经典动态博弈模型
- 格式:ppt
- 大小:209.52 KB
- 文档页数:23
聊聊四种经典的博弈论模型展开全文1、囚徒困境:为什么两个犯人都选择坐牢官差破获了一宗盗窃案,抓住了两名犯罪嫌疑人。
但在审讯过程中,被关在一处的二人始终矢口否认盗窃罪名,说东西不是我们偷的。
为了避免两人达成默契,结成攻守同盟,官差决定对他们进行单独审讯。
官差表示,如果两人中有一人坦白认罪,则可立即释放,另一个不认罪的人判5年徒刑;如果两人都坦白罪刑,则他们将各判2年徒刑。
但还有一种情况,那就是两个人都拒绝坦白,由于缺乏证据,他们只会以扰乱公共场合为名判处3个月拘役。
这就是两名罪犯面临的困境中,他们会做出怎样的选择呢?首先,他们互相之间都不清楚对方是否会坦白,其次,二人都希望将自己的刑期缩至最短。
如此考虑,最终,两名犯人都会选择坦白交代。
上面的案例就是博弈论所说的“囚徒困境”。
犯人们如果彼此合作,可为集体带来最佳利益(刑期最短);但当二人面对同样的情况且不知道对方如何选择时,在理性思考后,双方都会得出相同的结论(坦白交代),以便达到个人利益的最大化。
囚徒困境是博弈论的“非零和博弈”中具代表性的例子,反映的是个人的最佳选择并非是团体的最佳选择。
虽然困境本身只属模型性质,但现实中的价格竞争、环境保护等方面,也会频繁出现类似情况。
2、智猪博弈:赢的总是小猪猪圈里有大小两头猪,它们在同一个食槽里进食。
为了保持饲料的新鲜,在远离猪食槽的另一边有一个踏板,大猪或小猪跑过去,每按动一次踏板,投食口就会掉落10个单位的食物。
于是,在大猪和小猪每次进食前,就会形成这样一种局面:如果小猪跑去按踏板,大猪守在食槽边,则大猪小猪吃到的食物比是9:1;反之,如果大猪去按而小猪守在食槽边,则吃食比例是6:4。
如果二猪同时到食槽边,则吃食比是7:3。
这样一来,从纯收益的角度考虑,小猪就更愿意选择在食槽边等待食物落出,因为“等待优于行动”,而大猪只能被迫奔忙在踏板和食槽之间。
上述“智猪博弈”的案例是经济学家的假设论证模型,这个博弈的结果,用经济学视角看待,可以解释为:谁占有更多资源,谁就必须承担更多义务。
3.4 几个经典动态博弈模型453.4.1 寡占的斯塔克博格模型46动态的寡头产量竞争博弈厂商1先选择,厂商2后选择。
21q q Q +=121111112)](8[)(q q q q q c Q P q u -+-=-=221222222)](8[)(q q q q q c Q P q u -+-=-=策略空间:[0,Q max ]中所有实数。
Q max 为不至于使价格降到亏本的最大限度的产量。
Q Q P P -==8)(价格函数:边际生产成本:无固定成本得益函数:221==c c 2121116q q q q u --=2221226q q q q u --=47两阶段动态博弈。
第一阶段,厂商1选择产量;第二阶段,厂商2选择产量。
1 、第二阶段厂商2的选择目标:得益最大化。
求使自己得益最大化下的产量值,即最大化时的一阶条件:得益函数:2221226q q q q u --=用逆推归纳法进行分析:02602122=--⇒=∂∂q q q u 112213)6(21q q q -=-=求出厂商2对厂商1产量的反应函数:48两阶段动态博弈。
第一阶段,厂商1选择产量;第二阶段,厂商2选择产量。
2 、第一阶段厂商1的选择。
用逆推归纳法进行分析:12213q q -=厂商1可直接求出使自己得益最大化时的产量:厂商1知道2的决策思路:直接将上式代入厂商1的得益函数,得到:2112111121*211*211213)213(66),(q q q q q q q q q q q q u -=---=--=3030*1*111=⇒=-⇒=∂∂q q q u厂商1的最佳产量是生产3单位。
将之代入厂商2的反应函数,得到厂商2的最佳产量5.15.13*2=-=q 此时市场价格为3.5,双方的得益别为4.5和2.25单位。
3*1=q 12213q q -=用逆推归纳法分析得出,该动态博弈的唯一的子博弈完美纳什均衡:厂商1在第一阶段生产3单位产量,厂商2第二阶段生产1.5单位产量。
动态博弈的例子
动态博弈的例子
动态博弈是一种模型,它可以模拟博弈双方的双边行为,以了解两个不同的博弈设置如何产生更有利的结果。
下面给出一些例子。
1)赌博博弈:一对赌徒两人分别在两个桌子前把下注。
他们都有一定的钱数,并且每次赌注都会有变化。
他们可以根据形势来决定赌注数额,以此来获取最大的奖励,类似的还有一个公平的概率,但是未必能立即获胜。
2)资源配置博弈:两家企业各自拥有一定的资源。
他们要根据彼此的期望,把资源配置至最有利的位置上,以此来获取最大的收益。
此类博弈在经济和金融领域中应用很广泛,例如国际市场或者可持续发展。
3)时间博弈:两个人分别有不同的时间限制,必须完成某项任务,在有限的时间内实现最大的收益。
他们必须根据自身的实际情况来决定每个环节的时间限制,以此以最快的时间来完成任务。
4)决策博弈:两家企业各自有不同的增长策略。
他们必须根据彼此的期望和情况,把资源配置到最有利的位置上,以此以最快的速度来达到最优的增长结果。
此类博弈在公司管理领域广泛应用,用来模拟协商、谈判、合作或者竞争等等的情况。
- 1 -。
博弈论的经典模型在自然界和人类社会中广泛存在合作与竞争,而能够反映这种既激烈竞争又需要合作的一门学科就是博弈论(Game Theory),也称对策论。
它是模拟和分析理性的个体在利益冲突环境下相互作用的形式、决策及其均衡理论,研究个体之间行为的相互影响和相互作用规律,它可以描述现实生活中参与者面对有限资源的合作与竞争行为。
令人惊奇的是,有三次诺贝尔奖获得者是博弈论研究方面的杰出科学家,他们是1985年获得诺贝尔经济学奖的公共选择学派的领导者布坎南,1994年获奖的美国普林斯顿大学的纳什、塞尔屯、哈桑尼3位博弈论专家以及1995年获奖的理性主义学派的领袖卢卡斯。
博弈论在经济学、政治学、管理学、社会学、军事学、生物学等诸多学科领域具有广泛的实际背景和应用价值。
进入20世纪末,随着复杂网络科学的一些新的发现,博弈论也成为网络时代人们的一种思维、竞争与合作的模式。
博弈论对人有一个最基本假定:人是理性的,人在具体策略选择的目的全是使自己的利益最大化。
博弈论就是研究理性的人之间如何进行策略选择的,因此博弈论也称为对策论。
博弈论就凭这么一条最简单的假定可以展开广泛的研究,并获得了丰富多彩的结果,利用博弈论可以解读人类的社会行动或集体行动,更易理解人类社会的复杂性和特殊性。
为了刻画个体间利益的冲突对整个系统的影响,人们已经提出和发展了许多博弈模型,比较著名的有三个模型:囚徒困境、"雪堆"博弈和"少数者"博弈模型,下面笔者通过对这三个模型进行简单而通俗的介绍,让大家来了解博弈论及其应用概况。
斗鸡模型斗鸡博弈(Chicken Game).在西方,鸡是胆小的象征,斗鸡博弈指在竞争关系中,谁的胆小,谁先失败。
现在假设,有两个人要过一条独木桥,这条桥一次只能过一个人,两个人同时相向而进,在河中间碰上了。
这个博弈的结果第一种就是如果两个人继续前进,双方都会掉水里,双方丢面子,这是一种组合。
人质困境此为博弈模型之一,人质困境:多个人的囚徒困境要理解这个定义,我们可以从这样一个童话故事开始:老鼠们意识到,假如可以在猫脖子上系一个铃铛,那么,他们的安全就会有保障。
问题在于,谁会愿意冒赔上小命的风险给猫系上铃铛呢?老鼠所面临的这个问题同样摆在人类面前:人们在直接面对威胁或损失时,也面临同样的心理困境。
在一群人面对威胁或损失时,“第一个采取行动”的决定是很难做出的,因为它意味着将付出惨重代价。
这个困境便就叫做人质困境。
酒吧博弈2008年04月11日星期五 23:16美国著名的经济学专家阿瑟教授于1994年提出了少数人博弈这个理论。
其理论模型是这样的:有100个人很喜欢泡酒吧。
这些人在每个周末,都要决定是去酒吧活动还是待在家里休息。
酒吧的容量是有限的,也就是说座位是有限的。
如果去的人多了,去酒吧的人会感到不舒服。
此时,他们留在家中比去酒吧更舒服。
假定酒吧的容量是60人,如果某人预测去酒吧的人数超过60人,他的决定是不去,反之则去。
这100人如何作出去还是不去的决定呢?这个博弈的前提条件做了如下限制:每一个参与者面临的信息只是以前去酒吧的人数,因此,他们只能根据以前的历史数据,归纳出此次行动的策略,没有其他的信息可以参考,他们之间更没有信息交流。
这就是著名的"酒吧问题",即少数人博弈。
"酒吧问题"所模拟的情况,非常接近于一个赌博者下注时面临的情景,比如股票选择、足球博彩。
这个博弈的每个参与者,都面临着这样一个困惑:如果许多人预测去的人数超过60,而决定不去,那么酒吧的人数会很少,这时候作出的这些预测就错了。
反过来,如果有很大一部分人预测去的人数少于60,他们因而去了酒吧,则去的人会很多,超过了60,此时他们的预测也错了。
因而一个作出正确预测的人应该是,他能知道其他人如何作出预测。
但是在这个问题中每个人预测时面临的信息来源都是一样的,即过去的历史,同时每个人无法知道别人如何作出预测,因此所谓正确的预测几乎不可能存在。