第4章 微波收发技术--噪声和接收机灵敏度(本)
- 格式:ppt
- 大小:3.08 MB
- 文档页数:44
《微波技术》课程教学大纲一、课程基本信息课程编号:08030010课程中文名称:微波技术课程英文名称:microwave technology课程性质:专业指定选修课考核方式:考查开课专业:电子信息工程、通信工程、信息对抗技术开课学期:5总学时:40+16总学分:3.5二、课程目的和任务《微波技术》是研究微波信号的产生、放大、传输、发射、接收和测量的学科。
通过讲述传输线理论、理想导波系统理论、微波网络理论,使学生掌握传输线的工作状态和特性参量、波导的场结构和传输特性,了解常用微波元件的基本结构和工作原理,具有解决微波传输基本问题的能力。
三、教学基本要求(含素质教育与创新能力培养的要求)1.掌握传输线的基本理论和工作状态,具有分析传输线特性参量的基本能力,掌握阻抗圆图和导纳圆图的基本构成和应用,了解阻抗匹配的基本方法和原理。
2.掌握矩形波导的一般理论与传输特性,掌握矩形波导主模的场分布与相应参数,了解圆波导、同轴线、带状线和微带线等传输线的工作原理、结构特点、传输特性和分析方法。
3.掌握微波网络的基本理论,重点包括微波网络参量的基本定义、基本电路单元的参量矩阵、微波网络组合的网络参量、微波网络的工作特性参量,了解二端口微波网络参量的基本性质,具有分析二端口微波网络工作特性参量的基本能力。
4.掌握阻抗变换器、定向耦合器、微带功分器、波导匹配双T的结构特点、工作原理、分析方法及其主要用途,了解电抗元件、连接元件、衰减器和移相器、微波滤波器和微波谐振器等微波元件的结构特点和工作原理。
四、教学内容与学时分配第一章绪论(2学时)微波的概念及其特点,微波技术的发展和应用,微波技术的研究方法和基本内容。
第二章传输线理论(13学时)1.传输线方程及其求解2.传输线的特性参量3.均匀无耗传输线工作状态分析4.阻抗圆图及其应用5.传输线的阻抗匹配第三章微波传输线(9学时)1.理想导波系统的一般理论2.导波系统的传输特性3.矩形波导4.带状线5.微带线第四章微波网络(9学时)1.波导等效为平行双线2.微波元件等效为微波网络3.二端口微波网络4.基本电路单元的参量矩阵5.二端口微波网络的组合及参考面移动的影响6.二端口微波网络的工作特性参量7. 多端口微波网络第五章常用微波元件(7学时)1.阻抗变换器2.定向耦合器3.波导匹配双T4.微波滤波器第六章实验教学(16)五、教学方法及手段(含现代化教学手段)以课堂讲授为主,适当配合课堂讨论,充分使用多媒体教学;以学生自学为辅,学生可以通过网络课堂和微波网站在线学习。
微波接收机系统的主要性能指标分析摘要:微波接收机性能的好坏对微波通信信号的接收和处理起到关键的作用。
文章在微波接收机系统结构的基础上,分析了噪声系数、灵敏度等接收机系统中常见的主要性能指标。
关键词:接收机;性能指标;微波中途分类号:TG113.26文献标识码:A文章编号:一、微波接收机为了在一条充满噪声的空中信道中有效地传输信息,发射机需要将载有信息的信号调制到射频载波上。
微波接收机的功能是解调经过调制的信号,同时,又要保证足够的信噪比。
由于无线传输环境的特殊性,例如多径效应、路径损耗、时变性等,导致噪声和干扰无处不在,微波接收机的性能就显得尤为重要。
信号带宽和频谱直接影响射频收发模块的结构和电路模块的设计,信号的损耗和衰落,使得信号幅度在大范围内起伏,从而要求发射机进行功率控制和接收机良好的线性度,由于接收信号非常微弱,还需要接收机有较高的灵敏度。
图1是一个常见的系统原理图二、接收机的主要性能指标分析2.1噪声特性噪声和干扰是任何电子系统的大敌。
接收机中的噪声会掩盖微弱信号,限制接收机对微弱信号的检测能力,即限制接收机的极限灵敏度。
接收机噪声来自两个方面:一是天线接收到的外部噪声;二是接收机自身产生的噪声。
天线接收到的噪声包括天空噪声、大气噪声、地球噪声、银河噪声和人工噪声等;接收机自身产生的噪声包括放大器、滤波器、混频器、检波器等各级产生的噪声。
接收机内部噪声限制了接收机检测的最小信号,信号必须大于噪声一定强度才能被检测到。
要衡量一个接收机对有用信号接收性能的好坏,往往要知道加到传输信号上噪声的数量,通常以信号功率与噪声功率之比,信噪比(Signal-to-noise ratio,SNR)来判定。
对二端口网络的研究中,确切地知道通过网络的信号上的噪声量是相当重要的,表征这种特性的重要参数便是噪声系数,噪声系数是定量描述一个元件或系统所产生噪声程度的指数,系统的噪声系数受许多因素影响,如电路损耗、偏压、放大倍数等。
接收灵敏度的定义公式摘要:本应用笔记论述了扩频系统灵敏度的定义以及计算数字通信接收机灵敏度的方法。
本文提供了接收机灵敏度方程的逐步推导过程,还包括具体数字的实例,以便验证其数学定义。
在扩频数字通信接收机中,链路的度量参数Eb/No (每比特能量与噪声功率谱密度的比值)与达到某预期接收机灵敏度所需的射频信号功率值的关系是从标准噪声系数F的定义中推导出来的。
CDMA、WCDMA蜂窝系统接收机及其它扩频系统的射频工程师可以利用推导出的接收机灵敏度方程进行设计,对于任意给定的输入信号电平,设计人员通过权衡扩频链路的预算即可确定接收机参数。
从噪声系数F推导Eb/No关系根据定义,F是设备(单级设备,多级设备,或者是整个接收机)输入端的信噪比与这个设备输出端的信噪比的比值(图1)。
因为噪声在不同的时间点以不可预见的方式变化,所以用均方信号与均方噪声之比表示信噪比(SNR)。
图1。
下面是在图1中用到的参数的定义,在灵敏度方程中也会用到它们:Sin = 可获得的输入信号功率(W)Nin = 可获得的输入热噪声功率(W) = KTBRF其中:K = 波尔兹曼常数 = 1。
381 × 10—23 W/Hz/K,T = 290K,室温BRF = 射频载波带宽(Hz) = 扩频系统的码片速率Sout = 可获得的输出信号功率(W)Nout = 可获得的输出噪声功率(W)G = 设备增益(数值)F = 设备噪声系数(数值)的定义如下:F = (Sin / Nin) / (Sout / Nout) = (Sin / Nin)×(Nout / Sout)用输入噪声Nin表示Nout:Nout = (F × Nin × Sout) / Sin其中Sout = G × Sin得到:Nout = F × Nin × G调制信号的平均功率定义为S = Eb / T,其中Eb为比特持续时间内的能量,单位为W-s,T是以秒为单位的比特持续时间.调制信号平均功率与用户数据速率的关系按下面的式子计算:1 / T = 用户数据比特率,Rbit单位Hz,得出Sin = Eb × Rbit根据上述方程,以Eb/No表示的设备输出端信噪比为:Sout / Nout = (Sin × G) / (Nin × G × F) =Sin / (Nin × F) =(Eb × Rbit)/ (KTBRF × F) =(Eb/ KTF) ×(Rbit / BRF),其中KTF表示1比特持续时间内的噪声功率(No).因此,Sout / Nout = Eb/No × Rbit / BRF在射频频带内,BRF等于扩频系统的码片速率W,处理增益(PG = W/Rbit)可以定义为:PG = BRF / Rbit所以, Rbit / BRF = 1/PG,由此得输出信噪比:Sout / Nout = Eb/No × 1 / PG。
微波技术与天线复习知识要点资料讲解本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March《微波技术与天线》复习知识要点绪论微波的定义:微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段。
微波的频率范围:300MHz~3000GHz ,其对应波长范围是1m~微波的特点(要结合实际应用):似光性,频率高(频带宽),穿透性(卫星通信),量子特性(微波波谱的分析)第一章均匀传输线理论均匀无耗传输线的输入阻抗(2个特性)定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗注:均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关。
两个特性:1、λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Z in(z)= Z in(z+λ/2)2、λ/4变换性: Z in(z)- Z in(z+λ/4)=Z02证明题:(作业题)均匀无耗传输线的三种传输状态(要会判断)参数行波驻波行驻波|Γ|010<|Γ|<1ρ1∞1<ρ<∞Z1匹配短路、开路、纯电抗任意负载能量电磁能量全部被负载吸收电磁能量在原地震荡1.行波状态:无反射的传输状态匹配负载:负载阻抗等于传输线的特性阻抗沿线电压和电流振幅不变电压和电流在任意点上同相2.纯驻波状态:全反射状态负载阻抗分为短路、开路、纯电抗状态3.行驻波状态:传输线上任意点输入阻抗为复数传输线的三类匹配状态(知道概念)负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波。
源阻抗匹配:电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源。
此时,信号源端无反射。
共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值。
第四章发射机T.A.Weil4.1 引言发射机是脉冲雷达系统的一个组成部分图4.1是典型的脉冲雷达系统框图。
在这些方块中,公共媒体一般只标注天线和显示器,其余部分则成为“幕后英雄”。
这些不被媒体看重的部分对雷达系统同等重要,而且从设计角度而言也同样有趣。
发射机在雷达系统的成本、体积、重量、设计投入等方面占有非常大的比重,也是对系统电源能量以及维护要求最多的部分。
它通常是竖在雷达设备间角落里的大机柜,嗡嗡叫着,身上挂着“高压危险”的牌子,所以人们都宁愿远离它。
其内部结构奇特,更像一个酿酒厂而不是电脑或电视。
本章试图解释雷达发射机为何如此,希望给读者展示一个不神秘的雷达发射系统。
为何如此大的功率?发射机体积大、重量重、成本高、消耗功率大,原因是它需产生大功率射频输出,而这种要求来自雷达系统设计的综合考虑。
搜索雷达作用距离的四次方与平均射频功率、天线孔径面积(确定天线增益)、扫过需要覆盖的立体角所需时间(限制了每个方向上收集信号及为提高信噪比而积累信号的时间长短)成正比,即:4(4.1)⨯∝R⨯PTA探测距离随功率的四次方根变化是因为输出的发射功率密度与返回的目标回波能量密度随其经过距离的平方而衰减。
用提高发射机功率的方法增大雷达作用距离需付出大的代价:功率需要提高16倍才能使探测距离增加一倍。
反之,降低距离要求可显著地减少系统成本。
功率孔径积是衡量雷达性能的基本参数。
这个参数如此重要,以至在第一阶段限制战略武器条约中被专门提到,并作为限制反弹道导弹(ABM )雷达性能的基础。
接收机灵敏度未在方程(4.1)中出现,这是由于热噪声对接收机的灵敏度有明确的限制,在这个简单距离方程中默认接收机总是工作在最高的灵敏度状态。
平均发射功率仅仅是雷达距离方程中的一个因子而且成本又很高,为何还要求如此之高的功率?用减小功率但增加天线孔径或扫描时间的办法来补偿是否为较好的办法?回答是天线孔径增加使成本增加得更快。
这是因为天线的重量、结构的复杂程度、尺寸误差以及对底座的要求都随着天线孔径的增加而迅速增加。
无线发射功率与收灵敏度发射功率与增益无线电发射机输出的射频信号,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。
电磁波到达接收地点后,由天线接收下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。
因此在无线网络的工程中,计算发射装置的发射功率与天线的辐射能力非常重要。
Tx是发射( Transmits )的简称。
无线电波的发射功率是指在给定频段范围内的能量,通常有两种衡量或测量标准:功率(W )-相对 1 瓦(Watts )的线性水准。
例如,WiFi 无线网卡的发射功率通常为0.036W ,或者说36mW 。
增益(dBm )-相对 1 毫瓦(milliwatt )的比例水准。
例如WiFi 无线网卡的发射增益为15.56dBm 。
两种表达方式可以互相转换:dBm = 10 x log[ 功率mW]mW = 10 [ 增益dBm / 10 dBm]在无线系统中,天线被用来把电流波转换成电磁波,在转换过程中还可以对发射和接收的信号进行“放大”,这种能量放大的度量成为“增益(Gain)”。
天线增益的度量单位为“ dBi ”。
由于无线系统中的电磁波能量是由发射设备的发射能量和天线的放大叠加作用产生,因此度量发射能量最好同一度量-增益(dB ),例如,发射设备的功率为100mW ,或20dBm ;天线的增益为10dBi ,则:发射总能量=发射功率(dBm )+天线增益(dBi )=20dBm +10dBi=30dBm或者:=1000mW=1W在“小功率”系统中(例如无线局域网络设备)每个dB 都非常重要,特别要记住“ 3 dB 法则”。
每增加或降低3 dB ,意味着增加一倍或降低一半的功率:-3 dB = 1/2 功率-6 dB = 1/4 功率+3 dB = 2x 功率+6 dB = 4x 功率例如,100mW 的无线发射功率为20dBm ,而50mW 的无线发射功率为17dBm ,而200mW 的发射功率为23dBm 。
wcdmabts接收机灵敏度和整机噪声系数的理论计算WCDMA BTS 接收机灵敏度和整机噪声系数的理论计算1 概述灵敏度是衡量接收机在一定条件下能够接收小信号的能力,它和诸多因素有关。
例如,在不同的误码率、信纳比、信噪比等条件及不同的接收环境(静态、多径信道模型)情况下灵敏度概念和数值可能各不相同。
静态参考灵敏度是指接收机在静态理想传播环境(相当于有用信号直接输入接收机,没有任何外界干扰)下,错误比特率小于某一规定值时接收机可以接收最小有用信号的能力。
它是各种传播条件中最高的灵敏度,也就是说在任何情况下的接收机灵敏度数值都不可能超过静态参考灵敏度。
通常所讲的基站灵敏度一般是指它的静态参考灵敏度。
2 接收机灵敏度计算基站接收机系统可以分为射频滤波、LNA、混频、中频滤波、放大、A/D变换、DSP处理、解调等几部分组成,如图1所示。
f N b/Nt ELNA 混频 VGA 射频滤波器解码 A/D变换、DSP处理 Pnoise Pmin LO图1 接收机原理框图进入接收机输入端的信号有两种,有用信号Pmin 和热噪声信号Pnoise,由于接收机通道中电路本身也会产生噪声Nf,因而在解调处有用信号和噪声信号的比例为:Eb/Nt=Pmin-Pnoise-Nf (1)其中Eb/Nt 是有用信号平均比特能量与噪声和干扰功率谱密度的比值,又称为解调门限,相当于模拟FM调制的C/I(载干比),是衡量数字调制和编码方式品质因素的标准。
Eb/Nt 的值取决于该系统的调制方式和解调算法。
Pnoise 为接收机输入口处的热噪声信号,又称本-23底噪声,其数值为Pnoise=10Log(KT?BW),其中K是波尔兹曼常数,K=1.3810J/K;,0T为标准噪声温度,T=290K。
则: 00Pnoise=10Log(KT)+10Log(BW)=-174dBm+10Log(BW) (2) 0式中BW为系统信道带宽。
对于WCDMA系统而言,BW=3.84MHz,由式(1)、(2)可以推出WCDMA基站接收机理论上静态参考灵敏度Pmin为:Pmin=-174dBm+10Log(BW)+ Nf+ Eb/Nt=-108.15+ Nf+ Eb/Nt (3)静态参考灵敏度是在静态传播情况下测得的数值,是衡量接收机性能好坏的一个重要指标。