数 y=f(x)图像的切线,则切线方程
为
.
[答案] y=-2 或 y=9x+16
[解析] 对函数求导,得 f'(x)=3x2-3.
当点 P(-2,-2)为切点时,切线斜率 k=3×(-2)2-3=9,
根据点斜式得切线方程为 y=9x+16.
当点 P(-2,-2)不是切点时,设切点坐标为(m,n),
������ = ������3-3������,
求简单的复合函数(仅限于形如 f(ax+b)的复合函数)的导数.
课前双基巩固
知识聚焦
1.变化率与导数
(1)平均变化率:
概念 几何 意义
对于函数
y=f(x),f(x2)-f(x1)=������y叫作函数
x2-x1 ������x
y=f(x)从
x1
到
x2
的
平均 变化率
函数 y=f(x)图像上两点(x1,f(x1)),(x2,f(x2))连线的 斜率
课前双基巩固
7.已知 f(x)=x2+3xf'(2),则 f(2)=
.
[答案] -8 [解析] 因为 f'(x)=2x+3f'(2),令 x=2, 得 f'(2)=-2,所以 f(x)=x2-6x,所以 f(2)=-8.
课前双基巩固
8.已知 f(x)=x3,则 f'(2x+3)=
,[f(2x+3)]'=
坐标为
.
[思路点拨] 先根据 f(x)为偶函数 求得 a=1,再建立方程,解得切点的 横坐标.
课堂考点探究
例 3 设 a∈R,函数 f(x)=ex+e������������是偶函数,若曲 线 y=f(x)的一条切线的斜率是32,则切点的横