变桨系统维护培训资料
- 格式:doc
- 大小:2.98 MB
- 文档页数:31
华锐风电科技有限公司风力发电机组培训教材变桨部分1、变桨控制系统简介变桨控制系统包括三个主要部件,驱动装置-电机,齿轮箱与变桨轴承。
从额定功率起,通过控制系统将叶片以精细的变桨角度向顺桨方向转动,实现风机的功率控制。
如果一个驱动器发生故障,另两个驱动器可以安全地使风机停机。
变桨控制系统就是通过改变叶片迎角,实现功率变化来进行调节的。
通过在叶片与轮毂之间安装的变桨驱动电机带动回转轴承转动从而改变叶片迎角,由此控制叶片的升力,以达到控制作用在风轮叶片上的扭矩与功率的目的。
在90度迎角时就是叶片的工作位置。
在风力发电机组正常运行时,叶片向小迎角方向变化而达到限制功率。
一般变桨角度范围为0~86度。
采用变桨矩调节,风机的启动性好、刹车机构简单,叶片顺桨后风轮转速可以逐渐下降、额定点以前的功率输出饱满、额定点以的输出功率平滑、风轮叶根承受的动、静载荷小。
变桨系统作为基本制动系统,可以在额定功率范围内对风机速度进行控制。
变桨控制系统有四个主要任务:1、通过调整叶片角把风机的电力速度控制在规定风速之上的一个恒定速度。
2、当安全链被打开时,使用转子作为空气动力制动装置把叶子转回到羽状位置(安全运行)。
3、调整叶片角以规定的最低风速从风中获得适当的电力。
4、通过衰减风转交互作用引起的震动使风机上的机械载荷极小化。
2、变桨轴承2、1安装位置变桨轴承安装在轮毂上,通过外圈螺栓把紧。
其内齿圈与变桨驱动装置啮合运动,并与叶片联接2、2工作原理当风向发生变化时,通过变桨驱动电机带动变桨轴承转动从而改变叶片对风向地迎角,使叶片保持最佳的迎风状态,由此控制叶片的升力,以达到控制作用在叶片上的扭矩与功率的目的。
2、3变桨轴承的剖面图从剖面图可以瞧出,变桨轴承采用深沟球轴承深沟球轴承主要承受纯径向载荷,也可承受轴向载荷。
承受纯径向载荷时,接触角为零。
位置1:变桨轴承外圈螺栓孔,与轮毂联接。
位置2:变桨轴承内圈螺栓孔,与叶片联接。
位置3:S标记,轴承淬硬轨迹的始末点,此区轴承承受力较弱,要避免进入工作区。
目录1.概述 (1)2.风力发电机的桨距调节 (2)2.1 变桨距的转速调节原理 (2)2.2 电动变桨系统的结构 (2)3.变桨控制系统 (4)3.1 系统简介 (4)3.2 系统组成 (5)3.2.1 变桨中控柜 (6)3.2.2变桨轴控柜 (12)3.2.3变桨蓄电池柜 (13)3.2.4变桨电机 (13)3.2.5编码器 (14)3.3 系统接口 (14)4. 变桨控制器及变桨调试软件 (15)4.1 变桨控制器端口说明 (15)4.2 变桨控制器操作说明 (21)4.2.1 菜单首页 (21)4.2.2 子菜单:桨叶状态 (22)4.2.3 子菜单:手动操作变桨 (22)4.2.4 子菜单:变桨控制器状态 (23)4.2.5 子菜单:编码器设置 (24)4.2.6 密码子菜单 (25)4.3 控制器参数设置软件使用 (25)4.3.1 变桨控制器参数配置 (25)4.3.2 使用说明 (26)4.4 控制器上电试验 (26)4.4.1 变桨控制器上电前检查 (26)4.4.2 变桨控制器上电试验 (27)5. 变桨控制系统的现场调试 (27)5.1 上电前检查 (28)5.2 变桨系统的现场调试 (28)6.变桨控制系统常见故障分析及处理 (31)6.1电流读取值异常 (31)6.2 温度值异常 (31)6.3 三面桨叶不动作 (32)6.4 一个或两个桨叶动作异常 (33)6.5 编码器值读取异常 (33)6.6 通信不能建立 (34)6.7 面板异常 (34)6.8 风机正常运行时桨叶异常动作 (34)6.9 无法清0°或者92° (34)6.10 与变桨系统有关的状态码 (35)7. 用户须知 (40)1.概述本培训教材适用于东方电气自动控制工程有限公司的变桨控制系统产品。
变桨控制系统是风力发电机组控制系统的重要组成部分。
它是一种风力发电机桨叶调节装置,通过调节桨叶角度使风机达到最大的风能利用率,并在不同的风况下控制功率与转速的平衡,当风较大时,使桨叶迎角减小,控制吸收的风能,同时减少风力对风力机的冲击;风小时,使桨叶迎角增大保证获取最大的风能。
1.5MW风力发电机组变桨系统原理及维护国电联合动力技术有限公司培训中心(内部资料严禁外泄)UP77/82 风电机组变桨控制及维护目录1、变桨系统控制原理2、变桨系统简介3、变桨系统故障及处理4、LUST与SSB变桨系统的异同5、变桨系统维护定桨失速风机与变桨变速风机之比较定桨失速型风电机组发电量随着风速的提高而增长,在额定风速下达到满发,但风速若再增加,机组出力反而下降很快,叶片呈现失速特性。
优点:机械结构简单,易于制造;控制原理简单,运行可靠性高。
缺点:额定风速高,风轮转换效率低;电能质量差,对电网影响大;叶片复杂,重量大,不适合制造大风机变桨变速型风电机组风机的每个叶片可跟随风速变化独立同步的变化桨距角,控制机组在任何转速下始终工作在最佳状态,额定风速得以有效降低,提高了低风速下机组的发电能力;当风速继续提高时,功率曲线能够维持恒定,有效地提高了风轮的转换效率。
优点:发电效率高,超出定桨机组10%以上;电能质量提高,电网兼容性好;高风速时停机并顺桨,降低载荷,保护机组安全;叶片相对简单,重量轻,利于制造大型兆瓦级风机缺点:变桨机械、电气和控制系统复杂,运行维护难度大。
变桨距双馈变速恒频风力发电机组成为当前国内兆瓦级风力发电机组的主流。
变桨系统组成部分简介变桨控制系统简介✓主控制柜✓轴柜✓蓄电池柜✓驱动电机✓减速齿轮箱✓变桨轴承✓限位开关✓编码器▪变桨主控柜▪变桨轴柜蓄电池柜▪电机编码器GM 400绝对值编码器共10根线,引入变桨控制柜,需按线号及颜色接入变桨控制柜端子排上。
▪限位开关变桨系统工作流程:●机组主控通过滑环传输的控制指令;●将变桨命令分配至三个轴柜;●轴柜通过各自独立整流装置同步变换直流来驱动电机;●通过减速齿轮箱传递扭矩至变桨齿轮带动每个叶片旋转至精准的角度;●将该叶片角度值反馈至机组主控系统变桨系统控制原理风机不同运行状态下的变桨控制1、静止——起动状态2、起动——加速状态3、加速——风机并网状态3.1、低于额定功率下发电运行3.2 达到额定功率后维持满发状态运行4、运行——停机状态1、静止——起动状态下的变桨调节桨距角调节至50°迎风;开桨速度不能超过2 °/s;顺桨速度不能超过5°/s;变桨加速度不能超过20 °/s²;目标:叶轮转速升至3 r/s(低速轴)2、起动——加速状态下的变桨调节桨距角在(50 °,0°)范围内调节迎风;开桨速度不能超过2 °/s;顺桨速度不能超过5°/s;变桨加速度不能超过20 °/s²;目标:叶轮转速升至10 r/s(低速轴)3、加速——并网发电状态下的变桨调节3.1 低于额定功率下的变桨调节桨距角在维持0°迎风;开桨速度不能超过2 °/s;顺桨速度不能超过5°/s;变桨加速度不能超过20 °/s²;变频系统通过转矩控制达到最大风能利用系数, 目标:叶轮转速升至17.5 r/s(低速轴)3.2 达到额定功率后维持满发状态运行桨距角在(90 °,0°)范围内调节;开桨速度不能超过5 °/s;顺桨速度不能超过5°/s;变桨加速度不能超过20 °/s²;通过变桨控制使机组保持额定输出功率不变, 目标:叶轮转速保持17.5 r/s(低速轴)4、运行——停机状态4.1 正常停机叶片正常顺桨至89°;变桨主控柜的顺桨命令通过轴柜执行;顺桨速度控制为5°/s;叶轮空转,机械刹车不动作;4.2 快速停机叶片快速顺桨至89°;变桨主控柜的顺桨命令通过轴柜执行;顺桨速度控制为7°/s;叶轮空转,机械刹车不动作;4.3 紧急停机叶片紧急顺桨至91°或96 °限位开关;紧急顺桨命令通过蓄电池柜执行;顺桨速度不受控制;叶轮转速低于5 r/s后,液压机械刹车抱闸,将叶轮转速降至为零;独立变桨:三个叶片通过各自的轴柜和蓄电池柜实现开桨和顺桨的同步调节;如果某一个驱动器发生故障,另两个驱动器依然可以安全地使风机顺桨并安全停机。
变桨系统原理及维护一、变桨系统原理变桨系统是风能发电机组的关键部件之一,主要负责控制风轮桨叶的角度,以实现最佳风能转换效率。
其主要原理如下:1.控制原理:变桨系统通过感知风速、桨叶角度和发电机输出功率等参数,并根据实时监测的风速变化情况来控制桨叶的角度调整,以使风轮桨叶能够始终迎向风速的最佳方向。
2.传动原理:变桨系统通过主轴和传动电机等组件完成角度调整。
其中,主轴连接了风轮和齿轮箱,通过传动电机以及相应的齿轮传动机构控制风轮桨叶的角度调整。
3.控制模式:一般来说,变桨系统可以采用定角控制模式和变角控制模式。
定角控制模式适用于大部分工况,根据实时风速的大小选择恰当的桨叶角度。
而变角控制模式则可以在遇到特定工况时,根据不同的发电机输出功率等参数来调整桨叶角度。
4.安全保护机制:变桨系统还需要具备一定的安全保护机制,以应对突发情况。
比如,当变桨控制系统出现故障时,可以自动切断桨叶的调整功能,确保风轮系统的稳定运行。
二、变桨系统维护为确保变桨系统的正常运行和延长其使用寿命,需要进行定期的维护和保养。
下面是一些常见的维护措施:1.日常巡检:定期对变桨系统进行巡视,检查主轴、传动电机以及传动装置的工作情况。
特别要关注是否存在松动、磨损或损坏等问题,并及时进行维修或更换。
2.清洁保养:通过对变桨系统的清洁保养,去除积灰、杂物等异物,防止其对系统的正常运行产生影响。
3.润滑维护:应定期对润滑系统进行检查,确保润滑油的质量符合要求,并及时更换润滑油,以保持传动装置的正常运转。
4.故障排除:一旦发现变桨系统出现异常情况,应及时排除故障。
对于无法解决的故障,应请专业维修人员进行处理。
5.数据分析:通过对变桨系统监测数据的分析,可以及时发现潜在的问题和异常,对系统进行精确的调整和维护。
综上所述,变桨系统的原理是通过感知风速和发电机输出功率等参数,控制风轮桨叶角度的调整,以实现最佳风能转换效率。
为保证变桨系统的正常运行和延长使用寿命,需要定期进行维护和保养,包括日常巡检、清洁保养、润滑维护、故障排除和数据分析等措施。
华锐风电科技有限公司风力发电机组培训教材变桨部分1.变桨控制系统简介变桨控制系统包括三个主要部件,驱动装置-电机,齿轮箱和变桨轴承。
从额定功率起,通过控制系统将叶片以精细的变桨角度向顺桨方向转动,实现风机的功率控制。
如果一个驱动器发生故障,另两个驱动器可以安全地使风机停机。
变桨控制系统是通过改变叶片迎角,实现功率变化来进行调节的。
通过在叶片和轮毂之间安装的变桨驱动电机带动回转轴承转动从而改变叶片迎角,由此控制叶片的升力,以达到控制作用在风轮叶片上的扭矩和功率的目的。
在90度迎角时是叶片的工作位置。
在风力发电机组正常运行时,叶片向小迎角方向变化而达到限制功率。
一般变桨角度范围为0~86度。
采用变桨矩调节,风机的启动性好、刹车机构简单,叶片顺桨后风轮转速可以逐渐下降、额定点以前的功率输出饱满、额定点以的输出功率平滑、风轮叶根承受的动、静载荷小。
变桨系统作为基本制动系统,可以在额定功率范围内对风机速度进行控制。
变桨控制系统有四个主要任务:1. 通过调整叶片角把风机的电力速度控制在规定风速之上的一个恒定速度。
2. 当安全链被打开时,使用转子作为空气动力制动装置把叶子转回到羽状位置(安全运行)。
3. 调整叶片角以规定的最低风速从风中获得适当的电力。
4. 通过衰减风转交互作用引起的震动使风机上的机械载荷极小化。
2.变桨轴承2.1安装位置变桨轴承安装在轮毂上,通过外圈螺栓把紧。
其内齿圈与变桨驱动装置啮合运动,并与叶片联接2.2工作原理当风向发生变化时,通过变桨驱动电机带动变桨轴承转动从而改变叶片对风向地迎角,使叶片保持最佳的迎风状态,由此控制叶片的升力,以达到控制作用在叶片上的扭矩和功率的目的。
2.3变桨轴承的剖面图从剖面图可以看出,变桨轴承采用深沟球轴承深沟球轴承主要承受纯径向载荷,也可承受轴向载荷。
承受纯径向载荷时,接触角为零。
位置1:变桨轴承外圈螺栓孔,与轮毂联接。
位置2:变桨轴承内圈螺栓孔,与叶片联接。
华锐风电科技有限公司风力发电机组培训教材变桨部分1.变桨控制系统简介变桨控制系统包括三个主要部件,驱动装置-电机,齿轮箱和变桨轴承。
从额定功率起,通过控制系统将叶片以精细的变桨角度向顺桨方向转动,实现风机的功率控制。
如果一个驱动器发生故障,另两个驱动器可以安全地使风机停机。
变桨控制系统是通过改变叶片迎角,实现功率变化来进行调节的。
通过在叶片和轮毂之间安装的变桨驱动电机带动回转轴承转动从而改变叶片迎角,由此控制叶片的升力,以达到控制作用在风轮叶片上的扭矩和功率的目的。
在90度迎角时是叶片的工作位置。
在风力发电机组正常运行时,叶片向小迎角方向变化而达到限制功率。
一般变桨角度范围为0~86度。
采用变桨矩调节,风机的启动性好、刹车机构简单,叶片顺桨后风轮转速可以逐渐下降、额定点以前的功率输出饱满、额定点以的输出功率平滑、风轮叶根承受的动、静载荷小。
变桨系统作为基本制动系统,可以在额定功率范围内对风机速度进行控制。
变桨控制系统有四个主要任务:1. 通过调整叶片角把风机的电力速度控制在规定风速之上的一个恒定速度。
2. 当安全链被打开时,使用转子作为空气动力制动装置把叶子转回到羽状位置(安全运行)。
3. 调整叶片角以规定的最低风速从风中获得适当的电力。
4. 通过衰减风转交互作用引起的震动使风机上的机械载荷极小化。
2.变桨轴承2.1安装位置变桨轴承安装在轮毂上,通过外圈螺栓把紧。
其内齿圈与变桨驱动装置啮合运动,并与叶片联接2.2工作原理当风向发生变化时,通过变桨驱动电机带动变桨轴承转动从而改变叶片对风向地迎角,使叶片保持最佳的迎风状态,由此控制叶片的升力,以达到控制作用在叶片上的扭矩和功率的目的。
2.3变桨轴承的剖面图从剖面图可以看出,变桨轴承采用深沟球轴承深沟球轴承主要承受纯径向载荷,也可承受轴向载荷。
承受纯径向载荷时,接触角为零。
位置1:变桨轴承外圈螺栓孔,与轮毂联接。
位置2:变桨轴承内圈螺栓孔,与叶片联接。
1.5MW风电机组变桨系统知识培训风电机组根据外部环境的不同被定义为 “常温型风机”和“低温型风机”等不同的机型,变桨系统要能满足相应机组的运行环境条件。
SSB变桨系统应用培训。
一、功能描述变桨系统的所有部件都安装在轮毂上。
风机正常运行时所有部件都随轮毂以一定的速度旋转。
变桨系统的作用是控制风机叶片旋转到设定的角度。
变桨系统通过控制叶片的角度来控制风轮的转速,进而控制风机的输出功率,并能够通过空气动力制动的方式使风机安全停机。
风机的叶片(根部)通过变桨轴承与轮毂相连,每个叶片都要有自己的相对独立的电控同步的变桨驱动系统。
变桨驱动系统通过一个小齿轮与变桨轴承内齿啮合联动。
风机正常运行期间,当风速超过机组额定风速时(风速在12m/s 到25m/s之间时),为了控制功率输出变桨角度限定在0度到30度之间(变桨角度根据风速的变化进行自动调整),通过控制叶片的角度使风轮的转速保持恒定。
任何情况引起的停机都会使叶片顺桨到90度位置(执行紧急顺桨命令时叶片会顺桨到91度限位位置)。
变桨系统有时需要由备用电池供电进行变桨操作(比如变桨系统的主电源供电失效后),因此变桨系统必须配备备用电池以确保机组发生严重故障或重大事故的情况下可以安全停机(叶片顺桨到91度限位位置)。
此外还需要一个冗余限位开关(用于95度限位),在主限位开关(用于91度限位)失效时确保变桨电机的安全制动。
由于机组故障或其他原因而导致备用电源长期没有使用时,风机主控就需要检查备用电池的状态和备用电池供电变桨操作功能的正常性。
每个变桨驱动系统都配有一个绝对值编码器安装在电机的非驱动端(电机尾部),还配有一个冗余的绝对值编码器安装在叶片根部变桨轴承内齿旁,它通过一个小齿轮与变桨轴承内齿啮合联动记录变桨角度。
风机主控接收所有编码器的信号,而变桨系统只应用电机尾部编码器的信号,只有当电机尾部编码器失效时风机主控才会控制变桨系统应用冗余编码器的信号。
二、主要部件组成电控箱 1套(数个) 变桨电机(配有变桨系统主编码器:A编码器) 3套备用电池 3套机械式限位开关 3套(6个) 限位开关支架及相关连接件 3套冗余编码器:B编码器 3套冗余编码器支架、测量小齿轮及相关连接件 3套各部件间的连接电缆及电缆连接器 1套技术文档 1套三、变桨系统各部件的连接框图图1:各部件间连接框图四、系统配置变桨中央控制箱执行轮毂内的轴控箱和位于机舱内的机舱控制柜之间的连接工作。
变桨系统原理及维护Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998风力发电机组变桨系统原理及维护国电联合动力技术有限公司培训中心(内部资料严禁外泄)UP77/82 风电机组变桨控制及维护目录1、变桨系统控制原理2、变桨系统简介3、变桨系统故障及处理4、LUST与SSB变桨系统的异同5、变桨系统维护定桨失速风机与变桨变速风机之比较定桨失速型风电机组发电量随着风速的提高而增长,在额定风速下达到满发,但风速若再增加,机组出力反而下降很快,叶片呈现失速特性。
优点:机械结构简单,易于制造;控制原理简单,运行可靠性高。
缺点:额定风速高,风轮转换效率低;电能质量差,对电网影响大;叶片复杂,重量大,不适合制造大风机变桨变速型风电机组风机的每个叶片可跟随风速变化独立同步的变化桨距角,控制机组在任何转速下始终工作在最佳状态,额定风速得以有效降低,提高了低风速下机组的发电能力;当风速继续提高时,功率曲线能够维持恒定,有效地提高了风轮的转换效率。
优点:发电效率高,超出定桨机组10%以上;电能质量提高,电网兼容性好;高风速时停机并顺桨,降低载荷,保护机组安全;叶片相对简单,重量轻,利于制造大型兆瓦级风机缺点:变桨机械、电气和控制系统复杂,运行维护难度大。
变桨距双馈变速恒频风力发电机组成为当前国内兆瓦级风力发电机组的主流。
变桨系统组成部分简介变桨控制系统简介✓主控制柜✓轴柜✓蓄电池柜✓驱动电机✓减速齿轮箱✓变桨轴承✓限位开关✓编码器▪变桨主控柜▪变桨轴柜▪蓄电池柜▪电机编码器GM 400绝对值编码器共10根线,引入变桨控制柜,需按线号及颜色接入变桨控制柜端子排上。
▪限位开关变桨系统工作流程:●机组主控通过滑环传输的控制指令;●将变桨命令分配至三个轴柜;●轴柜通过各自独立整流装置同步变换直流来驱动电机;●通过减速齿轮箱传递扭矩至变桨齿轮带动每个叶片旋转至精准的角度;●将该叶片角度值反馈至机组主控系统变桨系统控制原理风机不同运行状态下的变桨控制1、静止——起动状态2、起动——加速状态3、加速——风机并网状态、低于额定功率下发电运行达到额定功率后维持满发状态运行4、运行——停机状态1、静止——起动状态下的变桨调节➢桨距角调节至50°迎风;➢开桨速度不能超过2 ° /s;➢顺桨速度不能超过5° /s;➢变桨加速度不能超过20 ° /s2;➢目标:叶轮转速升至3 r/s(低速轴)2、起动——加速状态下的变桨调节➢桨距角在(50 °,0°)范围内调节迎风;➢开桨速度不能超过2 ° /s;➢顺桨速度不能超过5° /s;➢变桨加速度不能超过20 ° /s2;➢目标:叶轮转速升至10 r/s(低速轴)3、加速——并网发电状态下的变桨调节低于额定功率下的变桨调节➢桨距角在维持0°迎风;➢开桨速度不能超过2 ° /s;➢顺桨速度不能超过5° /s;➢变桨加速度不能超过20 ° /s2;➢变频系统通过转矩控制达到最大风能利用系数,➢目标:叶轮转速升至 r/s(低速轴)达到额定功率后维持满发状态运行➢桨距角在(90 °,0°)范围内调节;➢开桨速度不能超过5 ° /s;➢顺桨速度不能超过5° /s;➢变桨加速度不能超过20 ° /s2;➢通过变桨控制使机组保持额定输出功率不变,➢目标:叶轮转速保持 r/s(低速轴)4、运行——停机状态正常停机➢叶片正常顺桨至89°;➢变桨主控柜的顺桨命令通过轴柜执行;➢顺桨速度控制为5° /s;➢叶轮空转,机械刹车不动作;快速停机➢叶片快速顺桨至89°;➢变桨主控柜的顺桨命令通过轴柜执行;➢顺桨速度控制为7° /s;➢叶轮空转,机械刹车不动作;紧急停机➢叶片紧急顺桨至91°或96 °限位开关;➢紧急顺桨命令通过蓄电池柜执行;➢顺桨速度不受控制;➢叶轮转速低于5 r/s后,液压机械刹车抱闸,将叶轮转速降至为零;独立变桨:三个叶片通过各自的轴柜和蓄电池柜实现开桨和顺桨的同步调节;如果某一个驱动器发生故障,另两个驱动器依然可以安全地使风机顺桨并安全停机。
变桨系统维护华锐风电科技有限公司风力发电机组培训教材变桨部分1.变桨控制系统简介变桨控制系统包括三个主要部件,驱动装置-电机,齿轮箱和变桨轴承。
从额定功率起,通过控制系统将叶片以精细的变桨角度向顺桨方向转动,实现风机的功率控制。
如果一个驱动器发生故障,另两个驱动器可以安全地使风机停机。
变桨控制系统是通过改变叶片迎角,实现功率变化来进行调节的。
通过在叶片和轮毂之间安装的变桨驱动电机带动回转轴承转动从而改变叶片迎角,由此控制叶片的升力,以达到控制作用在风轮叶片上的扭矩和功率的目的。
在90度迎角时是叶片的工作位置。
在风力发电机组正常运行时,叶片向小迎角方向变化而达到限制功率。
一般变桨角度范围为0~86度。
采用变桨矩调节,风机的启动性好、刹车机构简单,叶片顺桨后风轮转速可以逐渐下降、额定点以前的功率输出饱满、额定点以的输出功率平滑、风轮叶根承受的动、静载荷小。
变桨系统作为基本制动系统,可以在额定功率范围内对风机速度进行控制。
变桨控制系统有四个主要任务:1. 通过调整叶片角把风机的电力速度控制在规定风速之上的一个恒定速度。
2. 当安全链被打开时,使用转子作为空气动力制动装置把叶子转回到羽状位置(安全运行)。
3. 调整叶片角以规定的最低风速从风中获得适当的电力。
4. 通过衰减风转交互作用引起的震动使风机上的机械载荷极小化。
2.变桨轴承2.1安装位置变桨轴承安装在轮毂上,通过外圈螺栓把紧。
其内齿圈与变桨驱动装置啮合运动,并与叶片联接2.2工作原理当风向发生变化时,通过变桨驱动电机带动变桨轴承转动从而改变叶片对风向地迎角,使叶片保持最佳的迎风状态,由此控制叶片的升力,以达到控制作用在叶片上的扭矩和功率的目的。
2.3变桨轴承的剖面图从剖面图可以看出,变桨轴承采用深沟球轴承深沟球轴承主要承受纯径向载荷,也可承受轴向载荷。
承受纯径向载荷时,接触角为零。
位置1:变桨轴承外圈螺栓孔,与轮毂联接。
位置2:变桨轴承内圈螺栓孔,与叶片联接。
位置3:S标记,轴承淬硬轨迹的始末点,此区轴承承受力较弱,要避免进入工作区。
位置4:位置工艺孔。
位置5:定位销孔,用来定位变桨轴承和轮毂。
位置6:进油孔,在此孔打入润滑油,起到润滑轴承作用。
位置7:最小滚动圆直径的标记(啮合圆)。
2.4变桨轴承基本维护1.检查变桨轴承表面清洁度。
2.检查变桨轴承表面防腐涂层。
3.检查变桨轴承齿面情况。
4.变桨轴承螺栓的紧固。
5.变桨轴承润滑。
2.5变桨系统工作环境3.变桨驱动装置3.1安装位置变桨驱动装置通过螺柱与轮毂配合联接。
变桨齿轮箱前的小齿轮与变桨轴承内圈啮合,并要保证啮合间隙应在0.2~0.5mm之间,间隙由加工精度保证,无法调整3.2组成部件变桨驱动装置由变桨电机和变桨齿轮箱两部分组成。
3.3工作原理变桨齿轮箱必须为小型并且具有高过载能力。
齿轮箱不能自锁定以便小齿轮驱动。
为了调整变桨,叶片可以旋转到参考位置,顺桨位置,在该位置叶片以大约双倍的额定扭矩瞬间压下止挡。
这在一天运行之中可以发生多次。
通过短时间使变频器和电机过载来达到要求的扭矩。
齿轮箱和电机是直联型。
变桨电机是含有位置反馈和电热调节器的伺服电动机。
电动机由变频器连接到直流母线供给电流。
3.4变桨驱动装置平面图位置1:压板用螺纹孔,用于安装小齿轮压板。
位置2:驱动器吊环,用于起吊安装变桨驱动器。
位置3:螺柱。
与轮毂联接用。
位置4:电机接线盒。
3.5变桨驱动装置的基本维护1.检查变将驱动装置表面清洁度。
2.检查变将驱动装置表面防腐层。
3.检查变桨电机是否过热、有异常噪声等。
4.检查变桨齿轮箱润滑油。
5.检查变桨驱动装置螺栓紧固。
3.6变桨电机技术参数3.7变桨齿轮箱技术参数4.雷电保护装置4.1安装位置雷电保护装置在变桨装置中的具体位置见图1,在大齿圈下方偏左一个螺栓孔的位置装第一个保护爪,然后120等分安装另外两个雷电保护爪。
4.2组成部件雷电保护爪主要由三部分组成,按照安装顺序从上到下依次是垫片压板,炭纤维刷和集电爪。
4.3工作原理雷电保护装置可以有效的将作用在轮毂和叶片上的电流通过集电爪导到地面,避免雷击使风机线路损坏。
炭纤维刷是为了补偿静电的不平衡,雷击通过风机的金属部分传导。
在旋转和非旋转部分的过渡处采用火花放电器。
这个系统有额外的电刷来保护轴承和提供静电平衡的方法。
4.4雷电保护装置的基本维护1.检查雷电保护装置的表面清洁。
2.检查炭刷纤维的是否完好。
3.检查雷电保护装置螺栓的紧固。
5.顺桨接近撞块和变桨限位撞块变桨限位撞块5.1安装位置变桨限位撞块安装在变桨轴承内圈内侧,与缓冲块配合使用。
5.2工作原理当叶片变桨趋于最大角度的时候,变桨限位撞块会运行到缓冲块上起到变桨缓冲作用,以保护变桨系统,保证系统正常运行。
位置1:变桨限位撞块与变桨轴承连接时定位导向螺钉孔。
位置2:顺桨接近撞块安装螺栓孔,与变桨限位撞块连接。
位置3:变桨限位撞块安装螺栓孔,与变桨轴承连接。
顺桨接近撞块5.3安装位置顺桨接近撞块安装在变桨限位撞块上,与顺桨感光装置配合使用。
5.4工作原理当叶片变桨趋于顺桨位置时,顺桨接近撞块就会运行到顺桨感光装置上方,感光装置接受信号后会传递给变桨系统,提示叶片已经处于顺桨位置。
5.5 顺桨接近撞块和变桨限位撞块的基本维护1.检查顺桨感光装置的清洁度,以保证能够正常接受感光信号。
2.检查易损件缓冲块,做到及时更换。
3.检查各撞块螺栓的紧固。
6.极限工作位置撞块和限位开关极限工作位置撞块6.1安装位置极限工作位置撞块安装在内圈内侧两个对应的螺栓孔上。
6.2工作原理当变桨轴承趋于极限工作位置时,极限工作位置撞块就会运行到限位开关上方,与限位开关撞杆作用,限位开关撞杆安装在限位开关上,当其受到撞击后,限位开关会把信号通过电缆传递给变频柜,提示变桨轴承已经处于极限工作位置。
6.3限位开关的基本维护1.检查开关灵敏度,是否有松动。
2.检查限位开关接线是正常,手动刹车测试。
3.检查螺栓紧固。
7.变频柜和电池柜7.1安装位置变频柜和电池柜安装在柜子支架上,柜子支架安装在轮毂上。
7.2工作原理电池柜系统的目的是保证变桨系统在外部电源中断时可以安全操作。
电池柜是通过二极管连接到变频器共用的直流母线供电装置,在外部电源中断时由电池供应电力保证变桨系统的安全工作。
每一个变频器都有一个制动断路器在制动状态时避免过高电压。
变频器应留有与PLC的通讯接口。
位置1:柜子支架安装螺纹孔。
位置2:连接板安装螺纹孔。
7.3变频柜和电池柜基本维护1.变浆控制柜/轮毂之间缓冲器是否有磨损。
2.变浆控制柜内接线是否有松动。
3.柜子支架及柜子的螺栓紧固。
8.轮毂变桨装置按螺栓分部件统计1.变桨轴承与轮毂连接规格M30×290强度10.9数量48×3=144其他HytorcXLT3 SW46mm;Ma=1750 Nm2.变桨轴承用螺栓(包括安装撞块)规格M30强度10.9数量57×3=162其他HytorcXLT3 46mm套筒3.齿轮安装压板规格M20x50(全螺纹)强度10.9S数量1×3=3其他 1.力矩扳手 SW 30;Ma=550 Nm2.涂Loctite 243 胶4.变将驱动器与轮毂支架规格M12(螺母)强度10H数量3×12=36其他 1.力矩扳手 SW 19;Ma=95 Nm2.涂Loctite 243 胶5.顺桨接近撞块规格M8×15(全螺纹)强度8.8s数量3×2=6其他 1. 力矩扳手 SW 13;Ma=23Nm2.涂Loctite 243 胶6.限位开关用螺钉规格M4×25强度8.8数量3×2=6其他力矩扳手(2-20Nm)7.变桨限位撞块用螺钉规格M10×50强度8.8数量3×2=6其他力矩扳手(2-20Nm)8.缓冲器用螺钉规格M10×35强度8.8数量3×1=3其他 1.内六角扳手SW8;Ma=32 Nm2.涂Loctite 243 胶9.极限工作位置撞块用螺栓规格M8×25(全螺纹) 强度8.8数量3×2=6其他力矩扳手 SW 13Ma=23Nm10.连接板用螺栓规格M12×30(全螺纹) 强度8.8数量3×6=18其他11.变桨控制柜支架用螺栓规格M16×150(全螺纹)强度8.8数量3×4=12其他Ma=77Nm12.控制柜用螺栓规格M10×90(全螺纹)强度A2-70数量3×4=12其他13.轮毂与齿轮箱上用螺柱规格M36强度10.9数量3×16=48其他Hydac XLT3, SW 55 ,叉形力矩扳手, SW 55;Ma=2700 Nm14.锁紧作用螺栓规格M20×40(全螺纹)强度8.8数量3×2=16其他15.滑环规格强度数量 1其他附一.轮毂各部件基本属性统计部件名称材质重量/件(kg)数量/台轮毂罩玻璃钢135 3 (1201079)42CrMo4 1087 3变桨轴承(931685001)280 3变桨减速电机(570538)分隔壁玻璃钢49.4 3 (1201082)Q235D 100 3楔形盘(1201067)导流帽玻璃钢124.7 1 (1201087)焊接件24.3 3变桨电控支架(1201027)Q345D 11 3变桨限位撞块(1200654)Q235B 0.24 3顺桨接近撞块(1200644)Q235B 0.3 3极限工作位置撞块(1201066)精品文档收集于网络,如有侵权请联系管理员删除。