当前位置:文档之家› 变化率与导数、导数的计算(共31张PPT)

变化率与导数、导数的计算(共31张PPT)

变化率与导数教案

变化率与导数教案 Prepared on 24 November 2020

第三章 变化率和导数 3.1.1瞬时变化率—导数 教学目标: (1)理解并掌握曲线在某一点处的切线的概念 (2)会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度 (3)理解导数概念 实际背景,培养学生解决实际问题的能力,进一步掌握在一点处的导数的定义及其几何意义,培养学生转化问题的能力及数形结合思想 教学过程:时速度我们是通过在一段时间内的平均速度的极限来定义的,只要知道了物体的运动方程,代入公式就可以求出瞬时速度了.运用数学工具来解决物理方面的问题,是不是方便多了.所以数学是用来解决其他一些学科,比如物理、化学等方面问题的一种工具,我们这一节课学的内容以及上一节课学的是我们学习导数的一些实际背景 一、复习引入 1、什么叫做平均变化率; 2、曲线上两点的连线(割线)的斜率与函数f(x)在区间[x A ,x B ]上的平均变化率 3、如何精确地刻画曲线上某一点处的变化趋势呢 下面我们来看一个动画。从这个动画可以看出,随着点P 沿曲线向点Q 运动,随着点P 无限逼近点Q 时,则割线的斜率就会无限逼近曲线在点Q 处的切线的斜率。 所以我们可以用Q 点处的切线的斜率来刻画曲线在点Q 处的变化趋势 二、新课讲解 1、曲线上一点处的切线斜率 不妨设P(x 1,f(x 1)),Q(x 0,f(x 0)),则割线PQ 的斜率为0 101) ()(x x x f x f k PQ --=, 设x 1-x 0=△x ,则x 1 =△x +x 0,

∴x x f x x f k PQ ?-?+= ) ()(00 当点P 沿着曲线向点Q 无限靠近时,割线PQ 的斜率就会无限逼近点Q 处切线斜率,即当△x 无限趋近于0时,x x f x x f k PQ ?-?+= ) ()(00无限趋近点Q 处切线斜率。 2、曲线上任一点(x 0,f(x 0))切线斜率的求法: x x f x x f k ?-?+= ) ()(00,当△x 无限趋近于0时,k 值即为(x 0,f(x 0))处切线的 斜率。 3、瞬时速度与瞬时加速度 (1)平均速度: 物理学中,运动物体的位移与所用时间的比称为平均速度 (2) 位移的平均变化率: t t s t t s ?-?+) ()(00 (3)瞬时速度:当无限趋近于0 时,t t s t t s ?-?+) ()(00无限趋近于一个常数,这个常 数称为t=t 0时的瞬时速度 求瞬时速度的步骤: 1.先求时间改变量t ?和位置改变量)()(00t s t t s s -?+=? 2.再求平均速度t s v ??= 3.后求瞬时速度:当t ?无限趋近于0,t s ??无限趋近于常数v 为瞬时速度 (4)速度的平均变化率: t t v t t v ?-?+) ()(00 (5)瞬时加速度:当t ?无限趋近于0 时,t t v t t v ?-?+) ()(00无限趋近于一个常数,这 个常数称为t=t 0时的瞬时加速度 注:瞬时加速度是速度对于时间的瞬时变化率

变化率与导数、导数的计算学案(高考一轮复习)

20XX 年高中数学一轮复习教学案 第二章 函数、导数及其应用 第11节 变化率与导数、导数的计算 一.学习目标: 1.了解导数概念的实际背景,理解导数的几何意义; 2.能根据导数定义,求函数y =c (c 为常数),y =x ,y =x 2,y =1 x 的导数; 3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. 二.学习重、难点: 1.学习重点:能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数; 2.学习难点:理解导数的几何意义. 三.学习方法:讲练结合 四.自主复习: 1.导数的概念 (1)函数在x =x 0处的导数 函数y =f (x )在x =x 0处的瞬时变化率是__________________________=lim Δx →0 Δy Δx , 称其为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0 . (2)导函数:当上式中的x 0看作变量x 时,函数f ′(x )为f (x )的________. (3)导数的几何意义:f ′(x 0)是曲线y =f (x )在点P (x 0,f (x 0))处的________,相应的切线方程是_____________________.

2.基本初等函数的导数公式 3.运算法则 (1)[f(x)±g(x)]′=_________________; (2)[f(x)·g(x)]′=________________________; (3)[f(x) g(x) ]′=_______________________ (g(x)≠0).五.复习前测: 1.已知函数f(x)=sin x+ln x,则f′(1)的值为() A.1-cos1 B.1+cos1 C.cos1-1 D.-1-cos1

(完整版)变化率与导数、导数的计算知识点与题型归纳

1 ●高考明方向 1.了解导数概念的实际背景. 2.理解导数的几何意义. 3.能根据导数定义求函数 y =c (c 为常数),y =x ,y =x 2,y =x 3,y =1 x 的导数. 4.能利用基本初等函数的导数公式和导数的四则运算法则 求简单函数的导数. ★备考知考情 由近几年高考试题统计分析可知,单独考查导数运算的题目很少出现,主要是以导数运算为工具,考查导数的几何意义为主,最常见的问题就是求过曲线上某点的切线的斜率、方程、斜率与倾斜角的关系,以平行或垂直直线斜率间的关系为载体求参数的值,以及与曲线的切线相关的计算题.考查题型以选择题、填空题为主,多为容易题和中等难度题,如2014广东理科10、文科11. 2014广东理科10 曲线52-=+x y e 在点()0,3处的切线方程为 ; 2014广东文科11 曲线53=-+x y e 在点()0,2-处的切线方程为 ;

一、知识梳理《名师一号》P39 知识点一导数的概念 (1)函数y=f(x)在x=x0处的导数 称函数y=f(x)在x=x0处的瞬时变化 率lim Δx→0Δy Δx=lim Δx→0 f(x0+Δx)-f(x0) Δx 为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x =x0 . (2)称函数f′(x)=lim Δx→0f(x+Δx)-f(x) Δx为f(x)的导函数. 注意:《名师一号》P40 问题探究问题1 f′(x)与f′(x0)有什么区别? f′(x)是一个函数,f′(x0)是常数, f′(x0)是函数f′(x)在点x0处的函数值. 例.《名师一号》P39 对点自测1 1.判一判 (1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.() (2)f′(x0)与[f(x0)]′表示的意义相同.() (3)f′(x0)是导函数f′(x)在x=x0处的函数值.() 答案(1)×(2)×(3)√ 2

《变化率问题与导数的概念》导学案

第1课时变化率问题与导数的概念 a 1.通过物理中的变化率问题和瞬时速度引入导数的概念. 2.掌握利用求函数在某点的平均变化率的极限实现求导数的基本步骤. 3.通过构建导数概念,使学生体会极限思想,为将来学习极限概念积累学习经验. 4.通过导数概念的教学教程,使学生体会到从特殊到一般的过程是发现事物变化规律的重要过程. 借助多媒体播放2012年伦敦奥运会中国跳水运动员陈若琳夺得女子单人10米跳台冠军的视频.上节课我们已经学习了平均变化率的问题,我们知道运动员的平均速度不一定能够反映她在某一时刻的运动状态,而运动员在不同时刻的运动状态是不同的,我们需要借助于瞬时速度这样的量来刻画,那么我们如何才能求出运动员在某一时刻的瞬时速度呢? 问题1:根据以上情境,设陈若琳相对于水面的高度h (单位:m)与起跳后的时间t (单位:s) 存在函数关系h(t)=-4.9t2+6.5t+10,如果用她在某段时间内的平均速度描述其运动状态, 那么: (1)在0≤t≤0.5这段时间里,运动员的平均速度= . (2)在1≤t≤2这段时间里, 运动员的平均速度= . 问题2:函数y=f(x)从x1到x2的平均变化率公式是.如果用x1与增量Δx

表示,平均变化率的公式是. 问题3:函数f(x)在x=x0处的瞬时变化率的定义:一般地,函数y=f(x)在x=x0处的瞬时变化率是=,我们称它为函数y=f(x)在x=x 0处的导数,记作f'(x0)或y',即f'(x0)== . 问题4:在导数的定义中,对Δx→0的理解是:Δx>0,Δx<0,但. 1.已知函数y=f(x)=x2+1,当x=2,Δx=0.1时,Δy的值为(). A.0.40 B.0.41 C.0.43 D.0.44 2.设函数f(x)在点x0附近有定义,且有f(x0+Δx)-f(x0)=aΔx+b(Δx)2(a,b为常数),则(). A.f'(x)=a B.f'(x)=b C.f'(x0)=a D.f'(x0)=b 3.一质点按规律s(t)=2t2运动,则在t=2时的瞬时速度为. 4.求y=2x2+4x在点x=3处的导数.

变化率与导数、导数的计算

第十一节变化率与导数、导数的计算 [备考方向要明了] 考什么怎么考 1.了解导数概念的实际背景. 2.理解导数的几何意义. 3.能根据导数定义求函数y=c(c为常 数),y=x,y=x2,y=x3, y= 1 x的导数. 4.能利用基本初等函数的导数公式和 导数的四则运算法则求简单函数的导 数. 1.对于导数的几何意义,高考要求较高,主要以选择 题或填空题的形式考查曲线在某点处的切线问题, 如2012年广东T12,辽宁T12等. 2.导数的基本运算多涉及三次函数、指数函数与对数 函数、三角函数等,主要考查对基本初等函数的导 数及求导法则的正确利用. [归纳·知识整合] 1.导数的概念 (1)函数y=f(x)在x=x0处的导数: 称函数y=f(x)在x=x0处的瞬时变化率 lim Δx→0 f(x0+Δx)-f(x0) Δx=lim Δx→0 Δy Δx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即 f′(x0)=lim Δx→0 Δy Δx=lim Δx→0 f(x0+Δx)-f(x0) Δx. (2)导数的几何意义: 函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x-x0). (3)函数f(x)的导函数:

称函数f ′(x )=lim Δx →0 f (x +Δx )-f (x ) Δx 为f (x )的导函数. [探究] 1.f ′(x )与f ′(x 0)有何区别与联系? 提示:f ′(x )是一个函数,f ′(x 0)是常数,f ′(x 0)是函数f ′(x )在x 0处的函数值. 2.曲线y =f (x )在点P 0(x 0,y 0)处的切线与过点P 0(x 0,y 0)的切线,两种说法有区别吗? 提示:(1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线. (2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,而且这样的直线可能有多条. 3.过圆上一点P 的切线与圆只有公共点P ,过函数y =f (x )图象上一点P 的切线与图象也只有公共点P 吗? 提示:不一定,它们可能有2个或3个或无数多个公共点. 2.几种常见函数的导数 3.导数的运算法则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 4.复合函数的导数 复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.

第1讲 变化率与导数、导数的计算

第1讲变化率与导数、导数的计算 [学生用书P39] 一、知识梳理 1.导数的概念 (1)函数y=f(x)在x=x0处的导数 一般地,称函数y=f(x)在x=x0处的瞬时变化率 lim Δx→0f(x0+Δx)-f(x0) Δx=lim Δx→0 Δy Δx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x= x0,即f′(x0)=lim Δx→0Δy Δx =lim Δx→0 f(x0+Δx)-f(x0) Δx . (2)导数的几何意义 函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x-x0). (3)函数f(x)的导函数 称函数f′(x)=lim Δx→0f(x+Δx)-f(x) Δx 为f(x)的导函数. 2.基本初等函数的导数公式 原函数导函数 f(x)=c(c为常数)f′(x)=0 f(x)=x n(n∈Q*)f′(x)=nx n-1 f(x)=sin x f′(x)=cos_x f(x)=cos x f′(x)=-sin_x

3.(1)[f (x )±g (x )]′=f ′(x )±g ′(x ). (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ). (3)?? ?? ??f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )](g (x )≠0). 4.复合函数的导数 复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 常用结论 1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数. 2.[af (x )+bg (x )]′=af ′(x )+bg ′(x ). 3.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”. 二、习题改编 1.(选修2-2P65A 组T2(1)改编)函数y =x cos x -sin x 的导数为( ) A .x sin x B .-x sin x C .x cos x D .-x cos x 解析:选B.y ′=x ′cos x +x (cos x )′-(sin x )′=cos x -x sin x -cos x =-x sin x . 2.(选修2-2P18A 组T6改编)曲线y =1-2 x +2在点(-1,-1)处的切线方程为________. 解析:因为y ′= 2 (x +2) 2,所以y ′|x =-1=2. 故所求切线方程为2x -y +1=0. 答案:2x -y +1=0 3.(选修2-2P7例2改编)有一机器人的运动方程为s =t 2+3 t (t 是时间,s 是位移),则该 机器人在t =2时的瞬时速度为________.

变化率问题和导数的概念

第一章导数及其应用 1.1变化率与导数 1.1.1变化率问题 1.1.2导数的概念 双基达标(限时20分钟) 1.已知函数f(x)=2x2-4的图象上一点(1,-2)及邻近一点(1+Δx,-2+Δy), 则Δy Δx等于 (). A.4 B.4x C.4+2Δx D.4+2(Δx)2 解析Δy Δx= f(1+Δx)-f(1) Δx= 2(1+Δx)2-2 Δx=4+2Δx. 答案 C 2.如果质点M按规律s=3+t2运动,则在一小段时间[2,2.1]中相应的平均速度是 ().A.4 B.4.1 C.0.41 D.3 解析v=(3+2.12)-(3+22) 0.1=4.1. 答案 B 3.如果某物体的运动方程为s=2(1-t2)(s的单位为m,t的单位为s),那么其在 1.2 s末的瞬时速度为 ().A.-4.8 m/s B.-0.88 m/s C.0.88 m/s D.4.8 m/s 解析物体运动在1.2 s末的瞬时速度即为s在1.2处的导数,利用导数的定义即可求得. 答案 A

4.已知函数y =2+1 x ,当x 由1变到2时,函数的增量Δy =________. 解析 Δy =? ? ???2+12-(2+1)=-12. 答案 -1 2 5.已知函数y =2 x ,当x 由2变到1.5时,函数的增量Δy =________. 解析 Δy =f (1.5)-f (2)=21.5-22=43-1=1 3. 答案 1 3 6.利用导数的定义,求函数y =1 x 2+2在点x =1处的导数. 解 ∵Δy =??????1(x +Δx )2+2-? ???? 1x 2+2=-2x Δx -(Δx )2(x +Δx )2·x 2, ∴Δy Δx =-2x -Δx (x +Δx )2·x 2 , ∴y ′=lim Δx →0 Δy Δx =lim Δx →0 -2x -Δx (x +Δx )2·x 2=-2 x 3, ∴y ′|x =1=-2. 综合提高 (限时25分钟) 7.已知函数y =f (x )=x 2+1,则在x =2,Δx =0.1时,Δy 的值为 ( ). A .0.40 B .0.41 C .0.43 D .0.44 解析 Δy =(2+0.1)2-22=0.41. 答案 B 8.设函数f (x )可导,则 lim Δx →0 f (1+Δx )-f (1) 3Δx 等于 ( ). A .f ′(1) B .3f ′(1) C.1 3f ′(1) D .f ′(3)

(完整版)变化率与导数、导数的运算

让青春之光闪耀在为梦想奋斗的道路上。 1 第十节变化率与导数、导数的运算 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数: 函数y =f (x )在x =x 0处的瞬时变化率 lim Δx →0 Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即 f ′(x 0)=lim Δx →0 Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx . (2)导数的几何意义: 函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0). (3)函数f (x )的导函数: 称函数f ′(x )=lim Δx →0 f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.基本初等函数的导数公式 3.导数的运算法则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)?? ??f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x ) [g (x )](g (x )≠0). 4.复合函数的导数 复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.

变化率与导数教案设计

113 第三章 变化率和导数 3.1.1瞬时变化率—导数 教学目标: (1)理解并掌握曲线在某一点处的切线的概念 (2)会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度 (3)理解导数概念 实际背景,培养学生解决实际问题的能力,进一步掌握在一点处的导数的定义 及其几何意义,培养学生转化问题的能力及数形结合思想 教学过程:时速度我们是通过在一段时间的平均速度的极限来定义的,只要知道了物体的运动方 程,代入公式就可以求出瞬时速度了.运用数学工具来解决物理方面的问题,是不是方便多了.所 以数学是用来解决其他一些学科,比如物理、化学等方面问题的一种工具,我们这一节课学的容 以及上一节课学的是我们学习导数的一些实际背景 一、复习引入 1、什么叫做平均变化率; 2、曲线上两点的连线(割线)的斜率与函数f(x)在区间[x A ,x B ]上的平均变化率 3、如何精确地刻画曲线上某一点处的变化趋势呢? 下面我们来看一个动画。从这个动画可以看出,随着点P 沿曲线向点Q 运动,随着点P 无限 逼近点Q 时,则割线的斜率就会无限逼近曲线在点Q 处的切线的斜率。 所以我们可以用Q 点处的切线的斜率来刻画曲线在点Q 处的变化趋势 二、新课讲解 1、曲线上一点处的切线斜率 不妨设P(x 1,f(x 1)),Q(x 0,f(x 0)),则割线PQ 的斜率为0101)()(x x x f x f k PQ --= , 设x 1-x 0=△x ,则x 1 =△x +x 0, ∴x x f x x f k PQ ?-?+=)()(00 当点P 沿着曲线向点Q 无限靠近时,割线PQ 的斜率就会无限逼近点Q 处切线斜率,即当△x 无限趋近于0时,x x f x x f k PQ ?-?+=)()(00无限趋近点Q 处切线斜率。 2、曲线上任一点(x 0,f(x 0))切线斜率的求法: x x f x x f k ?-?+=)()(00,当△x 无限趋近于0时,k 值即为(x 0,f(x 0))处切线的斜率。 3、瞬时速度与瞬时加速度 (1)平均速度: 物理学中,运动物体的位移与所用时间的比称为平均速度 (2) 位移的平均变化率:t t s t t s ?-?+)()(00 (3)瞬时速度:当无限趋近于0 时, t t s t t s ?-?+)()(00无限趋近于一个常数,这个常数称为t=t 0时的瞬时速度 求瞬时速度的步骤:

变化率与导数导数的计算知识点与题型归纳

●高考明方向 1.了解导数概念的实际背景. 2.理解导数的几何意义. 3.能根据导数定义求函数 y =c (c 为常数),y =x ,y =x 2,y =x 3,y =1 x 的导数. 4.能利用基本初等函数的导数公式和导数的四则运算法则 求简单函数的导数. ★备考知考情 由近几年高考试题统计分析可知,单独考查导数运算的题目很少出现,主要是以导数运算为工具,考查导数的几何意义为主,最常见的问题就是求过曲线上某点的切线的斜率、方程、斜率与倾斜角的关系,以平行或垂直直线斜率间的关系为载体求参数的值,以及与曲线的切线相关的计算题.考查题型以选择题、填空题为主,多为容易题和中等难度题,如2014广东理科10、文科11. 2014广东理科10 曲线52-=+x y e 在点()0,3处的切线方程为 ; 2014广东文科11 曲线53=-+x y e 在点()0,2-处的切线方程为 ;

一、知识梳理《名师一号》P39 知识点一导数的概念 (1)函数y =f(x)在x=x0处的导数 称函数y=f(x)在x=x0处的瞬时变化 率lim Δx→0Δy Δx =lim Δx→0 f x +Δx-f x0 Δx 为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x . (2)称函数f′(x)=lim Δx→0f x+Δx-f x Δx 为f(x)的导 函数. 注意:《名师一号》P40 问题探究问题1 f′(x)与f′(x )有什么区别? f′(x)是一个函数,f′(x )是常数, f′(x )是函数f′(x)在点x0处的函数值. 例.《名师一号》P39 对点自测1 1.判一判 (1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.( ) (2)f′(x0)与[f(x0)]′表示的意义相同.( ) (3)f′(x0)是导函数f′(x)在x=x0处的函数值.( ) 答案(1)×(2)×(3)√

高中数学-变化率与导数、导数的计算

高中数学-变化率与导数、导数的计算 一、选择题(每小题5分,共35分) 1.f′(x)是函数f(x)=x3+2x+1的导函数,则f′(-1)的值为( ) A.0 B.3 C.4 D.- 【解析】选B.因为f(x)=x3+2x+1, 所以f′(x)=x2+2. 所以f′(-1)=3. 2.已知函数f(x)=cos x,则f(π)+f′= ( ) A.- B.- C.- D.- 【解析】选C.因为f′(x)=-cos x+(-sin x), 所以f(π)+f′=-+·(-1)=-. 3.(·吉林模拟)已知曲线y=ln x的切线过原点,则此切线的斜率 为( ) A.e B.-e C. D.- 【解析】选C.y=ln x的定义域为(0,+∞),且y′=,设切点为(x0,ln x0),则y′=,切线方程为 y-ln x0=(x-x0),因为切线过点(0,0),所以-ln x0=-1,解得x0=e,故此切线的斜率为. 【变式备选】曲线y=e x在点A(0,1)处的切线斜率为( )

A.1 B.2 C.e D. 【解析】选A.由题意知y′=e x,故所求切线斜率k=e x=e0=1. 4.(·沈阳模拟)若曲线y=x3+ax在坐标原点处的切线方程是2x-y=0,则实数a= ( ) A.1 B.-1 C.2 D.-1 【解析】选C.导数的几何意义即为切线的斜率,由y′=3x2+a得在x=0处的切线斜率为a,所以a=2. 【变式备选】直线y=x+b是曲线y=ln x(x>0)的一条切线,则实数b的值 为( ) A.2 B.ln 2+1 C.ln 2-1 D.ln 2 【解析】选C.y=ln x的导数为y′=,由=,解得x=2,所以切点为(2,ln 2).将其代入直线方程y=x+b,可得b=ln 2-1. 5.已知f(x)=2e x sin x,则曲线f(x)在点(0,f(0))处的切线方程为( ) A.y=0 B.y=2x C.y=x D.y=-2x 【解析】选B.因为f(x)=2e x sin x,所以f(0)=0,f′(x)=2e x·(sin x+cos x),所以f′(0)=2,所以曲线f(x)在点(0,f(0))处的切线方程为y=2x. 6.设曲线y=在点处的切线与直线x-ay+1=0平行,则实数a等 于( ) A.-1 B. C.-2 D.2 【解析】选A.因为y′=,所以y′=-1, 由条件知=-1,所以a=-1. 7.直线y=kx+1与曲线y=x3+ax+b相切于点A(1,3),则2a+b的值等于 ( ) A.2 B.-1 C.1 D.-2 【解析】选C.依题意知,y′=3x2+a, 则由此解得 所以2a+b=1. 二、填空题(每小题5分,共15分) 8.若曲线y=2x2的一条切线l与直线x+4y-8=0垂直,则切线l的方程为________________.

变化率问题 导数的概念

1.1变化率与导数 1.1.1变化率问题 1.1.2导数的概念 1.通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景. 2.会求函数在某一点附近的平均变化率.(重点) 3.会利用导数的定义求函数在某点处的导数.(重点、难点) 4.理解函数的平均变化率,瞬时变化率及导数的概念.(易混点) [基础·初探] 教材整理1函数的平均变化率 阅读教材P2~P4“思考”以上部分,完成下列问题. 1.函数的平均变化率 (1)对于函数y=f(x),给定自变量的两个值x1,x2,当自变量x从x1变为x2时,函数值从f(x1)变为f(x2),我们把式子____________称为函数y=f(x)从x1到x2的平均变化率. (2)习惯上用Δx表示x2-x1,即Δx=________,可把Δx看作是相对于x1的一个“增量”,可用x1+Δx代替x2;类似地,Δy=________.于是,平均变化率可表示为________.

2.平均变化率的几何意义 设A (x 1,f (x 1)),B (x 2,f (x 2))是曲线y =f (x )上任意不同的两点,函数y =f (x )的平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1=f (x 1+Δx )-f (x 1) Δx 为割线AB 的______,如图1-1-1 所示. 图1-1-1 【答案】 1.(1)f (x 2)-f (x 1)x 2-x 1 (2)x 2-x 1 f (x 2)-f (x 1) Δy Δx 2.斜率 判断(正确的打“√”,错误的打“×”) (1)由Δx =x 2-x 1,知Δx 可以为0.( ) (2)Δy =f (x 2)-f (x 1)是Δx =x 2-x 1相应的改变量,Δy 的值可正,可负,也可为零,因此平均变化率可正,可负,可为零.( ) (3)对山坡的上、下两点A ,B 中,Δy Δx =y 2-y 1 x 2-x 1可以近似刻画山坡的陡峭程 度.( ) 【答案】 (1)× (2)√ (3)√ 教材整理2 瞬时速度、导数的概念 阅读教材P 4~P 6“例1”以上部分,完成下列问题. 1.瞬时速度 (1)物体在__________的速度称为瞬时速度. (2)一般地,设物体的运动规律是s =s (t ),则物体在t 0到t 0+Δt 这段时间内的平均速度为Δs Δt =s (t 0+Δt )-s (t 0)Δt .如果Δt 无限趋近于0时, Δs Δt 无限趋近于某个常数v ,我们就说当Δt 趋向于0时,Δs Δt 的________是v ,这时v 就是物体在时刻t =t 0时的瞬时速度,即瞬时速度v =lim Δt →0 Δs Δt =lim Δt →0 s (t 0+Δt )-s (t 0)Δt .

1.1变化率与导数-教学设计-教案

教学准备 1. 教学目标 (1)理解平均变化率的概念. (2)了解瞬时速度、瞬时变化率、的概念. (3)理解导数的概念 (4)会求函数在某点的导数或瞬时变化率. 2. 教学重点/难点 教学重点:瞬时速度、瞬时变化率的概念及导数概念的形成和理解 教学难点:会求简单函数y=f(x)在x=x0处的导数 3. 教学用具 多媒体、板书 4. 标签 教学过程 一、创设情景、引入课题 【师】十七世纪,在欧洲资本主义发展初期,由于工场的手工业向机器生产过渡,提高了生产力,促进了科学技术的快速发展,其中突出的成就就是数学研究中取得了丰硕的成果―――微积分的产生。 【板演/PPT】 【师】人们发现在高台跳水运动中,运动员相对于水面的高度h(单位:米)与起跳后的时间t(单位:秒)存在函数关系 h(t)=-4.9t2+6.5t+10. 如何用运动员在某些时间段内的平均速度粗略地描述其运动状态? 【板演/PPT】

让学生自由发言,教师不急于下结论,而是继续引导学生:欲知结论怎样,让我们一起来观察、研探。 【设计意图】自然进入课题内容。 二、新知探究 [1]变化率问题 【合作探究】 探究1 气球膨胀率 【师】很多人都吹过气球,回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? 气球的体积V(单位:L)与半径r(单位:dm)之间的函数关系是 如果将半径r表示为体积V的函数,那么 【板演/PPT】 【活动】 【分析】 当V从0增加到1时,气球半径增加了 气球的平均膨胀率为 (1)当V从1增加到2时,气球半径增加了 气球的平均膨胀率为 0.62>0.16 可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了. 【思考】当空气容量从V1增加到V2时,气球的平均膨胀率是多少? 解析: 探究2 高台跳水

变化率与导数的概念

变化率与导数的概念(新授课学案) 学生姓名 ________________ 班级__________________ 学号__________________ 教学内容 通过实例探究与分析,引导学生经历思考、讨论、探究、理解瞬时速度的含 义、感受逼近的思想. 体验提出问题,寻求想法,实施想法,发现规律,给出定义的数学探究过程. 了解导数概念的背景,理解导数的定义和内涵. 教学目的 1. 了解导数概念的背景,会区分平均速度、瞬时速度、平均变化率、瞬时变 化率. 2. 理解导数与函数平均变化率、瞬时变化率的关系. 3. 会求简单函数y=f(x)在x=x 0 处的导数 4. 体会用已知探究未知的思考方法和从特殊到一般的探究思想. 5. 培养小组合作学习的习惯. 教学重点 1. 导数(瞬时变化率)概念的形成. 2. 体会用已知探究未知的思考方法、从特殊到一般的探究思想. 3. 感受无限逼近的思维方法. 教学难点 1. 体会由平均变化率到瞬时变化率的过渡. 2. 导数的思想及其内涵的理解 教学过程 一、自主学习——对一种生活的数学解释 问题1 气球膨胀率 问题2 高台跳水 我们都吹过气球回忆一下吹气 在高台跳水运动中,运动员相对于水面的 球的过程,可以发现,随着气球内空 高度h(单位:米)与起跳后的时间t (单位: 气容量的增加,气球的半径增加越 秒)存在函数关系h(t)=-4.9t 2+6.5t+10. 来越慢.从数学角度,如何描述这种 如何用运动员在某些时间段内的平均速 现象呢? 度粗略地描述其运动状态? 我来算算看:(可用计算器) 当气球体积v=0时,半径 当时间t=0时,运动员相对于水面的高度 h (0)=__________________ r(0)=______________ 当时间t=0.5时,运动员相对于水面的高度 当气球体积v=1时,半径 h (0.5)=__________________ 当时间t=1时,运动员相对于水面的高度 r(1)=______________ h (1)=__________________ 当气球体积v=2时,半径 当时间t=2时,运动员相对于水面的高度 h (2)=__________________ r(2)=______________ 比较以上数据,思考变量间的变化情况. 1、当气球空气容量V 从0增加到1时,气球半径的平均增长率为____________ 当气球空气容量V 从1增加到2时,气球半径的平均增长率为____________ 2、当时间t 从0到0.5这段时间里,运动员高度的平均增长率为____________ 当时间t 从0.5到1这段时间里,运动员高度的平均增长率为____________ 当时间t 从1到2这段时间里,运动员高度的平均增长率为____________ 我的身边也有这样的数学解释:______________________________________ __________________________________________(列举1-2个同类的生活实例) 热 爱 生 活

变化率与导数的概念

变化率与导数的概念 引入 问题1容器装水 向高为H的水瓶中注水,注满为止.如果注水量V与水深h的函数关系如图,那么水瓶的形状是图中的() 问题2 高台跳水 高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)= -4.9t2+6.5t+10. 一、平均变化率

1.概念:对于函数()y f x =,2121--()()f x f x x x 称为函数 f (x )从x 1到x 2的平均变化率. 注: 2.几何意义: 平均变化率y x ?=?2121 --()()f x f x x x 表示 过11(, ())P x f x 与22(,())Q x f x 直线的斜率. 练习:求2=y x 在0=x x 附近的平均变化率。 二、瞬时速度 h (t )= -4.9t 2+6.5t +10在65049 ≤≤t 间的平均速度为 65049065049 -==-( )()(/)h h v m s . 考察2t =附近的情况:224913122-+?==-?--+?()()..() h h t v t t 结论:当t ?趋近于0时,即无论t 从小于2的一边,还是从大于2的 一边趋近于2时, 平均速度都趋近于常数-13.1. 为了表述方便,我们用0(2)(2)lim 13.1t h t h t ?→+?-=-? 三、导数的概念

函数y =f (x )在x =x 0处的瞬时变化率是: 0000()()lim lim x x f x x f x y x x ?→?→+?-?=?? 我们称它为函数 ()y f x =在0x x =处的导数,记作0()f x ' 或0|x x y =',即 注: 四、导函数 1.定义:()f x 在开区间(,)a b 内每一点都是可导的,具体是指: 任给0(,)x a b ∈,总有00000()()lim lim ()x x f x x f x y f x x x ?→?→+?-?'==??. 从而对开区间内(,)a b 的每一个0x ,都有一个数0()f x '与之对应, 所以在开区间(,)a b 内,()f x '就构成一个新函数,此新函数称为 函数()f x 的导函数,简称导数 2.函数()f x 在点0x 处的导数0()f x '、导函数()f x '、导数之间的 区别与联系。 例1.(1)求函数 2 ()3f x x =在x =1处的导数.

变化率问题与导数的概念

《变化率问题与导数的概念》教学设计 阳城一中郭耀平 一、内容和内容解析 (1)内容:本节主要包括两方面的内容:变化率和导数的概念。从平均变化率开始,用平均变化率探求瞬时变化率,并从数学上给予各种不同变化率在数量上的精确描述,即导数。 (2)内容解析:通过实例,让学生切身体会平均变化率;再经历由平均变化率到瞬时变化率的过程,在对实际背景问题研究的基础上,抽象概括出导数的概念。导数的概念是微积分的核心概念之一,是即将学习的导数的几何意义、导数的计算、导数的应用等知识的基础。导数是研究事物变化快慢,研究函数单调性、极值、最值和解决生活中优化问题的有力工具。本节内容课堂教学的主线是渗透其中蕴涵的逼近思想,教学重点是导数的概念。 二、目标和目标解析 (1)目标 ①了解微积分的概貌及其在数学中的位置,经历运用数学描述刻画现实的过程; ②理解变化率的概念,体验由平均变化率到瞬时变化率的过程; ③掌握导数的概念,探究运用形象直观的“逼近”方法定义导数的过程。 (2)目标解析 ①了解微积分的概貌及其在数学中的位置,让学生接受数学文化的熏陶,体会数学的价值。有关微积分起源的具体例子的列举,像计算抛物线弓形的面积(建筑物的上顶)、求速度的问题(高台跳水)等,会引发学生的求知欲,而经历运用数学描述刻画现实的过称可以通过气球膨胀率作为平均变化率的应用实现。 ②理解平均变化率和瞬时变化率的概念,这一点可以用高台跳水的例子实现。 ③导数的定义是在反思瞬时速度建立过程的基础上,总结思想和计算方法,有特殊到一般形成的,通过探究导数的定义,掌握利用导数定义来解决实际问题。 三、教学问题诊断分析 1.微积分是有文化底蕴的数学内容,了解微积分的发展史能够激发学生的求知欲,但如果介绍过于简单,学生可能下课后就会没有任何印象;如果介绍过于详细,便会占用大量时间,影响本节课内容的完成;

知识讲解_《变化率与导数、导数的应用》全章复习与巩固(理)_提高

《导数及其应用》全章复习与巩固 编稿:张林娟审稿:孙永钊 【学习目标】 1. 导数概念 通过具体情境,感受在现实实际和实际生活中存在着大量的变化率问题,体会平均变化率、瞬时变化率和导数的实际意义,理解导数的几何意义. 2. 导数运算 (1)会用导数定义计算一些简单函数的导数; (2)会利用导数公式表求出给定函数的导数; (3)掌握求导的四则运算法则,掌握求复合函数的导数,并会利用导数的运算法则求出函数的导函数. 3. 体会研究函数的意义 (1)认识导数对于研究函数的变化规律的作用; (2)会用导数的符号来判断函数的单调性; (3)会利用导数研究函数的极值点和最值点. 4.导数在实际问题中的应用 (1)进一步体会函数是描述世界变化规律的基本数学模型; (2)联系实际生活和其他学科,进一步体会导数的意义; (3)从实际生活抽象出一些基本的用导数刻画的问题,并加以解决. 【知识网络】

【要点梳理】 要点一:导数的概念及几何意义 导数的概念: 函数=()y f x 在0x 点的导数,通常用符号()0'f x ‘ 表示,定义为: 要点诠释: (1) ()()()()100010= f x f x f x x f x y x x x x -+?-?=?-?,它表示当自变量x 从0x 变1x ,函数值从()0f x 变到()1f x 时,函数值关于x 的平均变化率.当x ?趋于0时,如果平均变化率趋于一个固定的值,那么这个值就是函数 =()y f x 在0x 点的导数. (2)导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率.如瞬时速度即是位移在这一时刻的瞬间变化率. (3)对于不同的实际问题,平均变化率富于不同的实际意义.如位移运动中,位移S 从时间1t 到2t 的平均变化率即为1t 到2t 这段时间的平均速度. 导数的几何意义: 要点诠释:求曲线的切线方程时,抓住切点是解决问题的关键,有切点直接求,无切点则设切点,布列方程组. 导数的物理意义: 在物理学中,如果物体运动的规律是()=s s t ,那么该物体在时刻0t 的瞬时速度v 就是()=s s t 在0=t t 时的导数,即()0='v s t ; 如果物体运动的速度随时间变化的规律是()v v t =,那么物体在时刻0t 的瞬时加速度a 就是()v v t =在0=t t 时的导数,即()0'a v t =. 要点诠释:0'()f x 表示函数()f x 在0x 处的瞬时变化率,而在很多物理量中都是借助变化率来定义的.比如,瞬时角速度是角度()t θ对时间t 的变化率;瞬时电流是电量()Q t 对时间t 的变化率;瞬时功率是功()W t 对时间t 的变化率;瞬时电动势是磁通量()t Φ对时间t 的变化率.最常用的是瞬时速度与瞬时加速度. ()0'f x ‘表示曲线=()y f x 在0x x =处的切线的斜率,即 ()0'=tan f x α‘(α为切线的倾斜角)

变化率与导数及导数的计算

第十一节 变化率与导数、导数的计算 一、导数的概念 1.函数y =f (x )在x =x 0处的导数 (1)定义: 称函数y =f (x )在x =x 0处的瞬时变化率 lim Δx → f (x 0+Δx )-f (x 0)Δx =lim Δx →0 Δy Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0, 即f ′(x 0)=lim Δx → Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx . (2)几何意义: 函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 2.函数f (x )的导函数 称函数f ′(x )=lim Δx → f (x +Δx )-f (x ) Δx 为f (x )的导函数. 二、基本初等函数的导数公式 原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n - 1 f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=a x f ′(x )=a x ln_a f (x )=e x f ′(x )=e x f (x )=lo g a x f ′(x )=1 x ln a f (x )=ln x f ′(x )=1 x 三、导数的运算法则 1.[f (x )±g (x )]′=f ′(x )±g ′(x ); 2.[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );

相关主题
文本预览
相关文档 最新文档