5.4关系模型及关系代数
- 格式:ppt
- 大小:926.00 KB
- 文档页数:323
关系模型的基本概念关系模型是数据库设计中常用的一种模型,用于组织和表示数据。
关系模型基于关系代数和集合论的理论基础,其核心概念包括:1. 表(Table):表是关系模型中的基本结构,用于存储数据。
表由行和列组成,每一行表示一个记录,每一列表示一个属性。
表有时也被称为关系。
2. 元组(Tuple):表中的一行被称为元组。
每个元组包含表中所有属性的数据值。
例如,一个包含学生信息的表可能有一行数据表示一个学生的信息。
3. 属性(Attribute):表中的一列被称为属性。
每个属性存储特定类型的数据,例如姓名、学号、成绩等。
属性也被称为字段或列。
4. 域(Domain):属性的取值范围被称为域。
域定义了属性可以包含的所有合法值。
例如,在一个表示性别的属性中,域可能是{男, 女}。
5. 关键字(Key):关键字是能够唯一标识表中元组的一个或一组属性。
一个表可以有一个或多个关键字。
主关键字通常用于唯一标识元组。
6. 关系代数:关系代数是一组基本的操作,用于处理关系数据库中的数据。
这些操作包括选择、投影、连接、并、差等,它们用于从一个或多个关系中获取所需的数据。
7. 外键(Foreign Key):外键是一个表中的列,其值与另一个表的主键相对应,用于建立表之间的关系。
外键用于维护表之间的引用完整性。
8. 范式(Normalization):范式是一种设计原则,目的是减少数据冗余并提高数据库的一致性。
常见的范式包括第一范式(1NF)、第二范式(2NF)、第三范式(3NF)等。
9. SQL(Structured Query Language):SQL是一种用于管理和查询关系数据库的标准化语言。
它包括数据查询、插入、更新、删除等操作。
这些基本概念构成了关系数据库管理系统(RDBMS)中的关键元素,帮助数据库设计人员组织和管理数据。
通过良好的关系模型设计,可以实现数据的高效存储、检索和维护。
第二章关系代数教学目的:本章实际上研究的是关系的运算。
学习目的:关系运算是设计关系数据库操作语言的基础,因为其中的每一个询问往往表示成一个关系运算表达式,在我们的课程中,数据及联系都是用关系表示的,所以实现数据间的联系也可以用关系运算来完成。
通过本章学习,应重点掌握:(1)关系数据库的基本概念;(2)如何用关系代数表达式来表达实际查询问题;(3)如何用元组演算表达式来表达实际查询问题;(4)如何用域演算表达式来表达实际查询问题;(5)如何将关系代数表达式转换为元组演算表达式或转换为域演算表达式。
了解和掌握关系数据结构中涉及到的域、笛卡儿积、关系模式等有关内容的含义;掌握关系的实体完整性和参照完整性的定义;掌握关系代数中的并、交、差、笛卡儿积运算,以及选择、投影和连接运算。
教学重点:关系的实体完整性和参照完整性的定义;关系代数中的并、交、差、笛卡儿积运算,以及选择、投影和连接运算。
教学难点:关系代数中的并、交、差、笛卡儿积运算,以及选择、投影和连接运算。
教学方法:实例法教学内容:如下:关系模型关系模型是一种简单的二维表格结构,每个二维表称做一个关系,一个二维表的表头,即所有列的标题称为一个元组,每一列数据称为一个属性,列标题称估属性名。
同一个关系中不允许出现重复元组和相同属性名的属性。
1.关系模型组成关系模型由关系数据结构、关系操作集合和关系完整性约束三部分组成。
关系操作分为两大部分如图所示。
2.关系操作的特点关系操作的特点是操作对象和操作结果都是集合。
而非关系数据模型的数据操作方式则为一次一个记录的方式。
关系数据语言分为三类: (1)关系代数语言:如ISBL ;(2)关系演算语言:分为元组关系演算语言(如Alpha ,Quel)、域关系演算语言(如QBE); (3)具有关系代数和关系演算双重特点的语言:如SQL 。
3.关系数据结构及其形式化定义 (1)域定义 域是一组具有相同数据类型的值的集合。
关系模型【数据库概论】(⼀) 关系模型知识引⼊开局⼀张图,知识全靠爆~DBMS 采⽤某种数据模型进⾏建模,提供了在计算机中表⽰数据的⽅式,其包括,数据结构、数据操作、数据完整性三部分。
在关系模型中,通过关系表⽰实体与实体之间的联系,然后基于关系数据集合进⾏数据的查询、更新以及控制等操作同时对数据的更新操作进⾏实体完整性、参照完整性、⽤户⾃定义完整性约束。
⽽在前期,通过关系代数和逻辑⽅式(关系演算)表⽰对关系操作的能⼒,⽽后出现了 SQL 语⾔,其吸纳了关系代数的概念,和关系演算的逻辑思想虽然进⾏了⼀定的解释,但是光看图上的这些名词,还是很懵,没关系,下⾯我们就按照图⽚上的标号,针对关系数据模型进⾏讲解多说⼀句:关系模型⾮常重要,是现在主流的⼀种数据模型,同样 SQL 也⾮常流⾏,现在⼤部分数据库都是⽀持 SQL 的,这也正是我们要针对此部分重点学⼀下的原因(⼆) 关系的数据结构(1) 关系的相关概念A:关系的数学描述关系概念是对事物间数据依赖的⼀种描述,同时集合论提供了关系概念:集合论中的关系本⾝也是⼀个集合,以具有某种联系的对象组合——“序组”为其成员。
关系不是通过描述其内涵来刻画事物间联系的,⽽是通过列举其外延(具有这种联系的对象组合全体)来描述这种联系B:笛卡尔积关系的概念是建⽴在笛卡尔积概念的基础上的,笛卡尔积是定义在给定⼀组域上的有序对的集合,⽽域则是⼀组具有相同数据类型的值的集合,例如⾃然数整数实数,长度⼩于若⼲字节的字符串集合等都可以是域给定⼀组域D1,D2,…,Dn,这n个域的笛卡尔积为:D1×D2×…×Dn={(d1,d2,…,dn)| di∈Di,i=1,2,…,n }每⼀个元素(d1,d2,…,dn)叫作⼀个n元组(n-tuple),或简称为元组(Tuple)元素中的每⼀个di值叫作⼀个分量(Component)若Di (i=1,2,…,n)为有限集,其基数为mi (i=1,2,…,n),则D1×D2×…×Dn的基数M为:nM= ∏ mii=1定义可能有⼀些抽象,引⼊⼀个例⼦看⼀下,会直观⼀些【例】设:D1为学⽣集合= {张⼭,李斯,王武};D2为性别集合= {男,⼥};D3为年龄集合= {19,20}⽤⼆维表的形式表⽰D1×D2×D3,则为下表格,则有12个元组姓名性别年龄张⼭男19张⼭⼥19张⼭男20张⼭⼥20李斯男19李斯⼥19李斯男20李斯⼥20王武男19王武⼥19王武男20王武⼥20姓名性别年龄C:关系的定义根据上⾯的铺垫可以得出:满⾜⼀定语义的D1×D2×…×Dn的⼦集叫作在域D1、D2、…、Dn上的关系定义:R(D1, D2, …, Dn)R:关系的名字n:关系的⽬或度(Degree)(2) 关系模型的相关概念关系的描述称为关系模式:R(U, D, Dom, F)R:关系名U:组成该关系的属性集合D:属性组U中属性所来⾃的域Dom:属性向域的映像的集合F:属性间数据的依赖关系集合A:属性(U)若关系对应⼀个实体,关系的属性就是所要描述的实体对象的属性,即实体所对应的事物对象的特征,例如姓名,性别,年龄在同⼀关系中,属性名不能相同,但不同的属性可以有相同的域。
因为关系被解释为某个谓词的外延,关系代数的每个运算在谓词演算中都有对应者。
例如,自然连接是逻辑AND()的对应者。
如果关系R和S分别表示谓词p1和p2的外延,则R和S的自然连接(R S)是表示谓词p1p2的外延的关系。
认识到 Codd 的代数事实上关于一阶逻辑不完备是很重要的。
实现它会引起不可R S = {r s| r R, s S}主条目:投影 (关系代数)投影是写为的一元运算,这里的是属性名字的集合。
这种投影的结果定义为当所有在中的元组被限制为集合的时候所获得的集合。
广义选择是写为 的一元运算,这里的 是由正常选择中所允许的原子和逻辑算子 (与)、(或) 和 (非)构成的命题公式。
这种选择选出 中使成立的所有元组。
主条目:重命名 (关系代数) 重命名是写为的一元运算,这里的结果同一于,除了在所有元组中的 字段被重命名为 字段之外。
它被简单的用来重命名关系的属性或关系自身。
连接和类似连接的运算自然连接 (⋈)自然连接是写为 (R ⋈ S ) 的二元运算,这里的 R 和 S 是关系。
[1]自然连接的结果是在 R 和 S 中的在它们的公共属性名字上相等的所有元组的组合。
例如下面是表格“雇员”和“部门”和它们的自然连接:雇员NameEmpI d DeptNa meHarry 3415 财务 Sally 2241 销售 George 3401 财务 Harriet2202 销售部门 DeptNa me Manager 财务 George 销售 Harrie t 生产Charle s雇员 ⋈ 部门 NameEmpI d DeptNa me ManagerHarry 3415 财务 George Sally 2241 销售 Harriet George 3401 财务 George Harriet2202 销售Harrie t工作因为外键在相同名字的属性之间保持。
如果不是这样,外键成立于从部门.manager到Emp.emp-number,则我们必须在采用自然连接之前必须重命名这些列。
数据库中的关系模型与关系代数运算在计算机科学中,数据库是管理和组织数据的重要工具。
为了有效地操作和查询数据库中的数据,数据库系统采用了关系模型和关系代数运算。
一、关系模型关系模型是一种结构化的数据库模型,通过使用表格(称为关系)来表示和组织数据。
每个关系由若干个属性组成,而属性对应于表格中的列。
表格中的每一行都是一个记录,表示具体的数据实体。
关系模型的特点包括:1. 表达能力强:关系模型可以灵活地表示各种类型的数据以及数据之间的关系。
2. 数据操作简单:使用关系模型可以方便地对数据进行增删改查等操作。
3. 数据独立性:关系模型可以使数据与物理存储方式相互独立,便于数据的维护和更新。
二、关系代数运算关系代数是一种基于关系模型的数据操作语言,用于查询和操作数据库中的数据。
关系代数运算包括以下几种基本操作:1. 选择(Selection):根据指定的条件选择符合条件的元组。
例如,从一个学生关系中选择年龄大于20的学生。
2. 投影(Projection):选择关系中的部分属性,形成一个新的关系。
例如,从一个学生关系中选择姓名和年龄两个属性。
3. 连接(Join):将两个关系按照某个条件进行连接,形成一个新的关系。
例如,将学生关系和课程关系按照学生的学号进行连接,得到学生选课关系。
4. 并(Union):将两个关系的元组进行合并,产生一个包含两个关系中所有元组的新关系。
例如,将两个学生关系合并,得到所有学生的关系。
5. 差(Difference):从一个关系中减去另一个关系中的元组,得到差集。
例如,从所有学生关系中减去已选课程关系中的学生,得到未选课学生的关系。
6. 交(Intersection):取两个关系中共有的元组,形成一个新的关系。
例如,取两个学生关系的交集,得到同时存在于两个关系中的学生。
关系代数的运算可以根据需要进行组合和嵌套,实现复杂的数据查询和操作。
总结:数据库中的关系模型和关系代数运算是数据库领域中两个重要的概念。
关系代数表达式
关系代数表达式Rσp(A×B)是一种常用的数据库模型,它用于表示关系的表示形式。
这种表示法的核心是关系符号R,其中R表示关系,σ表示选择操作,p表示投影操作,A×B表示连接操作。
首先,关系R是一种数据表达形式,它可以用来表示一组属性之间的关系。
通常情况下,这些属性由一组元组(每个元组代表一个实体)组成,每个元组都有一组属性,用于表示关系的特征。
其次,σ是一种选择操作,它可以从给定的关系中选择出符合特定条件的元组,进行下一步的运算。
选择操作的核心是关系的属性,可以选择属性的特定值,以便进行计算。
投影操作p是一种常见的操作,它可以从给定的关系中抽取元组中的特定属性,以便进行下一步的计算。
这些属性可以是单个属性,也可以是一组属性,投影操作可以用来抽取出这些属性,以便进行更细粒度的计算。
最后,A×B是一种连接操作,它可以将多个关系连接起来,以便进行计算。
它的核心是关系的属性,连接操作可以根据属性的特性将多个关系连接在一起。
总的来说,关系代数表达式Rσp(A×B)是一种常用的数据库模型,它是通过组合关系符号、选择操作、投影操作和连接操作来表示关
系的。
它可以用来表示关系之间的一些特征,也可以用来进行一些计算操作,比如抽取特定属性进行计算,将多个关系连接起来,等等。
因此,关系代数表达式Rσp(A×B)是一种重要的数据库模型,它被广泛应用于数据库管理系统的设计、实施和维护中。
离散数学是计算机科学中的一门基础学科,它研究离散结构和离散对象之间的关系,包括逻辑、集合论、图论和关系论等内容。
而数据库则是计算机科学中的另一个重要领域,它用于存储、管理和处理大量结构化数据,以支持各种数据操作需求。
离散数学与数据库之间的关系代数和关系模型有着密切的联系。
关系代数是一种用于描述和操作关系的形式化语言,它提供了一组基本运算符,如选择、投影、并集、交集和差集等,以及一些衍生运算符,如自然连接、除法和笛卡尔积等。
通过这些运算符,可以实现对关系数据的增删改查操作,进而实现数据库的各种功能。
在关系模型中,数据被组织为一个或多个关系表,每个表包含若干行和若干列,其中每一行表示一个记录,每一列表示一个属性。
关系模型通过定义表之间的关系来描述数据之间的联系,其中最常用的关系是主键和外键的关系。
主键是唯一标识一个表中记录的属性,而外键则是一个表中的属性,它引用了同一个表或其他表中的主键。
通过主键和外键,可以在不同的表之间建立关联关系,实现数据的一致性和完整性。
关系代数和关系模型是数据库系统中的核心概念。
关系代数提供了一套操作关系的规则,通过这些规则可以实现数据库的完整性约束、数据一致性和安全性。
关系模型则提供了一种组织和管理数据的方式,通过表之间的关联关系,可以实现数据的查询、更新和删除操作。
在实际应用中,离散数学和数据库扮演着不可或缺的角色。
离散数学提供了基础的逻辑和推理工具,用于验证数据库系统的正确性和有效性。
通过使用离散数学中的逻辑规则,可以验证数据库中的查询和操作的正确性。
而数据库则提供了一个实际应用场景,使得离散数学的概念和原理可以得以应用和验证。
总结来说,离散数学和数据库是相辅相成的,离散数学提供了数据库系统中的关系代数和关系模型的理论基础,而数据库则为离散数学提供了实际的应用场景。
通过深入理解和应用离散数学与数据库之间的关系代数和关系模型,我们可以更好地理解和运用数据库系统,提高数据的处理和管理效率。
关系模型概念关系模型(RelationalModel)是一种数据库管理系统的理论模型,由著名的计算机科学家和数据库领域的开创者马克普罗维奇(Dr. Edgar F. Codd)1970年提出。
它是一种以关系来表达数据模型,用于存储和管理大量信息,包括文档、图像、视频等大量复杂数据结构。
关系模型是使用一系列由行和列组成的表,它们中的每一行表示一个实体,每一列表示一个属性。
每个记录都由一个主键(Primary Key)唯一确定,包括一些外键(Foreign Key)来表示实体之间的关系。
这是一种关系数据模型,它把关系的概念和数据的表示形式结合起来。
这种模型可以被用来表示大量复杂的数据,它们都可以以数据库的形式进行维护和管理。
此外,关系模型还可以使用一种叫做关系代数(Relational Algebra)的操作语言来实现,它可以执行一系列的查询操作,这些操作包括选择(Select)、投影(Project)、连接(Join)等等,用来对关系数据模型进行复杂的数据操作。
关系模型的优点在于能够有效地存储、管理和查询大量的数据;允许自由的添加、修改和删除实体和属性,灵活地实现结构上的变化;可以用于搜索和检索文档数据,让用户能够根据不同的条件查询;可以较容易地将现有数据库系统迁移到关系模型。
关系模型最重要的优势在于具有良好的可移植性,它可以在不同的计算机系统之间转换,而且其查询语言及其实现的多元化性也使得它可以用于不同的应用领域。
这使得它成为最常用的数据库管理系统,广泛应用于各领域的业务管理。
关系模型也存在一些缺点,比如查询的性能较低、数据的冗余率较高、业务脆弱性比较大。
此外,关系模型的实现也相对复杂,不能满足业界对复杂数据模型的要求。
在当今的信息时代,关系模型仍然是最重要的数据库管理系统,它在支持和处理各种复杂的数据结构方面发挥着重要的作用。
关系模型的应用也将逐步扩展到各个领域,它将更好地支持不同的应用需求,为信息的获取和管理提供更强大的功能。
3.简述如下概念,并说明它们之间的联系与区别:。
(1)域,笛卡尔积,关系,元组,属性答:域:域是一组具有相同数据类型的值的集合。
笛卡尔积:给定一组域D1,D2,…,Dn,这些域中可以有相同的。
这组域的笛卡尔积为:D1×D2×…×Dn={(d1,d2,…,dn)|di?Di,i=1,2,…,n}其中每一个元素(d1,d2,…,dn)叫作一个n元组(n-tuple)或简称元组(Tuple)。
元素中的每一个值di叫作一个分量(Component)。
关系:在域D1,D2,…,Dn上笛卡尔积D1×D2×…×Dn的子集称为关系,表示为R(D1,D2,…,Dn)元组:关系中的每个元素是关系中的元组。
属性:关系也是一个二维表,表的每行对应一个元组,表的每列对应一个域。
由于域可以相同,为了加以区分,必须对每列起一个名字,称为属性(Attribute)。
(2)超码,主码,候选码,外码答:超码:对于关系r的一个或多个属性的集合A,如果属性集A可以唯一地标识关系r中的一个元组,则称属性集A为关系r的一个超码(superkey)。
候选码:若关系中的某一属性组的值能唯一地标识一个元组,则称该属性组为候选码(Candidatekey)。
主码:若一个关系有多个候选码,则选定其中一个为主码(Primarykey)。
外码:设F是基本关系R的一个或一组属性,但不是关系R的码,如果F与基本关系S的主码Ks相对应,则称F是基本关系R的外码(Foreignkey),简称外码。
基本关系R称为参照关系(Referencingrelation),基本关系S称为被参照关系(Referencedrelation)或目标关系(Targetrelation)。
关系R和S可以是相同的关系。
(3)关系模式,关系,关系数据库答:关系模式:关系的描述称为关系模式(RelationSchema)。
它可以形式化地表示为:R(U,D,dom,F)其中R为关系名,U为组成该关系的属性名集合,D为属性组U中属性所来自的域,dom为属性向域的映象集合,F为属性间数据的依赖关系集合。