三角形三线合一的性质和平行线的性质及直角三角形的性质等知识点. 9.B 【解析】由内错角定义选B. 10.D 【解析】试题解析:设小明为A ,爸爸为B ,妈妈为C ,则所有的可能性是:(ABC ),(ACB ),(BAC ),(BCA ),(CAB ),(CBA ),∴他的爸爸妈妈相邻的概率是:4263=,故选D . 11.B 【解析】【分析】分别求出每一个不等式的解集,然后在数轴上表示出每个不等式的解集,对比即可得.【详解】26058x x x +>⎧⎨≤+⎩①②, 解不等式①得,x>-3,解不等式②得,x≤2,在数轴上表示①、②的解集如图所示,故选B.【点睛】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.12.B【解析】【分析】易证△CFE ∽△BEA ,可得CF CE BE AB=,根据二次函数图象对称性可得E 在BC 中点时,CF 有最大值,列出方程式即可解题.【详解】若点E 在BC 上时,如图∵∠EFC+∠AEB =90°,∠FEC+∠EFC =90°,∴∠CFE =∠AEB ,∵在△CFE 和△BEA 中,90CFE AEB C B ︒∠=∠⎧⎨∠=∠=⎩, ∴△CFE ∽△BEA ,由二次函数图象对称性可得E 在BC 中点时,CF 有最大值,此时CF CE BE AB =,BE =CE =x ﹣52,即525522x y x -=-, ∴225()52y x =-, 当y =25时,代入方程式解得:x 1=32(舍去),x 2=72, ∴BE =CE =1,∴BC =2,AB =52, ∴矩形ABCD 的面积为2×52=5;故选B .【点睛】本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E 为BC 中点是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1+【解析】 试题分析:连接AB ,由圆周角定理知AB 必过圆心M ,Rt △ABO 中,易知∠BAO=∠OCB=60°,已知了OA=,即可求得OB 的长; 过B 作BD ⊥OC ,通过解直角三角形即可求得OD 、BD 、CD 的长,进而由OC=OD+CD 求出OC 的长.解:连接AB ,则AB 为⊙M 的直径.Rt △ABO 中,∠BAO=∠OCB=60°,∴OB=OA=×=.过B 作BD ⊥OC 于D .Rt △OBD 中,∠COB=45°,则OD=BD=OB=.Rt △BCD 中,∠OCB=60°,则CD=BD=1.∴OC=CD+OD=1+. 故答案为1+.点评:此题主要考查了圆周角定理及解直角三角形的综合应用能力,能够正确的构建出与已知和所求相关的直角三角形是解答此题的关键.143【解析】【分析】由折叠的性质可知AE=CE,再证明△BCE是等腰三角形即可得到BC=CE,问题得解.【详解】∵AB=AC,∠A=36°,∴∠B=∠ACB=180362︒-︒=72°,∵将△ABC中的∠A沿DE向下翻折,使点A落在点C处,∴AE=CE,∠A=∠ECA=36°,∴∠CEB=72°,∴33【点睛】本题考查了等腰三角形的判断和性质、折叠的性质以及三角形内角和定理的运用,证明△BCE 是等腰三角形是解题的关键.15.12 连接DE与BC与交于点Q,连接DF与BC交于点M,连接GH与格线交于点N,连接MN 与AB交于P.【解析】【分析】(1)利用勾股定理求出AB,从而得到△ABC的周长;(2) 取格点D,E,F,G,H,连接DE与BC交于点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于点P;连接AP,CQ即为所求.【详解】解:(1)∵AC=3,BC=4,∠C=90º,∴根据勾股定理得AB=5,∴△ABC的周长=5+4+3=12.(2)取格点D,E,F,G,H,连接DE与BC交于点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于点P;连接AQ,CP即为所求。
2020年天津市中考数学模拟试卷三一、选择题1.下列各计算题中,结果是零的是( )A.(+3)﹣|﹣3|B.|+3|+|﹣3|C.(﹣3)﹣3D.(﹣)2.计算2sin30°﹣sin245°+tan30°的结果是()A.+3B.+C.+D.1﹣+3.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为( )A.8×1012B.8×1013C.8×1014D.0.8×10134.下列图形中既是轴对称图形,又是中心对称图形的是()5.在下列的四个几何体中,同一几何体的主视图与俯视图相同的是()6.一个正方形的面积是15,估计它的边长大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间7.化简22a b abb a--结果正确的是( )A.abB.-abC.a2-b2D.b2-a28.已知直角三角形两边的长为3和4,则此三角形的周长为().A.12B.7+C.12或7+D.以上都不对9.用加减法解方程组,下列解法错误的是( )A.①×3﹣②×2,消去xB.①×2﹣②×3,消去yC.①×(﹣3)+②×2,消去xD.①×2﹣②×(﹣3),消去y10.已知正比例函数y=k 1x(k 1≠0)与反比例函数xk y 2(k 2≠0)的图像一个交点的坐标为(-2,-1),则它的另一个交点的坐标是( )A.(2,1)B.(-1,-2)C.(-2,1)D.(2,-1) 11.到三角形三个顶点的距离都相等的点是这个三角形的( )A.三条高的交点B.三条角平分线的交点C.三条中线的交点D.三条边的垂直平分线的交点 12.如图所示,已知二次函数y=ax 2+bx+c 的图象与x 轴交于A ,B 两点,与y 轴交于点C ,OA=OC ,对称轴为直线x=1.则下列结论:①abc <0;②a+21b+41c=0;③ac+b+1=0;④2+c 是关于x 的一元二次方程ax 2+bx+c=0的一个根.其中正确的有( )A.1个B.2个C.3个D.4个 二、填空题13.已知(x+5)(x+n)=x 2+mx ﹣5,则m+n= . 14.计算:﹣×=______________.15.如图,将点数为2,3,4的三张牌按从左到右的方式排列,并且按从左到右的牌面数字记录排列结果为234.现在做一个抽放牌游戏:从上述左、中、右的三张牌中随机抽取一张,然后把它放在其余两张牌的中间,并且重新记录排列结果.例如,若第1次抽取的是左边的一张,点数是2,那么第1次抽放后的排列结果是324;第2次抽取的是中间的一张,点数仍然是2,则第2次抽放后的排列结果仍是324.照此游戏规则,两次抽放后,这三张牌的排列结果仍然是234的概率为_________.16.一次函数y=mx+n的图象经过一、三、四象限,则化简所得的结果.17.如图,在矩形ABCD中,AB=6,BC=8,点E从点A出发,以1个单位/秒的速度向B移动,同时,点F从点B出发,以2个单位/秒的速度向C移动,当点F到达C点时均停止运动,则秒后△EBF的面积为5个平方单位.18.如图Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC上任意一点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ的最小值为.三、解答题19.解不等式组:.20.某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6个型号)根据以上信息,解答下列问题:(1)该班共有名学生;(2)在扇形统计图中,185型校服所对应的扇形圆心角的大小为;(3)该班学生所穿校服型号的众数为,中位数为;(4)如果该校预计招收新生600名,根据样本数据,估计新生穿170型校服的学生大约有多少名?21.如图,AB是△ABC外接圆⊙O的直径,D是AB延长线上一点,且BD=AB,∠A=30°,CE⊥AB于E,过C的直径交⊙O于点F,连接CD、BF、EF.(1)求证:CD是⊙O的切线;(2)求tan∠BFE的值.22.如图,某中学数学活动小组在学习了“利用三角函数测高”后.选定测量小河对岸一幢建筑物BC的高度.他们先在斜坡上的D处,测得建筑物顶的仰角为30°.且D离地面的高度DE=5m.坡底EA=10m,然后在A处测得建筑物顶B的仰角是50°,点E,A,C在同一水平线上,求建筑物BC的高.(结果保留整数)23.甲乙两车同时从A地出发,以各自的速度匀速向B地行驶.甲车先到达B地,停留一小时后按原路以另一速度匀速返回,直到两车相遇.乙车的速度为60km/h,两车间距离y(km)与乙车行驶时间x(h)之间的函数图象如下.(1)将图中( )填上适当的值,并求甲车从A到B的速度.(2)求从甲车返回到与乙车相遇过程中y与x的函数关系式,自变量取值范围。
绝密★启用前天津市和平区普通高中2020届高三毕业班下学期第三次质量调查(三模)数学试题2020年6月温馨提示:本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。
考试时间120分钟。
祝同学们考试顺利!第Ⅰ卷 选择题(共45分)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考号、科目涂写在答题卡上。
2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试卷上的无效。
3. 本卷共9小题,每小题5分,共45分。
•如果事件B A ,互斥,那么 •如果事件B A ,相互独立,那么)()()(B P A P B A P += )()()(B P A P AB P =.•锥体的体积公式Sh V 31=. •球体334R V π= 其中S 表示锥体的底面积, 其中R 为球的半径.h 表示锥体的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合U ={0,1,2,3,4,5},A ={1,2},B ={x ∈N|x 2−3x ≤0},则∁U (A ∪B)=( )A. {0,1,2,3}B. {0,4,5}C. {1,2,4}D. {4,5} 2. 已知p :x ≥k ,q :3x+1<1,如果p 是q 的充分不必要条件,则实数k 的取值范围是( )A. [2,+∞)B. (2,+∞)C. [1,+∞)D. (−∞,−1]3.函数f(x)=2x−1+lnx的图像大致为()A. B.C. D.4.三棱锥的棱长均为4√6,顶点在同一球面上,则该球的表面积为()A. 36πB. 72πC. 144πD. 288π5.设正实数a,b,c分别满足a·2a=1,blog2b=1,clog3c=1,则a,b,c的大小关系为()A. a>b>cB. b>a>cC. c>b>aD. a>c>b6.已知双曲线x2a2−y2b2=1(a>0,>0)的右焦点为F,虚轴的上端点为B,P为左支上的一个动点,若△PBF周长的最小值等于实轴长的3倍,则该双曲线的离心率为()A. √102B. √105C. √10D. √27.若函数f(x)=cos(2x+φ)的图象关于点(4π3,0)成中心对称,且−π2<φ<π2,则函数y=f(x+π3)为()A. 奇函数且在(0,π4)上单调递增 B. 偶函数且在(0,π2)上单调递增C. 偶函数且在(0,π2)上单调递减 D. 奇函数且在(0,π4)上单调递减8.已知直线l:x−y=1与圆:x2+y2−2x+2y−1=0相交于A,C两点,点B,D分别在圆上运动,且位于直线l的两侧,则四边形ABCD面积的最大值为()。
2020年天津市和平区中考数学三模试卷一、选择题(共12小题,每小题3分,满分36分)1.计算﹣150+350()A.200 B.﹣500 C.﹣200 D.5002.2sin30°的值等于()A.1 B.C.D.23.在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.某市2020年固定宽带接入新用户560000户,将560000用科学记数法表示应为()A.560×103B.56×104C.5.6×105D.0.56×1065.如图所示的几何体是由五个小正方体组合而成的,它的主视图是()A.B.C.D.6.面积为S且两条邻边的比为2:3的长方形的长为()A.B.C.D.7.已知反比例函数y=图象的两个分支分别位于第二、四象限,则k的取值范围是()A.k>1 B.k<1 C.k>0 D.k<08.分式方程=的解为()A.v=﹣5 B.v=0 C.v=5 D.v=69.在同一平面内,有两个边长相等的等边三角形,当它们的一边重合时,这两个等边三角形的中心之间的距离为2,那么,当它们的一对角线成对顶角时,这两个等边三角形的中心之间的距离为()A.2 B.3 C.4 D.210.如图,在▱ABCD中,AB=,AD=4,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为()A. B.C.D.311.在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S(米)与所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,下列说法正确的是()A.小莹的速度随时间的增大而增大B.小梅的平均速度比小莹的平均速度大C.在起跑后180秒时,两人相遇D.在起跑后50秒时,小梅在小莹的前面12.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是()A.4个B.3个C.2个D.1个二、填空题(本大题共有6小题,每小题3分,共18分)13.计算12x﹣20x的结果等于______.14.已知一次函数y=kx+3(k为常数,k≠0)的图象经过第一、二、三象限,写出一个符合条件的k的值为______.15.甲、乙两名同学做“石头、剪子、布”的游戏,随机出手一次,则甲获胜的概率是______.16.如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠BAC=25°,则∠P=______度.17.如图,Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°.△EDF绕着边AB的中点D旋转,DE,DF分别交线段AC于点M,K.如果MK2+CK2=AM2,则∠CDF的大小是______(度).18.在每个小正方形的边长为1的网格中,点A,B在格点上.(Ⅰ)如图①,点C,D在格点上,线段CD与AB交于点P,则AP的值等于______;(Ⅱ)请在如图②所示的网格中,用无刻度的直尺,在线段AB上画出一点P,使AP=,并简要说明点P的位置是如何找到的(不要求证明)______.三、解答题(本大题共有7小题,共66分)19.解不等式组.请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得______;(Ⅱ)解不等式②,得______;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为______.20.“六一”儿童节前夕,爱心人士准备给希泉小学留守儿童赠送一批学习用品,先对希泉小学每班的留守儿童进行了统计,发现各班留守儿童人数分别为6名,7名,8名,10名,12名这五种情形,并将统计的这组留守儿童的数据绘制成了如图所示的两幅不完整的统计图:请根据相关信息,解答下列问题:(Ⅰ)该校的班级数为______,图①中m的值为______;(Ⅱ)求统计的这组留守儿童人数数据的平均数、众数和中位数.21.已知BC是⊙O的直径,AD是⊙O的切线,切点为A,AD交CB的延长线于点D,连接AB,AO.(Ⅰ)如图①,求证:∠OAC=∠DAB;(Ⅱ)如图②,AD=AC,若E是⊙O上一点,求∠E的大小.22.小明在热气球A上看到横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,36°.已知大桥BC与地面在同一水平面上,其长度为100m.请求出热气球离地面的高度(结果保留小数点后一位).参考数据:tan36°≈0.73.23.A、B两地相距25km,甲8:00由A地出发骑自行车去B地,速度为10km/h;乙9:30由A地出发乘车也去B地,速度为40km/h.(Ⅰ)根据题意,填写下表:时刻9:00 9:30 9:45 (x)甲离A地的距离10 17.5 …/km乙离A地的距离0 0 …/km(Ⅱ)在某时刻,乙能否追上甲?如果能,求出这一时刻;如果不能,请说明理由;(Ⅲ)当9.75≤x≤10.5时,甲、乙之间的最大距离是______km.24.如图,将一个正方形纸片AOCD,放置在平面直角坐标系中,点A(0,4),点O(0,0),点D在第一象限.点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点O落在点P处,点C落在点G处,PG交DC于点H,折痕为EF,连接OP,OH.设P点的横坐标为m.(Ⅰ)若∠APO=60°,求∠OPG的大小;(Ⅱ)当点P在边AD上移动时,△PDH的周长l是否发生变化?若变化,用含m的式子表示l;若不变化,求出周长l;(Ⅲ)设四边形EFGP的面积为S,当S取得最小值时,求点P的坐标(直接写出结果即可).25.在平面直角坐标系中,O为坐标原点,已知抛物线,点A(2,4).(Ⅰ)求直线OA的解析式;(Ⅱ)直线x=2与x轴相交于点B,将抛物线C1从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动,设抛物线顶点M的横坐标为m.①当m为何值时,线段PB最短?②当线段PB最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等?若存在,请求出点Q的坐标;若不存在,请说明理由;(Ⅲ)将抛物线C1作适当的平移,得抛物线,若点D(x1,y1),E(x2,y2)在抛物线C2上,且D、E两点关于坐标原点成中心对称,求c的取值范围.2020年天津市和平区中考数学三模试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.计算﹣150+350()A.200 B.﹣500 C.﹣200 D.500【考点】有理数的加法.【分析】绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.【解答】解:﹣150+350=200.故选:A.2.2sin30°的值等于()A.1 B.C.D.2【考点】特殊角的三角函数值.【分析】sin30°=,代入计算即可.【解答】解:2sin30°=2×=1.故选A.3.在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,也不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,是中心对称图形.故错误.故选C.4.某市2020年固定宽带接入新用户560000户,将560000用科学记数法表示应为()A.560×103B.56×104C.5.6×105D.0.56×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将560000用科学记数法表示为:5.6×105.故选:C.5.如图所示的几何体是由五个小正方体组合而成的,它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】从正面看得到从左往右3列正方形的个数依次为1,1,2,依此判断即可.【解答】解:从正面看得到从左往右3列正方形的个数依次为1,1,2,故选A6.面积为S且两条邻边的比为2:3的长方形的长为()A.B.C.D.【考点】算术平方根.【分析】根据算术平方根,即可解答.【解答】设该长方形的长为3x,宽为2x,则S=2x•3x=6x2,∴x=,∴3x=,故选:C.7.已知反比例函数y=图象的两个分支分别位于第二、四象限,则k的取值范围是()A.k>1 B.k<1 C.k>0 D.k<0【考点】反比例函数的性质.【分析】根据反比例函数的性质列出关于k的不等式,求出k的取值范围即可.【解答】解:∵反比例函数y=图象的两个分支分别位于第二、四象限,∴k﹣1<0,解得k<1.故选B.8.分式方程=的解为()A.v=﹣5 B.v=0 C.v=5 D.v=6【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到v的值,经检验即可得到分式方程的解.【解答】解:去分母得:2700﹣90v=1800+60v,移项合并得:150v=900,解得:v=6,经检验v=6是分式方程的解,故选D9.在同一平面内,有两个边长相等的等边三角形,当它们的一边重合时,这两个等边三角形的中心之间的距离为2,那么,当它们的一对角线成对顶角时,这两个等边三角形的中心之间的距离为()A.2 B.3 C.4 D.2【考点】等边三角形的性质.【分析】先设等边三角形的中线长为a,再根据三角形重心的性质求出a的值,进而可得出结论.【解答】解:设等边三角形的中线长为a,则其重心到对边的距离为:a,∵它们的一边重合时(图1),重心距为2,∴a=2,解得a=3,∴当它们的一对角成对顶角时(图2)重心距=a=×3=4.故选C.10.如图,在▱ABCD中,AB=,AD=4,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为()A. B.C.D.3【考点】翻折变换(折叠问题);平行四边形的性质.【分析】依据平行四边形的性质可得到BC=4,然后由翻折的性质可知BE=EC=2,∠BEA=∠AEC=90°,最后在Rt△ABE中,依据勾股定理求解即可.【解答】解:∵四边形ABCD为平行四边形,∴BC=AD=4.由翻折的性质可知:BE=EC=2,∠BEA=∠AEC=90°.在Rt△ABE中,AE==3.故选:D.11.在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S(米)与所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,下列说法正确的是()A.小莹的速度随时间的增大而增大B.小梅的平均速度比小莹的平均速度大C.在起跑后180秒时,两人相遇D.在起跑后50秒时,小梅在小莹的前面【考点】函数的图象.【分析】A、由于线段OA表示所跑的路程S(米)与所用时间t(秒)之间的函数图象,由此可以确定小莹的速度是没有变化的,B、小莹比小梅先到,由此可以确定小梅的平均速度比小莹的平均速度是否小;C、根据图象可以知道起跑后180秒时,两人的路程确定是否相遇;D、根据图象知道起跑后50秒时OB在OA的上面,由此可以确定小梅是否在小莹的前面.【解答】解:A、∵线段OA表示所跑的路程S(米)与所用时间t(秒)之间的函数图象,∴小莹的速度是没有变化的,故选项错误;B、∵小莹比小梅先到,∴小梅的平均速度比小莹的平均速度小,故选项错误;C、∵起跑后180秒时,两人的路程不相等,∴他们没有相遇,故选项错误;D、∵起跑后50秒时OB在OA的上面,∴小梅是在小莹的前面,故选项正确.故选D.12.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是()A.4个B.3个C.2个D.1个【考点】二次函数图象与系数的关系.【分析】利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断.【解答】解:∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确;∵对称轴是直线x=﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,∴4a+c>2b,∴②错误;∵把x=1代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵﹣=﹣1,∴b=2a,∴3b+2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把x=m(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选:B.二、填空题(本大题共有6小题,每小题3分,共18分)13.计算12x﹣20x的结果等于﹣8x.【考点】合并同类项.【分析】原式合并同类项即可得到结果.【解答】解:原式=(12﹣20)x=﹣8x,故答案为:﹣8x14.已知一次函数y=kx+3(k为常数,k≠0)的图象经过第一、二、三象限,写出一个符合条件的k的值为1.【考点】一次函数图象与系数的关系.【分析】根据一次函数经过的象限确定其图象的增减性,然后确定k的取值范围即可.【解答】解:∵一次函数y=kx+3的图象经过第一、二、三象限,∴k>0;故答案为:1.15.甲、乙两名同学做“石头、剪子、布”的游戏,随机出手一次,则甲获胜的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲获胜的情况数,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,甲获胜的情况数是3种,∴一次游戏中甲获胜的概率是:=.故答案为:.16.如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠BAC=25°,则∠P=50度.【考点】切线的性质;多边形内角与外角.【分析】首先利用切线长定理可得PA=PB,再根据∠OBA=∠BAC=25°,得出∠ABP的度数,再根据三角形内角和求出.【解答】解:∵PA,PB是⊙O的切线,A,B为切点,∴PA=PB,∠OBP=90°,∵OA=OB,∴∠OBA=∠BAC=25°,∴∠ABP=90°﹣25°=65°,∵PA=PB,∴∠BAP=∠ABP=65°,∴∠P=180°﹣65°﹣65°=50°,故答案为:50.17.如图,Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°.△EDF绕着边AB的中点D旋转,DE,DF分别交线段AC于点M,K.如果MK2+CK2=AM2,则∠CDF的大小是15°(度).【考点】旋转的性质.【分析】先证明△CDA是等腰三角形,求出∠ACD=30°,;作点C关于FD的对称点G,连接GK,GM,GD.证明△ADM≌△GDM后,根据全等三角形的性质,GM=AM;根据勾股定理的逆定理求得∠GKM=90°,又∵点C关于FD的对称点G,∴∠CKG=90°,∠FKC=∠CKG=45°,根据三角形的外角定理,就可以求得∠CDF=15°.【解答】解:在Rt△ABC中,D是AB的中点,∴AD=BD=CD=,∠B=∠BDC=60°又∵∠A=30°,∴∠ACD=60°﹣30°=30°,作点C关于FD的对称点G,连接GK,GM,GD,则CD=GD,GK=CK,∠GDK=∠CDK,∵D是AB的中点,∴AD=CD,∴GD=AD.∠DAC=∠DCA=30°,∴∠CDA=120°,∵∠EDF=60°,∴∠GDM+∠GDK=60°,∠ADM+∠CDK=60°.∴∠ADM=∠GDM,∵DM=DM,∴∴△ADM≌△GDM,(SAS)∴GM=AM.∵MK2+CK2=AM2,∴MK2+GK2=GM2,∴∠GKM=90°,又∵点C关于FD的对称点G,∴∠CKG=90°,∠FKC=∠CKG=45°,∵∠A=∠ACD=30°,∴∠FKC=∠CDF+∠ACD,∴∠CDF=∠FKC﹣∠ACD=15°,故答案为:15°.18.在每个小正方形的边长为1的网格中,点A,B在格点上.(Ⅰ)如图①,点C,D在格点上,线段CD与AB交于点P,则AP的值等于;(Ⅱ)请在如图②所示的网格中,用无刻度的直尺,在线段AB上画出一点P,使AP=,并简要说明点P的位置是如何找到的(不要求证明)取格点C、D,连接CD,CD 与AB交于点G,取格点E、F,连接EF,EF与AB交于点P,则点P即为所求.【考点】勾股定理.【分析】(1)利用格点,根据勾股定理求出AB的长,再根据相似三角形的性质得到AP的值;(2)根据三角形相似,使得AG为AB长度的;再根据三角形相似,使得AP为AG长度的即可.【解答】解:(1)如图①,AB==,AP=AB=;(2)如图②所示:取格点C、D,连接CD,CD与AB交于点G,取格点E、F,连接EF,EF与AB交于点P,则点P即为所求.故答案为:;取格点C、D,连接CD,CD与AB交于点G,取格点E、F,连接EF,EF与AB交于点P,则点P即为所求.三、解答题(本大题共有7小题,共66分)19.解不等式组.请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得x≤1;(Ⅱ)解不等式②,得x>﹣2;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为﹣2<x≤1.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】(I)根据不等式的性质求出不等式的解集即可;(II)根据不等式的性质求出不等式的解集即可;(III)在数轴上表示出来即可;(IV)根据数轴得出即可.【解答】解:(I)解不等式①得:x≤1,故答案为:x≤1;(II)解不等式②得:x>﹣2,故答案为:x>﹣2;(III)把不等式①和②的解集在数轴上表示出来为:;(IV)原不等式组的解集为﹣2<x≤1,故答案为:﹣2<x≤1.20.“六一”儿童节前夕,爱心人士准备给希泉小学留守儿童赠送一批学习用品,先对希泉小学每班的留守儿童进行了统计,发现各班留守儿童人数分别为6名,7名,8名,10名,12名这五种情形,并将统计的这组留守儿童的数据绘制成了如图所示的两幅不完整的统计图:请根据相关信息,解答下列问题:(Ⅰ)该校的班级数为16,图①中m的值为37.5;(Ⅱ)求统计的这组留守儿童人数数据的平均数、众数和中位数.【考点】条形统计图;扇形统计图;中位数;众数.【分析】(Ⅰ)根据统计图可以求得该班的班级数和m的值;(Ⅱ)将这组数据按照从小到大排列即可求得统计的这组留守儿童人数数据的平均数、众数和中位数.【解答】解:(Ⅰ)该校的班级数为:2÷12.5%=16,m%=,故答案为:16,37.5;(Ⅱ)留守儿童为8名的班级数为:16﹣1﹣2﹣6﹣2=5,∴这组留守儿童人数数据的平均数是:=9,将这组数据按照从小到大排列是:6,7,7,8,8,8,8,8,10,10,10,10,10,10,12,12,故这组数据的众数是10,中位数是,即统计的这组留守儿童人数数据的平均数是9,众数是10,中位数是9.21.已知BC是⊙O的直径,AD是⊙O的切线,切点为A,AD交CB的延长线于点D,连接AB,AO.(Ⅰ)如图①,求证:∠OAC=∠DAB;(Ⅱ)如图②,AD=AC,若E是⊙O上一点,求∠E的大小.【考点】切线的性质.【分析】(Ⅰ)先由切线和直径得出直角,再用同角的余角相等即可;(Ⅱ)由等腰三角形的性质和圆的性质直接先判断出∠ABC=2∠C,即可求出∠C.【解答】解:(Ⅰ)∵AD是⊙O的切线,切点为A,∴DA⊥AO,∴∠DAO=90°,∴∠DAB+∠BAO=90°,∵BC是⊙O的直径,∴∠BAC=90°,∴∠BAO+∠OAC=90°,∴∠OAC=∠DAB,(Ⅱ)∵OA=OC,∴∠OAC=∠C,∵AD=AC,∴∠D=∠C,∴∠OAC=∠D,∵∠OAC=∠DAB,∴∠DAB=∠D,∵∠ABC=∠D+∠DAB,∴∠ABC=2∠D,∵∠D=∠C,∴∠ABC=2∠C,∵∠BAC=90°,∴∠ABC+∠C=90°,∴2∠C+∠C=90°,∴∠C=30°,∴∠E=∠C=30°22.小明在热气球A上看到横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,36°.已知大桥BC与地面在同一水平面上,其长度为100m.请求出热气球离地面的高度(结果保留小数点后一位).参考数据:tan36°≈0.73.【考点】解直角三角形的应用-仰角俯角问题.【分析】作AD⊥BC交CB的延长线于D,设AD为x,表示出DB和DC,根据正切的概念求出x的值即可.【解答】解:作AD⊥BC交CB的延长线于D,设AD为xm,由题意得,∠ABD=45°,∠ACD=36°,在Rt△ADB中,∠ABD=45°,∴DB=xm,在Rt△ADC中,∠ACD=36°,∴tan∠ACD=,∴=0.73,解得x≈270.4.答:热气球离地面的高度约为270.4m.23.A、B两地相距25km,甲8:00由A地出发骑自行车去B地,速度为10km/h;乙9:30由A地出发乘车也去B地,速度为40km/h.(Ⅰ)根据题意,填写下表:时刻9:00 9:30 9:45 (x)甲离A地的距离10 17.5 …/km乙离A地的距离0 0 …/km(Ⅱ)在某时刻,乙能否追上甲?如果能,求出这一时刻;如果不能,请说明理由;(Ⅲ)当9.75≤x≤10.5时,甲、乙之间的最大距离是7.5km.【考点】一元一次方程的应用.【分析】(1)根据:距离=速度×时间,即可解答;(2)根据相遇时甲、乙到A地的距离相等列方程求解可知;(3)令甲、乙间的距离为y,由题意知乙到达终点B地时刻为10.125时,根据x的范围分:9.75≤x≤10、10<x≤10.125、10.125<x≤10.5三种情况,分别列出y关于x的函数解析式,结合一次函数性质讨论其最值情况可得答案.【解答】解:(1)9:30时,甲离A地距离为10×1.5=15(km),x时,甲离A地距离为10(x﹣8)=10x﹣80(km);9:45时,乙离A地距离为40×=10(km),x时,乙离A地距离为40(x﹣9.5)=40x﹣380(km);完成表格如下:时刻9:00 9:30 9:45 (x)甲离A地的距离10 15 17.5 …10x﹣80/km乙离A地的距离0 0 10 …40x﹣380/km(2)乙能追上甲,根据题意,10x﹣80=40x﹣380,解得:x=10,答:在10:00时,乙能追上甲;(3)∵A、B两地相距25km,乙的速度为40km/h,∴乙到达B地用时=0.625h,令甲、乙间的距离为y,①当9.75≤x≤10时,y=10x﹣80﹣(40x﹣380)=﹣30x+300,∵y随x的增大而减小,∴当x=9.75时,y取得最大值,最大值为﹣30×9.75+300=7.5(km);②当10<x≤10.125时,y=40x﹣380﹣(10x﹣80)=30x﹣300,∵y随x的增大而增大,∴当x=10.125时,y取得最大值,最大值为30×10.125﹣300=3.75(km);③当10.125<x≤10.5时,乙达到终点B地,甲、乙间距离从3.75km逐渐减小;综上,甲、乙之间的最大距离是7.5km,故答案为:7.5.24.如图,将一个正方形纸片AOCD,放置在平面直角坐标系中,点A(0,4),点O(0,0),点D在第一象限.点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点O落在点P处,点C落在点G处,PG交DC于点H,折痕为EF,连接OP,OH.设P点的横坐标为m.(Ⅰ)若∠APO=60°,求∠OPG的大小;(Ⅱ)当点P在边AD上移动时,△PDH的周长l是否发生变化?若变化,用含m的式子表示l;若不变化,求出周长l;(Ⅲ)设四边形EFGP的面积为S,当S取得最小值时,求点P的坐标(直接写出结果即可).【考点】四边形综合题.【分析】(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8,(3)先证明△EON≌△EPN,再利用相似三角形的性质得出CF的长,再表示出求出梯形OCFE面积,进而求出最小值【解答】解:(1)∵正方形纸片折叠,使点O落在点P处,点C落在点G处,∴∠POC=∠OPG,∵四边形AOCD是正方形,∴AD∥OC∴∠APO=∠POC∴∠APO=∠OPG,∵∠APO=60°,∴∠OPG=60°,(2)△PDH的周长不发生变化,理由:如图,过B作OQ⊥PG,垂足为Q.∴∠DAO=90°,∴∠DAO=∠PQO=90°,由(1)知,∠APO=∠OPG,∵OP=OP,∴△AOP≌△QOP,∴AP=QP,AO=QO,∵AO=OC,∴OC=OQ,∵∠OCD=∠OQH=90°,OH=OH,∴Rt△OCH≌Rt△OQH,∴CH=QH,∴△PDH的周长l=PD+DH+PH=PD+DH+PQ+QH=PD+PQ+DH+QH=PD+AP+DH+CH=AD+CD=8,∴△PDH的周长不发生变化,周长为定值8;(3)如图2,过点F作FM⊥OA,由折叠知,△EON与△EPN关于直线EF对称,∴△EON≌△EPN,∴ON=PN,EP=EO,EN⊥PO,∵∠A=∠ENO,∠AON=∠AOP,∴△EON∽△POA,∴①,设AP=x ,∵点A (0,4), ∴OA=4, ∴OP==,∴ON=OP=,将OP ,ON 代入①式得,OE=PE=(16+x 2), ∵∠EFM +∠OEN=90°,∠AOP +∠OEN=90°, ∴∠EFM=∠AOP ,在Rt △EFM 和Rt △POA 中,,∴Rt △EFM ≌Rt △POA (ASA ), ∴EM=AP=x .∴FG=CF=OM=OE ﹣EM =(16+x 2)﹣x =x 2﹣x +2, ∴S 梯形EFGP =S 梯形OCFE =(FG +OE )×BC= [x 2﹣x +2+(16+x 2)]×4 =(x ﹣2)2+6,∴当x=2时,S 梯形EFGP 最小,最小值是6, ∴AP=2, ∴P (2,4).25.在平面直角坐标系中,O 为坐标原点,已知抛物线,点A (2,4).(Ⅰ)求直线OA 的解析式;(Ⅱ)直线x=2与x 轴相交于点B ,将抛物线C 1从点O 沿OA 方向平移,与直线x=2交于点P ,顶点M 到A 点时停止移动,设抛物线顶点M 的横坐标为m . ①当m 为何值时,线段PB 最短? ②当线段PB 最短时,相应的抛物线上是否存在点Q ,使△QMA 的面积与△PMA 的面积相等?若存在,请求出点Q 的坐标;若不存在,请说明理由; (Ⅲ)将抛物线C 1作适当的平移,得抛物线,若点D (x 1,y 1),E (x 2,y 2)在抛物线C 2上,且D 、E 两点关于坐标原点成中心对称,求c 的取值范围.【考点】二次函数综合题.【分析】(I)直线OA的解析式为y=kx,把点A(2,4)代入即可求出k的值,进而得出直线的解析式;(II)①由顶点M的横坐标为m,且在线段OA上移动可得出y与m的函数关系式,故可得出抛物线的解析式,当x=2时可得出y与m的函数关系式,进而可得出P点坐标,由m 的取值范围即可得出结论;②当线段PB最短时,抛物线的解析式为y=x2﹣2x+3,点P的坐标是(2,3).假设在抛物线上存在点Q,使S△QMA=S△PMA,当点Q落在直线OA的下方时,过点P作直线PC∥AO 交y轴于点C.PB=3,BA=4,可知直线PC的解析式为y=2x﹣1,联立直线与抛物线的解析式即可求出Q点的坐标;当点Q落在直线OA的上方时,作点P关于点A的对称点D,过点D作直线DE∥AO,交y轴于点E,同理可得直线DE的解析式,立直线与抛物线的解析式即可求出Q点的坐标;(III)由点D、E关于原点成中心对称,可知x2=﹣x1,y2=﹣y1,再由D、E两点在抛物线C2上,可得出y与x的关系式,联立直线DE与抛物线的解析式即可得出x2+c=0,点D、E 在抛物线C2上,即抛物线C2与直线DE有两个公共点,【解答】解:(Ⅰ)设直线OA的解析式为y=kx,∵A(2,4),∴2k=4.∴k=2.∴直线OA的解析式为y=2x.(Ⅱ)①∵顶点M的横坐标为m,且在线段OA上移动,∴y=2m(0≤m≤2).∴顶点M的坐标为(m,2m).∴抛物线的解析式为y=(x﹣m)2+2m.当x=2时,y=(2﹣m)2+2m=m2﹣2m+4(0≤m≤2).∴点P的坐标是(2,m2﹣2m+4).∵PB=m2﹣2m+4=(m﹣1)2+3,又∵0≤m≤2,∴当m=1时,线段PB最短.②当线段PB最短时,抛物线的解析式为y=x2﹣2x+3,点P的坐标是(2,3).假设在抛物线上存在点Q,使S△QMA=S△PMA.当点Q落在直线OA的下方时,过点P作直线PC∥AO交y轴于点C.∵PB=3,BA=4,∴AP=1.∴直线PC的解析式为y=2x﹣1.根据题意,列出方程组∴x2﹣2x+3=2x﹣1.解得x1=2,x2=2.∴即点Q的坐标是(2,3).∴点Q与点P重合.∴此时抛物线上不存在点Q使△QMA与△PMA的面积相等.当点Q落在直线OA的上方时,作点P关于点A的对称点D,过点D作直线DE∥AO,交y轴于点E,∵AP=1,∴DA=1.∴直线DE的解析式为y=2x+1.根据题意,列出方程组∴x2﹣2x+3=2x+1.解得,.∴或∴此时抛物线上存在点Q1(,),Q2(,),使△QMA与△PMA的面积相等.综上所述,抛物线上存在点Q1(,),Q2(,),使△QMA 与△PMA的面积相等.(Ⅲ)∵点D、E关于原点成中心对称,∴x2=﹣x1,y2=﹣y1①∵D、E两点在抛物线C2上,∴,②.③把①代入③,得.④②﹣④得2y1=﹣2x1.∴y1=﹣x1.设直线DE的解析式为y=k′x,由题意,x1≠0,∴k′=﹣1.∴直线DE的解析式为y=﹣x.根据题意,列出方程组则有x2+c=0,即x2=﹣c.∵点D、E在抛物线C2上,即抛物线C2与直线DE有两个公共点,∴﹣c>0,即c<0.∴c的取值范围是c<0.2020年9月19日。
天津市和平区2019-2020学年中考数学三模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.不等式组的解集在数轴上表示正确的是( )A .B .C .D .2.对于数据:6,3,4,7,6,0,1.下列判断中正确的是( )A .这组数据的平均数是6,中位数是6B .这组数据的平均数是6,中位数是7C .这组数据的平均数是5,中位数是6D .这组数据的平均数是5,中位数是73.如图1,在矩形ABCD 中,动点E 从A 出发,沿AB→BC 方向运动,当点E 到达点C 时停止运动,过点E 做FE ⊥AE ,交CD 于F 点,设点E 运动路程为x ,FC =y ,如图2所表示的是y 与x 的函数关系的大致图象,当点E 在BC 上运动时,FC 的最大长度是25,则矩形ABCD 的面积是( )A .235B .5C .6D .2544.如图,取一张长为a 、宽为b 的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边,a b 应满足的条件是( )A .2a b =B .2a b =C .2a b =D .2a b =5.计算(﹣ab 2)3的结果是( )A .﹣3ab 2B .a 3b 6C .﹣a 3b 5D .﹣a 3b 66.下列交通标志是中心对称图形的为( )A .B .C .D .7.∠BAC 放在正方形网格纸的位置如图,则tan ∠BAC 的值为( )A .16B .15C .13D .128.如果k <0,b >0,那么一次函数y=kx+b 的图象经过( )A .第一、二、三象限B .第二、三、四象限C .第一、三、四象限D .第一、二、四象限9.如图,直线AB 与半径为2的⊙O 相切于点C ,D 是⊙O 上一点,且∠EDC=30°,弦EF ∥AB ,则EF 的长度为( )A .2B .3C 3D .2 10.已知x 2+mx+25是完全平方式,则m 的值为( )A .10B .±10C .20D .±2011.下列运算正确的是( )A .a 3•a 2=a 6B .a ﹣2=﹣21aC .333D .(a+2)(a ﹣2)=a 2+412.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是( )A .12B .23C .25D .710二、填空题:(本大题共6个小题,每小题4分,共24分.)13.二次函数y =(x ﹣2m )2+1,当m <x <m+1时,y 随x 的增大而减小,则m 的取值范围是_____. 14.计算:(13)038=_____. 15.分解因式:a 2-2ab+b 2-1=______.16.如图,二次函数y=a (x ﹣2)2+k (a >0)的图象过原点,与x 轴正半轴交于点A ,矩形OABC 的顶点C 的坐标为(0,﹣2),点P 为x 轴上任意一点,连结PB 、PC .则△PBC 的面积为_____.17.已知关于x的方程x2+kx﹣3=0的一个根是x=﹣1,则另一根为_____.18.因式分解:a3﹣2a2b+ab2=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系xOy中,将抛物线y=x2平移,使平移后的抛物线经过点A(–3,0)、B(1,0).(1)求平移后的抛物线的表达式.(2)设平移后的抛物线交y轴于点C,在平移后的抛物线的对称轴上有一动点P,当BP与CP之和最小时,P点坐标是多少?(3)若y=x2与平移后的抛物线对称轴交于D点,那么,在平移后的抛物线的对称轴上,是否存在一点M,使得以M、O、D为顶点的三角形△BOD相似?若存在,求点M坐标;若不存在,说明理由.20.(6分)计算:(-13)-2– 2(34+)+ 112-21.(6分)如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.求二次函数y=ax2+2x+c的表达式;连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.22.(8分)某中学为了了解在校学生对校本课程的喜爱情况,随机调查了部分学生对A B C D E,,,,五类校本课程的喜爱情况,要求每位学生只能选择一类最喜欢的校本课程,根据调查结果绘制了如下的两个不完整统计图.请根据图中所提供的信息,完成下列问题:(1)本次被调查的学生的人数为;(2)补全条形统计图(3)扇形统计图中,C类所在扇形的圆心角的度数为;,两类校本课程的学生约共有多少名.(4)若该中学有2000名学生,请估计该校最喜爱C D23.(8分)如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED =∠C.(1)判断直线AC与圆O的位置关系,并证明你的结论;(2)若AC=8,cos∠BED=,求AD的长.24.(10分)某市飞翔航模小队,计划购进一批无人机.已知3台A型无人机和4台B型无人机共需6400元,4台A型无人机和3台B型无人机共需6200元.(1)求一台A型无人机和一台B型无人机的售价各是多少元?(2)该航模小队一次购进两种型号的无人机共50台,并且B型无人机的数量不少于A型无人机的数量的2倍.设购进A型无人机x台,总费用为y元.①求y与x的关系式;②购进A型、B型无人机各多少台,才能使总费用最少?25.(10分)如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.(1)求证:△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.26.(12分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,过点D作⊙O的切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AB=25,DE=10,弧DC的长为a,求DE、EC和弧DC围成的部分的面积S.(用含字母a的式子表示).27.(12分)石狮泰禾某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.设每件童装降价x元时,每天可销售______ 件,每件盈利______ 元;(用x的代数式表示)每件童装降价多少元时,平均每天赢利1200元.要想平均每天赢利2000元,可能吗?请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】试题分析:,由①得:x≥1,由②得:x<2,在数轴上表示不等式的解集是:,故选D.考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.2.C【解析】【分析】根据题目中的数据可以按照从小到大的顺序排列,从而可以求得这组数据的平均数和中位数.【详解】对于数据:6,3,4,7,6,0,1,这组数据按照从小到大排列是:0,3,4,6,6,7,1, 这组数据的平均数是:034667957++++++=, 中位数是6, 故选C.【点睛】本题考查了平均数、中位数的求法,解决本题的关键是明确它们的意义才会计算,求平均数是用一组数据的和除以这组数据的个数;中位数的求法分两种情况:把一组数据从小到大排成一列, 正中间如果是一个数,这个数就是中位数,如果正中间是两个数,那中位数是这两个数的平均数.3.B【解析】【分析】易证△CFE ∽△BEA ,可得CF CE BE AB=,根据二次函数图象对称性可得E 在BC 中点时,CF 有最大值,列出方程式即可解题.【详解】 若点E 在BC 上时,如图∵∠EFC+∠AEB =90°,∠FEC+∠EFC =90°,∴∠CFE =∠AEB ,∵在△CFE 和△BEA 中,90CFE AEB C B ︒∠=∠⎧⎨∠=∠=⎩, ∴△CFE ∽△BEA ,由二次函数图象对称性可得E 在BC 中点时,CF 有最大值,此时CF CE BE AB =,BE =CE =x ﹣52,即525522x yx -=-,∴225()52y x =-, 当y =25时,代入方程式解得:x 1=32(舍去),x 2=72, ∴BE =CE =1,∴BC =2,AB =52, ∴矩形ABCD 的面积为2×52=5;故选B .【点睛】本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E 为BC 中点是解题的关键.4.B【解析】【分析】由题图可知:得对折两次后得到的小长方形纸片的长为b ,宽为14a ,然后根据相似多边形的定义,列出比例式即可求出结论.【详解】解:由题图可知:得对折两次后得到的小长方形纸片的长为b ,宽为14a , ∵小长方形与原长方形相似, ,14a b b a ∴=2a b ∴=故选B .【点睛】此题考查的是相似三角形的性质,根据相似三角形的定义列比例式是解决此题的关键.5.D【解析】【分析】根据积的乘方与幂的乘方计算可得.【详解】解:(﹣ab 2)3=﹣a 3b 6,故选D .【点睛】本题主要考查幂的乘方与积的乘方,解题的关键是掌握积的乘方与幂的乘方的运算法则.6.C【解析】【分析】根据中心对称图形的定义即可解答.【详解】解:A 、属于轴对称图形,不是中心对称的图形,不合题意;B 、是中心对称的图形,但不是交通标志,不符合题意;C 、属于轴对称图形,属于中心对称的图形,符合题意;D 、不是中心对称的图形,不合题意.故选C .【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.7.D【解析】【分析】连接CD ,再利用勾股定理分别计算出AD 、AC 、BD 的长,然后再根据勾股定理逆定理证明∠ADC=90°,再利用三角函数定义可得答案.【详解】连接CD ,如图:22222AD =+=22112+=223110+=.∵22222210+=()()(),∴∠ADC=90°,∴tan ∠BAC=222CD AD ==12. 故选D .【点睛】本题主要考查了勾股定理,勾股定理逆定理,以及锐角三角函数定义,关键是证明∠ADC=90°.8.D【解析】【分析】根据k、b的符号来求确定一次函数y=kx+b的图象所经过的象限.【详解】∵k<0,∴一次函数y=kx+b的图象经过第二、四象限.又∵b>0时,∴一次函数y=kx+b的图象与y轴交与正半轴.综上所述,该一次函数图象经过第一、二、四象限.故选D.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b >0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.9.B【解析】本题考查的圆与直线的位置关系中的相切.连接OC,EC所以∠EOC=2∠D=60°,所以△ECO为等边三角形.又因为弦EF∥AB所以OC垂直EF故∠OEF=30°所以10.B【解析】【分析】根据完全平方式的特点求解:a2±2ab+b2.【详解】∵x2+mx+25是完全平方式,∴m=±10,故选B.【点睛】本题考查了完全平方公式:a2±2ab+b2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x 和1的平方,那么中间项为加上或减去x和1的乘积的2倍.11.C【解析】【分析】直接利用同底数幂的乘除运算法则、负指数幂的性质、二次根式的加减运算法则、平方差公式分别计算即可得出答案.【详解】A 、a 3•a 2=a 5,故A 选项错误;B 、a ﹣2=21a ,故B 选项错误;C 、33﹣23=3,故C 选项正确;D 、(a+2)(a ﹣2)=a 2﹣4,故D 选项错误,故选C .【点睛】本题考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法则是解题关键.12.D【解析】【分析】画出树状图得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率.【详解】画树状图如下:一共有20种情况,其中两个球中至少有一个红球的有14种情况,因此两个球中至少有一个红球的概率是:710. 故选:D .【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.m>1【解析】由条件可知二次函数对称轴为x=2m ,且开口向上,由二次函数的性质可知在对称轴的左侧时y 随x 的增大而减小,可求得m+1<2m ,即m >1.故答案为m >1.点睛:本题主要考查二次函数的性质,掌握当抛物线开口向下时,在对称轴右侧y 随x 的增大而减小是解题的关键.14.-1【分析】本题需要运用零次幂的运算法则、立方根的运算法则进行计算.【详解】由分析可得:(13)0-2=﹣1. 【点睛】熟练运用零次幂的运算法则、立方根的运算法则是本题解题的关键.15. (a -b +1)(a -b -1)【解析】【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解,前三项a 2-2ab+b 2可组成完全平方公式,再和最后一项用平方差公式分解.【详解】a 2-2ab+b 2-1,=(a-b )2-1,=(a-b+1)(a-b-1).【点睛】本题考查用分组分解法进行因式分解.难点是采用两两分组还是三一分组.本题前三项可组成完全平方公式,可把前三项分为一组,分解一定要彻底.16.4【解析】【分析】根据二次函数的对称性求出点A 的坐标,从而得出BC 的长度,根据点C 的坐标得出三角形的高线,从而得出答案.【详解】∵二次函数的对称轴为直线x=2, ∴点A 的坐标为(4,0),∵点C 的坐标为(0,-2),∴点B 的坐标为(4,-2), ∴BC=4,则BCP 4224S =⨯÷=V .【点睛】本题主要考查的是二次函数的对称性,属于基础题型.理解二次函数的轴对称性是解决这个问题的关键.17.1【解析】设方程的另一个根为x2,则-1×x2=-1,解得:x2=1,故答案为1.【点睛】本题考查了一元二次方程根与系数的关系:如果x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,那么x1+x2=-ba,x1x2=ca.18.a(a﹣b)1.【解析】【分析】先提公因式a,然后再利用完全平方公式进行分解即可.【详解】原式=a(a1﹣1ab+b1)=a(a﹣b)1,故答案为a(a﹣b)1.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=x2+2x﹣3;(2)点P坐标为(﹣1,﹣2);(3)点M坐标为(﹣1,3)或(﹣1,2).【解析】【分析】(1)设平移后抛物线的表达式为y=a(x+3)(x-1).由题意可知平后抛物线的二次项系数与原抛物线的二次项系数相同,从而可求得a的值,于是可求得平移后抛物线的表达式;(2)先根据平移后抛物线解析式求得其对称轴,从而得出点C关于对称轴的对称点C′坐标,连接BC′,与对称轴交点即为所求点P,再求得直线BC′解析式,联立方程组求解可得;(3)先求得点D的坐标,由点O、B、E、D的坐标可求得OB、OE、DE、BD的长,从而可得到△EDO为等腰三角直角三角形,从而可得到∠MDO=∠BOD=135°,故此当DM ODDO OB=或DM OBDO OD=时,以M、O、D为顶点的三角形与△BOD相似.由比例式可求得MD的长,于是可求得点M的坐标.【详解】(1)设平移后抛物线的表达式为y=a(x+3)(x﹣1),∵由平移的性质可知原抛物线与平移后抛物线的开口大小与方向都相同,∴平移后抛物线的二次项系数与原抛物线的二次项系数相同,∴平移后抛物线的二次项系数为1,即a=1,∴平移后抛物线的表达式为y=(x+3)(x﹣1),(2)∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线对称轴为直线x=﹣1,与y轴的交点C(0,﹣3),则点C关于直线x=﹣1的对称点C′(﹣2,﹣3),如图1,连接B,C′,与直线x=﹣1的交点即为所求点P,由B(1,0),C′(﹣2,﹣3)可得直线BC′解析式为y=x﹣1,则1 {1y xx=-=-,解得12 xy=-⎧⎨=-⎩,所以点P坐标为(﹣1,﹣2);(3)如图2,由2{1y xx==-得11xy=-=⎧⎨⎩,即D(﹣1,1),则DE=OD=1,∴△DOE为等腰直角三角形,∵BO=1,∴∵∠BOD=135°,∴点M只能在点D上方,∵∠BOD=∠ODM=135°,∴当DM ODDO OB=或DM OBDO OD=时,以M、O、D为顶点的三角形△BOD相似,①若DM ODDO OB=1=,解得DM=2,此时点M坐标为(﹣1,3);②若DM OBDO OD==,解得DM=1,此时点M坐标为(﹣1,2);综上,点M坐标为(﹣1,3)或(﹣1,2).【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了平移的性质、翻折的性质、二次函数的图象和性质、待定系数法求二次函数的解析式、等腰直角三角形的性质、相似三角形的判定,证得∠ODM=∠BOD=135°是解题的关键.20.0【解析】【分析】本题涉及负指数幂、二次根式化简和绝对值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】原式.【点睛】本题主要考查负指数幂、二次根式化简和绝对值,熟悉掌握是关键.21.(1)y=﹣x2+2x+3(2)(2,32)(3)当点P的坐标为(32,154)时,四边形ACPB的最大面积值为75 8【解析】【分析】(2)根据菱形的对角线互相垂直且平分,可得P 点的纵坐标,根据自变量与函数值的对应关系,可得P 点坐标;(3)根据平行于y 轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PQ 的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.【详解】(1)将点B 和点C 的坐标代入函数解析式,得9603,a c c ++=⎧⎨=⎩解得13,a b =-⎧⎨=⎩ 二次函数的解析式为y=﹣x 2+2x+3;(2)若四边形POP′C 为菱形,则点P 在线段CO 的垂直平分线上,如图1,连接PP′,则PE ⊥CO ,垂足为E ,∵C (0,3), ∴30,2E ,⎛⎫ ⎪⎝⎭∴点P 的纵坐标32, 当32y =时,即23232x x -++=, 解得12210210x x +-==(不合题意,舍), ∴点P 的坐标为21032;⎫+⎪⎪⎝⎭(3)如图2,P 在抛物线上,设P (m ,﹣m 2+2m+3),设直线BC 的解析式为y=kx+b ,将点B 和点C 的坐标代入函数解析式,得3303,k b +=⎧⎨=⎩解得13.k b =-⎧⎨=⎩直线BC 的解析为y=﹣x+3,设点Q 的坐标为(m ,﹣m+3),PQ=﹣m 2+2m+3﹣(﹣m+3)=﹣m 2+3m .当y=0时,﹣x 2+2x+3=0,解得x 1=﹣1,x 2=3,OA=1,()314AB =--=,S 四边形ABPC =S △ABC +S △PCQ +S △PBQ111,222AB OC PQ OF PQ FB =⋅+⋅+⋅ ()2114333,22m m =⨯⨯+-+⨯ 23375228m ⎛⎫=--+ ⎪⎝⎭, 当m=32时,四边形ABPC 的面积最大. 当m=32时,215234m m -++=,即P 点的坐标为315,24⎛⎫ ⎪⎝⎭. 当点P 的坐标为315,24⎛⎫ ⎪⎝⎭时,四边形ACPB 的最大面积值为758.本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用菱形的性质得出P点的纵坐标,又利用了自变量与函数值的对应关系;解(3)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质.22.(1)300;(2)见解析;(3)108°;(4)约有840名.【解析】【分析】(1)根据A种类人数及其占总人数百分比可得答案;(2)用总人数乘以B的百分比得出其人数,即可补全条形图;(3)用360°乘以C类人数占总人数的比例可得;(4)总人数乘以C、D两类人数占样本的比例可得答案.【详解】解:(1)本次被调查的学生的人数为69÷23%=300(人),故答案为:300;(2)喜欢B类校本课程的人数为300×20%=60(人),补全条形图如下:(3)扇形统计图中,C类所在扇形的圆心角的度数为360°×90300=108°,故答案为:108°;(4)∵2000×90+36300=840,∴估计该校喜爱C,D两类校本课程的学生共有840名.【点睛】本题考查条形统计图、扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解题关键.条形统计图能清楚地表示出每个项目的数据.23.(1)AC与⊙O相切,证明参见解析;(2).试题分析:(1)由于OC⊥AD,那么∠OAD+∠AOC=90°,又∠BED=∠BAD,且∠BED=∠C,于是∠OAD=∠C,从而有∠C+∠AOC=90°,再利用三角形内角和定理,可求∠OAC=90°,即AC是⊙O的切线;(2)连接BD,AB是直径,那么∠ADB=90°,在Rt△AOC中,由于AC=8,∠C=∠BED,cos∠BED=,利用三角函数值,可求OA=6,即AB=12,在Rt△ABD中,由于AB=12,∠OAD=∠BED,cos∠BED=,同样利用三角函数值,可求AD.试题解析:(1)AC与⊙O相切.∵弧BD是∠BED与∠BAD所对的弧,∴∠BAD=∠BED,∵OC⊥AD,∴∠AOC+∠BAD=90°,∴∠BED+∠AOC=90°,即∠C+∠AOC=90°,∴∠OAC=90°,∴AB⊥AC,即AC与⊙O相切;(2)连接BD.∵AB是⊙O直径,∴∠ADB=90°,在Rt△AOC中,∠CAO=90°,∵AC=8,∠ADB=90°,cos∠C=cos∠BED=,∴AO=6,∴AB=12,在Rt△ABD中,∵cos∠OAD=cos∠BED=,∴AD=AB•cos∠OAD=12×=.考点:1.切线的判定;2.解直角三角形.24.(1)一台A型无人机售价800元,一台B型无人机的售价1000元;(2)①y=﹣200x+50000;②购进A型、B型无人机各16台、34台时,才能使总费用最少.【解析】【分析】(1)根据3台A型无人机和4台B型无人机共需6400元,4台A型无人机和3台B型无人机共需6200元,可以列出相应的方程组,从而可以解答本题;(2)①根据题意可以得到y与x的函数关系式;②根据①中的函数关系式和B型无人机的数量不少于A型无人机的数量的2倍,可以求得购进A型、B 型无人机各多少台,才能使总费用最少.【详解】解:(1)设一台A型无人机售价x元,一台B型无人机的售价y元,+=x y346400⎧⎨,解得,8001000x y =⎧⎨=⎩, 答:一台A 型无人机售价800元,一台B 型无人机的售价1000元;(2)①由题意可得,y 800x 100050x 200x 50000++=(﹣)=﹣,即y 与x 的函数关系式为y 200x 50000+=﹣; ②∵B 型无人机的数量不少于A 型无人机的数量的2倍,50x 2x ﹣∴≥, 解得,2163x ≤, y 200x 50000+Q =﹣,∴当x 16=时,y 取得最小值,此时y 20016500004680050x 34⨯+=﹣=,﹣=, 答:购进A 型、B 型无人机各16台、34台时,才能使总费用最少.【点睛】本题考查二元一次方程组的应用、一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和方程的知识解答.25. (1)证明见解析(2)四边形AFBE 是菱形【解析】试题分析:(1)由平行四边形的性质得出AD ∥BC ,得出∠AEG=∠BFG ,由AAS 证明△AGE ≌△BGF 即可;(2)由全等三角形的性质得出AE=BF ,由AD ∥BC ,证出四边形AFBE 是平行四边形,再根据EF ⊥AB ,即可得出结论.试题解析:(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AEG=∠BFG ,∵EF 垂直平分AB ,∴AG=BG ,在△AGEH 和△BGF 中,∵∠AEG=∠BFG ,∠AGE=∠BGF ,AG=BG ,∴△AGE ≌△BGF (AAS );(2)解:四边形AFBE 是菱形,理由如下:∵△AGE ≌△BGF ,∴AE=BF ,∵AD ∥BC ,∴四边形AFBE 是平行四边形,又∵EF ⊥AB ,∴四边形AFBE 是菱形.考点:平行四边形的性质;全等三角形的判定与性质;线段垂直平分线的性质;探究型.26.(1)见解析;(2)75﹣154a. 【解析】(1)连接CD,求出∠ADC=90°,根据切线长定理求出DE=EC,即可求出答案;(2)连接CD、OD、OE,求出扇形DOC的面积,分别求出△ODE和△OCE的面积,即可求出答案【详解】(1)证明:连接DC,∵BC是⊙O直径,∴∠BDC=90°,∴∠ADC=90°,∵∠C=90°,BC为直径,∴AC切⊙O于C,∵过点D作⊙O的切线DE交AC于点E,∴DE=CE,∴∠EDC=∠ECD,∵∠ACB=∠ADC=90°,∴∠A+∠ACD=90°,∠ADE+∠EDC=90°,∴∠A=∠ADE;(2)解:连接CD、OD、OE,∵DE=10,DE=CE,∴CE=10,∵∠A=∠ADE,∴AE=DE=10,∵∠ACB=90°,AB=25,∴由勾股定理得:BC===15, ∴CO=OD=, ∵的长度是a ,∴扇形DOC 的面积是×a×=a ,∴DE 、EC 和弧DC 围成的部分的面积S=××10+×10﹣a=75﹣a . 【点睛】本题考查了圆周角定理,切线的性质,切线长定理,等腰三角形的性质和判定,勾股定理,扇形的面积,三角形的面积等知识点,能综合运用知识点进行推理和计算是解此题的关键.27.(1)(20+2x ),(40﹣x );(2)每件童装降价20元或10元,平均每天赢利1200元;(3)不可能做到平均每天盈利2000元.【解析】【分析】(1)、根据销售量=原销售量+因价格下降而增加的数量;每件利润=原售价-进价-降价,列式即可;(2)、根据总利润=单件利润×数量,列出方程即可;(3)、根据(2)中的相关关系方程,判断方程是否有实数根即可.【详解】(1)、设每件童装降价x 元时,每天可销售20+2x 件,每件盈利40-x 元,故答案为(20+2x ),(40-x );(2)、根据题意可得:(20+2x)(40-x)=1200,解得:121020x x ==,,即每件童装降价10元或20元时,平均每天盈利1200元;(3)、(20+2x)(40-x)=2000, 230x 6000x -+=,∵此方程无解,∴不可能盈利2000元.【点睛】本题主要考查的是一元二次方程的实际应用问题,属于中等难度题型.解决这个问题的关键就是要根据题意列出方程.。
天津市和平区2019-2020学年中考第三次适应性考试数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.(﹣1)0+|﹣1|=( ) A .2 B .1 C .0 D .﹣12.一艘在南北航线上的测量船,于A 点处测得海岛B 在点A 的南偏东30°方向,继续向南航行30海里到达C 点时,测得海岛B 在C 点的北偏东15°方向,那么海岛B 离此航线的最近距离是( )(结果保留小数点后两位)(参考数据:≈1.732,≈1.414)A .4.64海里B .5.49海里C .6.12海里D .6.21海里3.已知一组数据1、2、3、x 、5,它们的平均数是3,则这一组数据的方差为( ) A .1B .2C .3D .44.关于x 的一元二次方程x 2-4x+k=0有两个相等的实数根,则k 的值是( ) A .2B .-2C .4D .-45.不等式﹣12x+1>3的解集是( ) A .x <﹣4B .x >﹣4C .x >4D .x <46.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有( ) A .1种B .2种C .3种D .4种7.一次函数()()y m 1x m 2=-+-的图象上有点()11M x ,y 和点()22N x ,y ,且12x x >,下列叙述正确的是( )A .若该函数图象交y 轴于正半轴,则12y y <B .该函数图象必经过点()1,1--C .无论m 为何值,该函数图象一定过第四象限D .该函数图象向上平移一个单位后,会与x 轴正半轴有交点 8.如图,在下列条件中,不能判定直线a 与b 平行的是( )A .∠1=∠2B .∠2=∠3C .∠3=∠5D .∠3+∠4=180°9.下列是我国四座城市的地铁标志图,其中是中心对称图形的是( )A .B .C .D .10.如图,AB 是⊙O 的直径,点C ,D ,E 在⊙O 上,若∠AED =20°,则∠BCD 的度数为( )A .100°B .110°C .115°D .120°11.不等式组312840x x ->⎧⎨-≤⎩的解集在数轴上表示为( )A .B .C .D .12.下列命题中,正确的是( ) A .菱形的对角线相等B .平行四边形既是轴对称图形,又是中心对称图形C .正方形的对角线不能相等D .正方形的对角线相等且互相垂直二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如果23a b =,那么22242a b a ab--的结果是______.14.已知654a b c==,且26a b c +-=,则a 的值为__________. 15.如图1,点P 从扇形AOB 的O 点出发,沿O→A→B→0以1cm/s 的速度匀速运动,图2是点P 运动时,线段OP 的长度y 随时间x 变化的关系图象,则扇形AOB 中弦AB 的长度为______cm .16.将数字37000000用科学记数法表示为_____.17.月球的半径约为1738000米,1738000这个数用科学记数法表示为___________.18.在△ABC中,∠C=90°,若tanA=12,则sinB=______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)数学课上,李老师和同学们做一个游戏:他在三张硬纸片上分别写出一个代数式,背面分别标上序号①、②、③,摆成如图所示的一个等式,然后翻开纸片②是4x1+5x+6,翻开纸片③是3x1﹣x﹣1.解答下列问题求纸片①上的代数式;若x是方程1x=﹣x﹣9的解,求纸片①上代数式的值.20.(6分)如图,▱ABCD中,点E,F分别是BC和AD边上的点,AE垂直平分BF,交BF于点P,连接EF,PD.求证:平行四边形ABEF是菱形;若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.21.(6分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A=∠ADE.求证:DE是⊙O的切线;若AD=16,DE=10,求BC的长.22.(8分)先化简,再求值:22111()211xx x x x--÷-+-,其中x=﹣1.23.(8分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.这次调查的市民人数为________人,m=________,n=________;补全条形统计图;若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.24.(10分)绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为x (单位:万元)。
天津市和平区2019-2020学年中考第三次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为()A.310B.15C.12D.7102.关于的一元二次方程有两个不相等的实数根,则的取值范围为()A.B.C.D.3.2019年4月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是()A.32,31 B.31,32 C.31,31 D.32,354.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有()A.1对B.2对C.3对D.4对5.如图,▱ABCD对角线AC与BD交于点O,且AD=3,AB=5,在AB延长线上取一点E,使BE=25 AB,连接OE交BC于F,则BF的长为()A.23B.34C.56D.16.如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x的-元二次方程-x2+mx-t=0 (t为实数)在l<x<3的范围内有解,则t的取值范围是( )A.-5<t≤4B.3<t≤4C.-5<t<3 D.t>-57.在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有5个红球,4个蓝球.若随机摸出一个蓝球的概率为13,则随机摸出一个黄球的概率为()A.14B.13C.512D.128.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31°B.28°C.62°D.56°9.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y= 1x的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y3 10.如图是一个空心圆柱体,其俯视图是( )A.B.C.D.11.若关于x的一元二次方程x2﹣2x+m=0没有实数根,则实数m的取值是( ) A.m<1 B.m>﹣1 C.m>1 D.m<﹣112.在Rt△ABC中,∠C=90°,如果AC=2,cosA=23,那么AB的长是()A.3 B.43C5D13二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从点A到点B经过的路径长为_____.14.在一个不透明的袋子里装有除颜色外其它均相同的红、蓝小球各一个,每次从袋中摸出一个小球记下颜色后再放回,摸球三次,“仅有一次摸到红球”的概率是_____.15.如图,在平面直角坐标系xOy中,A(-2,0),B(0,2),⊙O的半径为1,点C为⊙O上一动点,过点B作BP⊥直线AC,垂足为点P,则P点纵坐标的最大值为cm.16.如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=34x-3与x轴、y轴分别交于点A、B,点M是直线AB上的一个动点,则PM的最小值为________.17.a(a+b)﹣b(a+b)=_____.18.若关于x的二次函数y=ax2+a2的最小值为4,则a的值为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在□ABCD中,E为BC边上一点,且AB=AE,求证:AC=DE。
天津市和平区2019-2020学年中考数学仿真第三次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若分式11x - 有意义,则x 的取值范围是 A .x >1 B .x <1 C .x≠1 D .x≠02.甲、乙两人同时分别从A ,B 两地沿同一条公路骑自行车到C 地.已知A ,C 两地间的距离为110千米,B ,C 两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C 地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x 千米/时.由题意列出方程.其中正确的是( )A .1101002x x =+B .1101002x x =+C .1101002x x =-D .1101002x x =- 3.对于命题“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题的是( )A .∠1=50°,∠1=40°B .∠1=40°,∠1=50°C .∠1=30°,∠1=60°D .∠1=∠1=45°4.如图,把一个矩形纸片ABCD 沿EF 折叠后,点D 、C 分别落在D′、C′的位置,若∠EFB=65°,则∠AED′为( )。
A .70°B .65°C .50°D .25°5.二次函数2y ax bx c =++(a 、b 、c 是常数,且a≠0)的图象如图所示,下列结论错误的是( )A .4ac <b 2B .abc <0C .b+c >3aD .a <b6.小手盖住的点的坐标可能为( )A .()5,2B .()3,4-C .()6,3-D .()4,6--72的等腰直角三角形与边长为3的等边三角形在同一水平线上,等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,设穿过时间为t,两图形重合部分的面积为S,则S关于t的图象大致为()A.B.C.D.8.在⊙O中,已知半径为5,弦AB的长为8,则圆心O到AB的距离为()A.3 B.4 C.5 D.69.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为()A.2:3 B.3:2 C.4:5 D.4:910.不等式2x﹣1<1的解集在数轴上表示正确的是()A.B.C.D.11.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330 B.(1﹣10%)x=330C.(1﹣10%)2x=330 D.(1+10%)x=33012.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知△ABC中,∠C=90°,AB=9,2cos3A=,把△ABC 绕着点C旋转,使得点A落在点A′,点B落在点B′.若点A′在边AB上,则点B、B′的距离为_____.14.如图,折叠长方形纸片ABCD,先折出对角线BD,再将AD折叠到BD上,得到折痕DE,点A的对应点是点F,若AB=8,BC=6,则AE的长为_____.15.九(5)班有男生27人,女生23人,班主任发放准考证时,任意抽取一张准考证,恰好是女生的准考证的概率是________________.16.比较大小:51-_____1(填“<”或“>”或“=”).17.如图,BD是⊙O的直径,BA是⊙O的弦,过点A的切线交BD延长线于点C,OE⊥AB于E,且AB=AC,若CD=22,则OE的长为_____.18.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,矩形ABCD为台球桌面,AD=260cm,AB=130cm,球目前在E点位置,AE=60cm.如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置.求BF的长.20.(6分)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“舞蹈”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如图统计图:根据统计图所提供的倍息,解答下列问题:(1)本次抽样调查中的学生人数是多少人;(2 )补全条形统计图;(3)若该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数;(4)现有爱好舞蹈的两名男生两名女生想参加舞蹈社,但只能选两名学生,请你用列表或画树状图的方法,求出正好选到一男一女的概率.21.(6分)随着互联网的发展,同学们的学习习惯也有了改变,一些同学在做题遇到困难时,喜欢上网查找答案.针对这个问题,某校调查了部分学生对这种做法的意见(分为:赞成、无所谓、反对),并将调查结果绘制成图1和图2两个不完整的统计图.请根据图中提供的信息,解答下列问题:此次抽样调查中,共调查了多少名学生?将图1补充完整;求出扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;根据抽样调查结果,请你估计该校1500名学生中有多少名学生持“无所谓”意见.22.(8分)我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.王老师采取的调查方式是(填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共件,其中b班征集到作品件,请把图2补充完整;王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.23.(8分)在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/2m下降到12月份的11340元/2m.求11、12两月份平均每月降价的百分率是多少?如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/2m?请说明理由24.(10分)某校对学生就“食品安全知识”进行了抽样调查(每人选填一类),绘制了如图所示的两幅统计图(不完整)。
2020年天津市和平区中考数学三模试卷
参考答案与试题解析
一、选择题(共12小题,每小题3分,满分36分)
1.(2020•和平区三模)2cos30°的值等于()
A.1 B.C.D.2
考点:特殊角的三角函数值.
专题:计算题.
分析:根据特殊角的三角函数值直接解答即可.
解答:解:2cos30°=2×=.
故选C.
点评:此题考查了特殊角的三角函数值,是需要识记的内容.
2.下列图形中,是中心对称图形,但不是轴对称图形的是()
A.B.C.D.
考点:中心对称图形;轴对称图形.
分析:依据轴对称图形与中心对称的概念即可解答.
解答:解:A选项只是中心对称图形但不是轴对称图形
B选项是轴对称也是中心对称图形,
C、D选项是轴对称但不是中心对称图形.
故选A.
点评:对轴对称与中心对称概念的考查:
如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.
如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.
3.点A在数轴上表示+2,从点A沿数轴向左平移3个单位到点B,则点B所表示的实数是()A.3 B.﹣1 C.5D.﹣1或3
考点:平移的性质.
分析:根据平移的性质,结合数轴的特点,计算求得点B所表示的实数.
解答:解:点A在数轴上表示+2,从点A沿数轴向左平移3个单位到点B,B点所表示的实数是2﹣3,即﹣1.故选B.
点评:根据A点平移的单位数,计算出点B所表示的实数.
4.(2020•和平区三模)过度包装既浪费资源又污染环境,据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120200吨,数3120200用科学记数法表示为()A.3.12×104B.3.12×105C.3.12×106D.0.312×107
考点:科学记数法—表示较大的数.
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于3120200有7位,所以可以确定n=7﹣1=6.
解答:解:3 120 000=3.12×106.
故选C.
点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.
5.某特警部队为了选拔“神枪手”,举行了1000米射击比赛,最后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是0.21,则下列说法中,正确的是()
A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定
C.甲、乙两人成绩的稳定性相同D.无法确定谁的成绩更稳定
考点:方差.
分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
解答:解:∵甲的方差是0.28,乙的方差是0.21,
∴S甲2>S乙2,
∴乙的成绩比甲的成绩稳定;
故选B.
点评:本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
6.(2020•和平区三模)如图是由5个相同的正方体组成的一个立体图形,它的三视图是()
A.B.C.D.
考点:简单组合体的三视图.
分析:找到从正面、左面、上面看所得到的图形即可,注意所有的看到的棱都应表现在三视图中.解答:解:从几何体的正面看可得2层小正方形,上面右侧有1个,下面有3个;
从几何体的左面看可得2层小正方形,上面左侧有1个,下面有2个;
从几何体的上面看可得2层小正方形,上面有3个,下面右侧有1个;
故选:B.
点评:本题考查了三视图的知识,关键是掌握三视图所看的位置.
7.(2020•和平区三模)下列说法错误的是()
A.对角线相等是矩形具有而菱形不具有的性质
B.对角线互相垂直平分是正方形具有而菱形不具有的性质
C.每一条对角线平分一组对角是菱形具有而矩形不具有的性质
D.顺次连接任意四边形各边中点所得的四边形一定是平行四边形
考点:中点四边形;菱形的性质;矩形的性质;正方形的性质.
分析:利用中点四边形及特殊的平行四边形的判定方法逐一判断后即可确定正确的选项.
解答:解:A、对角线相等是矩形具有而菱形不具有的性质,正确;
B、菱形的对角线也互相垂直平分,故错误;
C、每一条对角线平分一组对角是菱形具有而矩形不具有的性质,正确;
D、顺次连接任意四边形各边中所得的四边形一定是平行四边形,正确,
故选B.
点评:本题考查了中点四边形及特殊的平行四边形的判定方法,牢记这些判定方法是解答本题的关键.
8.如图,AB是⊙O的直径,∠C=30°,则∠ABD等于()
A.30° B.40° C.50°D. 60°
考点:圆周角定理.
分析:连接AD,由AB是⊙O的直径,可证∠ADB=90°,由圆周角定理可证∠A=∠C=30°,即可求∠ABD.
解答:解:连接AD,
∵AB是⊙O的直径,
∴∠ADB=90°,
∵∠A=∠C=30°,
∴∠ABD=90°﹣∠A=60°.
故选D.
点评:本题考查了直径对的圆周角是直角,圆周角定理,直角三角形的性质.
9.(2020•和平区三模)已知x﹣3y=0,且y≠0,则(1+)•的值等于()A.2 B.C.D.3
考点:分式的化简求值.
分析:把小括号内分式通分并把分母分解因式,然后根据分式的乘法运算进行计算,再把x=3y代入进行计算即可得解.。