鲁教版数学六上第一章《丰富的图形世界》单元测试卷(含答案)
- 格式:doc
- 大小:61.00 KB
- 文档页数:4
2024-2025学年鲁教版(五四制)数学六年级上册+第一章丰富的图形世界+单元测试一、选择题1.下图中的几何体从上面看到的图是A.B.C.D.2.下图是一个圆柱体,则它的主视图是A.B.C.D.3.如图所示的几何体从正面看得到的图形是A.B.C.D.4.襄阳牛杂面因襄阳籍航天员聂海胜的一句“最想吃的还是我们襄阳的牛杂面”火爆出圈,引发了全国人民的聚焦和关注.襄阳某品牌牛杂面的包装盒及对应的立体图形如图所示,则该立体图形的主视图为()A.B.C.D.5.某几何体如图所示,它的俯视图是()A.B.C.D.6.如图是某几何体的三视图,则该几何体的表面积是()cm2A.15πB.24πC.36πD.48π7.将一个大正方体的一角截去一个小正方体,得到的几何体如图所示,则该几何体从左面看到的形状图是( )A. B. C. D.8.用一个平面去截四棱柱,截面形状不可能是( )A. 三角形B. 四边形C. 六边形D. 七边形9.用一个平面去截如图所示的三棱柱,截面的形状不可能是( )A. 三角形B. 四边形C. 五边形D. 圆10. 如图所示为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为( )A.4B.6C.8D.12二、填空题11.子弹从枪膛中射出去的轨迹、汽车的雨刷把玻璃上的雨水刷干净,可分别看成是、的实际应用.12.将下列几何体分类,柱体有:______填序号。
13.在一个棱柱中,一共有个面,则这个棱柱有______条棱.14.在“长方体、圆柱、圆锥”三种几何体中,用一个平面分别去截三种几何体,则截面的形状可以截出长方形也可以截出圆形的几何体是______ .15.在桌上摆有一些大小相同的正方体木块,从正面和从左面看到的由这些大小相同的正方体木块摆成的图形的形状图如图所示,则要摆出这样的图形至少需要个正方体木块,最多需要个正方体木块.三、解答题16.图是一个几何体从不同方向看到的形状.写出这个几何体的名称根据图中标出的数据求出这个几何体的体积和表面积.17.一个几何体由大小相同的小立方块搭成,从上面看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数请画出从正面和左面观察这个几何体得到的形状图.18.如图,一个正方体的平面展开图,若图中平面展开图折叠成正方体后,相对面上的两个数字之和均为5,求的值.19.一个五棱柱模型如图所示,它的底面边长都是2cm,侧棱长为4cm观察这个模型,回答下列问题:这个五棱柱有________个面;________个顶点;________条棱这个五棱柱的所有侧面的面积之和为多少?20.小明在学习展开与折叠这一课后,明白了正方体能展开成多种平面图形课后,小明用剪刀将一个正方体纸盒剪开,一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的和根据你所学的知识解答:小明想把剪断的重新粘贴到上去,而且经过折叠后,仍然可以还原成一个正方体纸盒,你认为他应该将剪断的纸盒粘贴到中的什么位置?请在图的备用图上补全画出所有可能的情况;小明将若干个同样大小的正方体纸盒搭建成一个几何体,该几何体的三视图如下:请你观察:小明用了多少个正方体盒子组成这个几何体?若正方体纸盒的棱长为10cm,求出小明所搭的几何体的表面积包括底面.。
六年级上册数学第一章丰富的图形世界单元检测试题附答案鲁教版五四制考试时间:120分钟满分:120分____________ ____________考号:__________一、单选题(每小题3分,共12题;共36分)1.一个棱柱有12个面,30条棱,则它的顶点个数为()A. 10B. 12C. 15D. 202.如图是一个正方体纸盒的展开图,每个面内都标注了字母或数字,则面a在展开前所对的面的数字是()A. 2B. 3C. 4D. 53.直棱柱的侧面都是()A. 正方形B. 长方形C. 五边形D. 菱形4.下列四幅图均由五个全等的小正方体堆成,其中主视图与其他三个不同的是()A. B. C. D.5.由n个相同的小正方体堆成的几何体,其主视图、俯视图如下所示,则n的最大值是( )A. 16B. 18C. 19D. 206.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()A. B. C. D.7.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()A. 白B. 红C. 黄D. 黑8.(2013•百色)一个几何体的三视图如图所示,则该几何体的侧面展开图的面积为()A. 6cm2B. 4πcm2C. 6πcm2D. 9πcm29.用一个平面去截一个圆柱体,截面不可能的是()A. B. C. D.10.如图是某几何体的三视图,其侧面积()A. 6B. 4πC. 6πD. 12π11.如图是某工厂要设计生产的正六棱柱形密封罐的立体图形,它的主视图是()A. B. C. D.12.(2013•大连)如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的俯视图是()A. B. C. D.二、填空题(每空3分;共18分)13.如图,下面两个正方体的六个面都按相同规律涂有红、黄、蓝、白、黑、绿六种颜色,那么黄色的对面是________ .14.用一些棱长为a的正方形,摆成如图所示的形状,请你求出该物体的表面积.________.15.把一个体积是64立方厘米的立方体木块的表面涂上红漆,然后锯成体积为1立方厘米的小立方体,从中任取一块,则取出的这一块至少有一面涂红漆的概率是________.16.如图,某长方体的表面展开图的面积为430,其中BC=5,EF=10,则AB=________.17.一三棱锥的三视图如下,这个三棱锥最长棱的长度为________.18.(2011•扬州)如图,立方体的六个面上标着连续的整数,若相对的两个面上所标之数的和相等.则这六个数的和为________.三、解答题(共7题;共66分)19.(6分)我们知道,将一个长方形绕它的一边旋转一周得到的几何体是圆柱,现有一个长是5cm,宽是3cm的长方形,分别绕它的长和宽所在的直线旋转一周,得到不同的圆柱几何体,分别求出它们的体积.20.(6分)正方体是由六个平面图形围成的立体图形,设想沿着正方体的一些棱将它剪开,就可以把正方体剪成一个平面图形,但同一个正方体,按不同的方式展开所得的平面展开图是不一样的;如图所示,请至少再画出三种不同的平面展开图.21.(12分)如图①所示是一个长方体盒子,四边形ABCD是边长为a的正方形,DD′的长为b.(1)写出与棱AB平行的所有的棱。
第一章 丰富的图形世界一、选择题(每小题3分,共36分) 1.下列几何体中,为棱锥的是()2.下面几何体中,没有曲面的是( )A.圆锥B.圆柱C.球D.棱柱 3.下列各选项中,不是正方体表面展开图的是()4.下列图形中,能通过折叠围成一个三棱柱的是()5.用5个完全相同的小正方体组合成如图1-5-1所示的立体图形,它的主视图为()图1-5-16.将如图1-5-2所示的直角△ABC 绕直角边AC 所在直线旋转一周,所得几何体从正面看得到的形状图是()图1-5-27.图1-5-3是每个面上都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“国”字所在面相对的面上的汉字是()图1-5-3A.钓B.鱼C.岛D.中8.如图1-5-4,用平面去截圆锥,所得截面的形状图是( )图1-5-49.将如图1-5-5所示的立方体展开后得到的图形是( )图1-5-510.一个正方体礼盒如图1-5-6所示,六个面分别写有“祝”“福”“祖”“国”“万”“岁”,其中“祝”的对面是“祖”,“万”的对面是“岁”,则它的表面展开图可能是( )图1-5-611.图1-5-7是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少..是()图1-5-7A.5B.6C.7D.812.图1-5-8是由8个相同的小正方体搭成的几何体,它从三个方向看到的形状图都是2×2的正方形.若拿掉若干个小正方体后(几何体不倒掉),其从三个方向看到的形状图仍都为2×2的正方形,则最多能拿掉小正方体的个数为( ) 图1-5-8A.1B.2C.3D.4 二、填空题(每小题3分,共18分)13.如图1-5-9所示的几何体中,属于柱体的有 (填序号).图1-5-914.棱柱的侧面是 ,分为 棱柱和 棱柱.15.如图1-5-10所示的几何体中有个面,面面相交成线.图1-5-10 图1-5-1116.如图1-5-11,将五角星沿虚线折叠,使得A、B、C、D、E五个点重合,得到的立体图形是.17.(2018山东滕西中学月考)一个棱柱有8个面,则这个棱柱有条侧棱.18.用一个平面去截一个五棱柱,最多可以截出边形.三、解答题(共46分)19.(10分)请你画出如图1-5-12所示的几何体的三视图.图1-5-1220.(11分)图1-5-13是由几个小正方体所组成的几何体的俯视图,小正方形中的数字表示在该位置上小正方体的个数.请画出这个几何体从正面看和从左面看到的形状图.图1-5-1321.(12分)图1-5-14是一张铁皮.(1)计算该铁皮的面积;(2)能否用它做成一个长方体盒子?若能,画出这个长方体,并计算该长方体盒子的体积;若不能,请说明理由.图1-5-1422.(13分)把正方体的六个面分别涂上六种不同颜色,并画上朵数不等的花,各面上的颜色与花的朵数情况见下表:如图1-5-15,现将上述大小相同,颜色、花朵分布也完全相同的四个正方体拼成一个水平放置的长方体.问长方体的下底面共有多少朵花?图1-5-15第一章 丰富的图形世界一、选择题(每小题3分,共36分) 1.下列几何体中,为棱锥的是()答案 B A 、D 选项是柱体,B 选项是棱锥,C 选项是圆锥. 2.下面几何体中,没有曲面的是( )A.圆锥B.圆柱C.球D.棱柱 答案 D 圆锥、圆柱的侧面都是曲面,球是曲面,只有棱柱的所有面都是平面,所以选D.3.下列各选项中,不是正方体表面展开图的是()答案 C 根据正方体的表面展开图的特征或通过动手操作,易知C 不是正方体的表面展开图.4.下列图形中,能通过折叠围成一个三棱柱的是()答案 C 动手操作易知只有C 能折成三棱柱.5.用5个完全相同的小正方体组合成如图1-5-1所示的立体图形,它的主视图为()图1-5-1答案 A 观察几何体,从正面看得到的平面图形是,故选A.6.将如图1-5-2所示的直角△ABC 绕直角边AC 所在直线旋转一周,所得几何体从正面看得到的形状图是()图1-5-2答案 A 直角三角形ABC绕直角边AC所在直线旋转一周,得到的几何体是圆锥,它从正面看得到的形状图为等腰三角形,故选A.7.图1-5-3是每个面上都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“国”字所在面相对的面上的汉字是()图1-5-3A.钓B.鱼C.岛D.中答案 B 根据正方体的表面展开图的特征,易知与“中”字所在面相对的面上的汉字是“的”,与“钓”字所在面相对的面上的汉字是“岛”,从而可得与“国”字所在面相对的面上的汉字是“鱼”,故选B.8.如图1-5-4,用平面去截圆锥,所得截面的形状图是()图1-5-4答案 D 通过截面的角度和圆锥的侧面是曲面来判断.9.将如图1-5-5所示的立方体展开后得到的图形是()图1-5-5答案 D 采用排除法,A、C选项中,将展开图还原成立方体后,两个黑色三角形所在的面为相对面,所以不正确;B选项中,将展开图还原成立方体后,两个黑色三角形有公共边,所以不正确.10.一个正方体礼盒如图1-5-6所示,六个面分别写有“祝”“福”“祖”“国”“万”“岁”,其中“祝”的对面是“祖”,“万”的对面是“岁”,则它的表面展开图可能是()图1-5-6答案 C 四个选项都是正方体的表面展开图,但只有C 选项符合题目中的“祝”的对面是“祖”,“万”的对面是“岁”的要求.故选C.11.(2016黑龙江齐齐哈尔中考)图1-5-7是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少..是()图1-5-7A.5B.6C.7D.8答案 A 如图为该几何体中小正方体个数最少时的俯视图,从图中可以看出小正方体个数最少为5,故选A.12.图1-5-8是由8个相同的小正方体搭成的几何体,它从三个方向看到的形状图都是2×2的正方形.若拿掉若干个小正方体后(几何体不倒掉),其从三个方向看到的形状图仍都为2×2的正方形,则最多能拿掉小正方体的个数为()图1-5-8A.1B.2C.3D.4答案 B 若拿掉小正方体后几何体不倒掉,则底层四个小正方体不能拿,只能拿上层对角的两块. 二、填空题(每小题3分,共18分)13.如图1-5-9所示的几何体中,属于柱体的有 (填序号).图1-5-9答案(1)(2)(4)(6)(7)解析柱体包括圆柱和棱柱.14.棱柱的侧面是,分为棱柱和棱柱.答案平行四边形;直;斜15.如图1-5-10所示的几何体中有个面,面面相交成线.图1-5-10答案3;曲解析这个几何体有3个面,其中两个底面是平面,一个侧面是曲面,底面和侧面的交线是曲线.16.如图1-5-11,将五角星沿虚线折叠,使得A、B、C、D、E五个点重合,得到的立体图形是.图1-5-11答案五棱锥17.(2018山东滕西中学月考)一个棱柱有8个面,则这个棱柱有条侧棱.答案 6解析因为n棱柱共有(n+2)个面,所以这个棱柱是一个六棱柱,共有6条侧棱.18.用一个平面去截一个五棱柱,最多可以截出边形.答案七解析因为五棱柱一共有7个面,所以最多可以截出七边形.三、解答题(共46分)19.(10分)请你画出如图1-5-12所示的几何体的三视图.图1-5-12解析如图所示.20.(11分)图1-5-13是由几个小正方体所组成的几何体的俯视图,小正方形中的数字表示在该位置上小正方体的个数.请画出这个几何体从正面看和从左面看到的形状图.图1-5-13解析 如图所示:21.(12分)图1-5-14是一张铁皮.图1-5-14(1)计算该铁皮的面积;(2)能否用它做成一个长方体盒子?若能,画出这个长方体,并计算该长方体盒子的体积;若不能,请说明理由.解析 (1)该铁皮的面积为1×3×2+2×3×2+1×2×2=22(m 2). (2)能做成一个长方体盒子.如图所示,该长方体盒子的体积为3×1×2=6(m 3).22.(13分)把正方体的六个面分别涂上六种不同颜色,并画上朵数不等的花,各面上的颜色与花的朵数情况见下表:如图1-5-15,现将上述大小相同,颜色、花朵分布也完全相同的四个正方体拼成一个水平放置的长方体.问长方体的下底面共有多少朵花?图1-5-15解析由题图可知:红色面对绿色面,黄色面对紫色面,蓝色面对白色面,故长方体下底面的颜色从左到右依次是紫色、黄色、绿色、白色,再由表格中颜色对应花的朵数可知,长方体的下底面共有17朵花.。
【2024秋】最新鲁教版五四制六年级上册数学第一章《丰富的图形世界》测试卷(含答案)一、选择题(每题3分,共36分)1.[2024·潍坊安丘市月考母题·教材P5习题T3]下列几何体是柱体的有()A.2个B.3个C.4个D.5个2.下列几何体中,可以由平面图形绕某条直线旋转一周得到的是()A B C D3.下列物体中,从三个方向看到的都是圆的是()A B C D4.如图,沿线段OA将该圆锥的侧面剪开并展平,得到的圆锥的侧面展开图是()(第4题)A.三角形B.正方形C.扇形D.圆5.[2024·青岛期中]如图,往一个密封的正方体容器中持续注入一些水,注水的过程中,可将容器任意放置,水平面的形状不可能是()(第5题)A.三角形B.正方形C.六边形D.七边形6.[2023·枣庄滕州市西岗中学期末]一个棱柱有10个顶点,所有侧棱长的和是40cm,则每条侧棱长是()A.7cm B.8cm C.9cm D.10cm7.下列说法错误的是()A.长方体、正方体都是棱柱B.六棱柱有18条棱、6个侧面、12个顶点C.三棱柱的侧面是三角形D.圆柱由2个平面和1个曲面围成8.[立德树人爱国教育]如图是一个多面体的表面展开图,每个面都标注了字.若该多面体的底面的字是5,则该多面体的上面的字是()(第8题)A.建B.国C.周D.年9.[2024·济南市中区期末母题·教材P14习题T3]如图,图①和图②中所有的正方形都完全相同,将图①的正方形放在图②中的某一位置,其中所组成的图形不能围成正方体的是()(第9题)A.①B.②C.③D.④10.[2023·烟台]如图,对正方体进行两次切割,得到如图⑤所示的几何体,则图⑤几何体从上面看到的平面图形为()A B C D 11.[2024·烟台牟平区期中]用大小相同的小立方体搭成如图所示的几何体,现拿掉其中的一个小立方体后,从左面看这个几何体得到的平面图形的面积与拿掉前相同,则这个拿掉的小立方体可以是()(第11题)A.②或④B.②或③C.①或②或③D.②或③或④12.[新视角规律探究题]如图①,将正方体骰子放置于水平桌面上(相对面上的点数分别为1和6,2和5,3和4),在图②中,将骰子向右旋转90°,然后在桌面上按顺时针方向旋转90°,则完成一次变换.若骰子的初始位置为图①所示的状态,那么按上述规则连续完成2023次变换后,骰子朝上一面的点数是()(第12题)A.6 B.5 C.3 D.1二、填空题(每题3分,共18分)13.将一枚硬币在桌面上快速旋转,可看到一个球,这种现象说明.14.[2024·淄博一模]用相同的小正方体摆成某种模型,从三个不同方向看到的模型的形状图如图所示,则这个模型是由个小正方体摆放而成的.(第14题)15.从三个不同方向看同一个几何体的形状图如图所示,则这个几何体的侧面积是cm2.(第15题)16.[2024·青岛城阳区期末]如图,将此长方形绕虚线旋转一周,得到的几何体的侧面积是cm2.(结果保留π)(第16题)17.如图,用经过A,B,C三点的平面截去正方体的一角,变成一个新的多面体,若这个多面体的面数为m,棱数为n,则m+n=.(第17题)18.[2024·烟台芝罘区期末]如图是由相同大小的小正方体搭成的几何体从不同方向看到的形状图,搭这个几何体最多需要用个小正方体.(第18题)三、解答题(共66分)19.(10分)写出如图所示的平面展开图折叠后所得几何体的名称.20.(10分)[2024·济南济阳区期中]从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.21.(10分)如图是一个几何体从正面、左面、上面看到的形状图,求这个几何体的表面积.(结果保留π)22.(12分)[2024·泰安新泰市期中]如图,加工一个长5cm,宽3cm,高4cm 的长方体铁块,选择面积最小的一个面,从该面的正中间打一个直径为2cm 的圆孔,一直贯穿到对面就可以做成一个零件.(1)这个零件的体积大约是多少立方厘米(π取3)?(2)为了防止零件生锈,工人师傅给该零件与空气接触的面都喷上油漆,则所喷油漆的面积大约是多少平方厘米(π取3)?23.(12分)[新考向知识情境化]某同学的茶杯是圆柱形,如图①所示,有一只蚂蚁从A处沿侧面爬行到母线CD的中点B处,如果蚂蚁爬行的路线最短,请利用展开图画出这条最短路线.解:将圆柱的侧面展开成一个长方形,如图②所示,则A,B分别位于图②中所示的位置,连接AB,AB即是这条最短路线.问题:一个正方体放在桌面上,如图③所示,有一只蚂蚁从A处沿正方体表面爬行到侧棱GF的中点M处,如果蚂蚁爬行的路线最短,最短路线有几条?请利用展开图画出最短路线.24.(12分)[新视角归纳猜想题]如图①②③是将正方体截去一部分后得到的几何体.(1)根据要求填写表格:(2)猜想(3)根据(2)中的猜想计算,若一个几何体有2024个顶点,3036条棱,试求出它的面数.答案一、1.C【点拨】如图,各个几何体的名称如下:因此这些几何体中,是柱体的有四棱柱、三棱柱、圆柱、三棱柱,共有4个.2.B3.C【点拨】A.从正面、上面、左面看到的形状图分别是长方形、圆、长方形;B.从正面、上面、左面看到的形状图分别是三角形、圆(有圆心)、三角形;D.从正面、上面、左面看到的形状图都是正方形.4.C5.D【点拨】正方体有六个面,注水的过程中,可将容器任意放置,水平面最多与六个面相交得六边形,最少与三个面相交得三角形,所得水平面的形状可能是三角形、四边形、五边形和六边形,不可能出现七边形.6.B【点拨】因为一个棱柱有10个顶点,所以该棱柱是五棱柱,所以它的每条侧棱长是40÷5=8(cm).7.C【点拨】三棱柱的侧面是长方形.8.A9.A【点拨】根据正方体的展开图的特征,11种情况中,“1-4-1型”6种,“2-3-1型”3种,“2-2-2型”1种,“3-3型”1种,逐一对四个位置进行判断,发现只有放在①处时,不能围成正方体.10.A【点拨】注意所有看到的棱都应表现在看到的平面图形中.11.D【点拨】拿掉小立方体②或③或④后,从左面看这个几何体所得到的平面图形都与原几何体从左面看所得到的平面图形相同,因此可以拿掉小立方体②或③或④.12.B【点拨】根据题意可知,连续3次变换是一个循环,因为2023÷3=674……1,所以第2023次变换与第1次变换相同.所以连续完成2023次变换后,骰子朝上一面的点数是5.二、13.面动成体14.515.36【点拨】这个几何体是三棱柱,4×3×3=36(cm2).故这个几何体的侧面积是36cm2.16.12π【点拨】由题意可知该长方形绕虚线旋转得到圆柱体,其侧面积=2π×2×3=12π(cm2).17.19【点拨】根据题意得m=6+1=7,n=12,所以m+n=7+12=19.18.7【点拨】由从正面看到的形状图可以看出,几何体从左到右共三列,第一列最多2层,第二列最多1层,第三列最多1层;由从左面看到的形状图可以看出,几何体从左到右共两列,第一列最多1层,第二列最多2层,所以第一层最多有6个,第二层最多有1个,最多需要小正方体6+1=7(个).三、19.【解】①圆锥.②五棱柱.③圆柱.20.【解】几何体的形状图如图所示.21.【解】由题图可得这个几何体的表面展开后是3个长方形与2个扇形,其侧面积为3×3×2π×2+3×2+3×2=9π+12,上、下底面的面积和为4π×22=6π,2×34故这个几何体的表面积为9π+12+6π=15π+12.=1(cm).22.【解】(1)圆孔的半径r=22根据题意,得5×3×4-πr2×5≈45(cm3),所以这个零件的体积大约是45cm3.(2)由题意,得(3×4+3×5+4×5)×2-2×πr2+2πr×5≈118(cm2).所以所喷油漆的面积大约是118cm2.23.【解】将正方体的部分侧面展开,作出线段AM,最短路线有2条,如图①②所示.24.【解】(1)7;9;14;6;8;12;7;10;15(2)f+v-e=2.(3)因为v=2024,e=3036,f+v-e=2,所以f+2024-3036=2,解得f=1014,即它的面数是1014.。
2021-2022鲁鲁鲁鲁鲁鲁鲁鲁鲁鲁鲁鲁鲁鲁鲁鲁鲁鲁鲁鲁鲁鲁鲁一、选择题1.下列几何体中,含有曲面的有()A. 1个B. 2个C. 3个D. 4个2.下列图形中,()是正方体的开放图。
A. B.C. D.3.用一个平面分别截下列几何体,不能得到三角形截面的几何体是()A. B. C. D.4.从正面、左面、上面观看一个立体图形得到的外形图如图所示,则该立体图形是()A. 圆锥B. 球C. 圆柱D. 立方体5.圆柱是由长方形围着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是()A.B.C.D.6.将如图的正方体开放能得到的图形是()A. B. C. D.7.在长方体的截面中,边数最多的截面是()A. 四边形B. 五边形C. 六边形D. 七边形8.如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是()A. 主视图和左视图B. 主视图和俯视图C. 左视图和俯视图D. 主视图、左视图、俯视图9.用一个平面截长方体,截面可能是下列图形中的().①三角形②正方形③长方形④梯形⑤圆A. ②③④B. ①②③④C. ②③⑤D. ③④10.如图,是正方体的一种开放图,其每个面上都标有一个汉字,则在原正方体中,与“若”字相对的面上的汉字是()A. 有B. 必C. 召D. 回二、填空题11.若要使得图中平面开放图折叠成正方体后,相对面上的两个数之和相等,则a+b+c的值为______.12.圆柱的侧面开放图是______ 形.13.一个棱柱共有9个面,则它共有____个顶点.14.在“长方体、圆柱、圆锥”三种几何体中,用一个平面分别去截三种几何体,则截面的外形可以截出长方形也可以截出圆形的几何体是______ .15.在桌上摆有一些大小相同的正方体木块,从正面和从左面看到的由这些大小相同的正方体木块摆成的图形的外形图如图所示,则要摆出这样的图形至少需要个正方体木块,最多需要个正方体木块.三、解答题16.将图中的图形按要求分类:(1)若按柱、锥、球划分;(2)若按组成面的曲或平划分.17.有一种牛奶软包装盒如图1所示,为了生产这种包装盒,需要先画出开放图纸样.(1)如图2给出三种纸样甲、乙、丙,在甲、乙、丙中,正确的有______.(2)利用你所选的一种纸样,求出包装盒的侧面积和表面积(侧面积与两个底面积的和).18.图 ①是由一些大小相同的正方体组成的几何体.在如图 ②所示的网格中分别画出从正面,左面和上面看到的外形图.19.用棱长为1的小正方体依据如图所示的摆放规律,逐个排成若干个无缝隙的几何体,第1个几何体的表面积为6,第2个几何体的表面积为18.(1)求第3个几何体的表面积;(2)求第67个几何体的表面积.答案和解析1.【答案】B【解析】【试题解析】【分析】此题主要考查了生疏立体图形,关键是把握常见的立体图形的外形.依据平面分类:曲面和平面进行解答即可.【解答】解:含有曲面的有球,圆柱,共2个,故选:B.2.【答案】C【解析】解:A、中间4个正方形是“田字形”,不是正方体开放图;B、折叠不是正方体开放图;C、符合正方体开放图;D、不符合正方体开放图;故选:C。
鲁教版数学六年级上册第一单元检测题(时间:60分钟分值:100分)一、选择题(每小题3分,共36分)1.下面现象说明“线动成面”的是()A.旋转一扇门,门在空中运动的痕迹B.扔一块小石子,石子在空中飞行的路线C.天空划过一道流星D.汽车雨刷在挡风玻璃上画出的痕迹2.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是()A.4B.6C.7D.83.用一个平面去截下列几何体,所得截面与其他三个不同的是()4.将如图所示的Rt△ABC绕直角边BC旋转一周,所得几何体的从左面看得到的图形是()5.长方体从正面看和从上面看到的形状图如图所示,则这个长方体的体积是()A.52B.32C.24D.96.用M,N,P,Q各代表四种简单几何图形(线段、等边三角形、正方形、圆)中的一种,图(1)~(4)是由M,N,P,Q中的两种图形组合而成的(组合用“&”表示)。
那么,下列组合图形中,表示P&Q的是()7.从多边形一条边上的一点(不是顶点)出发,连接各个顶点得到2014个三角形,则这个多边形的边数为()A.2013B.2014C.2015D.20168.直四棱柱,长方体和正方体之间的包含关系是()9.如图是一个由6个大小相同、棱长为1的小正方体搭成的几何体,下列关于它的说法中正确的是()A.从正面看到的图形的面积为6B.从左面看到的图形的面积为2C.从上面看到的图形的面积为5D.以上看到的三种图形的面积都是510.骰子是一种特别的数字立方体(如图),它符合规则:相对两面的点数之和总是7.下面四幅图中可以折成符合规则的骰子的是()11.下列说法:①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④棱柱的顶点数一定是偶数,棱的条数一定是3的倍数;⑤棱柱的侧面形状都是平行四边形,其中正确的个数是()A.2个B.3个C.4个D.5个12.下面各图都是正方体的表面展开图,若将它们折成正方体,则其中两个正方体各面图案完全一样,它们是()A.(1)与(2)B.(3)与(4)C.(2)与(4)D.(2)与(3)二、填空题(每小题4分,共20分)13.如图是两个立体图形的展开图,请分别写出这两个立体图形的名称:(1)________;(2)________。
第一章达标检测卷一、选择题(每题3分,共30分)1.下列图形中为圆柱的是()2.将如图所示的图形绕虚线旋转一周,形成的几何体是()3.如图是一个螺母的示意图,从上面看到的图形是()4.一个无盖的正方体盒子的表面展开图可以是如图所示的()A.①B.①②C.②③D.①③5.有下列说法:①长方体与正方体都是四棱柱;②三棱锥的侧面都是三角形;③十棱柱有10个面,每个侧面都是长方形;④棱柱的所有棱长可以相等.其中,正确的有()A.1个B.2个C.3个D.4个6.用一个平面去截下列几何体,所得截面的形状与其他三个不同的是()7.如图为一个长方体截去两个角后的立体图形,如果照这样截去长方体的八个角,则所得新的立体图形的棱有()A.26条B.30条C.36条D.42条8.如图,有一个正方体纸巾盒,它的平面展开图是()9.如图是某几何体的从三个方向看所得到的形状图,根据图中所标的数据求得该几何体的体积为()A.236π B.136π C.132π D.120π10.如图是由一些小立方块所搭的几何体从三个不同方向看到的图形,若在所搭的几何体的基础上(不改变原几何体中小立方块的位置)继续添加相同的小立方块,以搭成一个大正方体,至少还需要的小立方块个数是()A.50 B.51 C.54 D.60二、填空题(每题3分,共24分)11.如图所示的几何体中,属于柱体的是________;属于锥体的是________;属于球体的是________.12.一个棱柱有12个顶点,所有侧棱长的和是48 cm,则每条侧棱长是________.13.如图,将七个小正方形中的一个去掉,就能成为一个正方体的展开图,则去掉的小正方形的序号是______或______.14.笔尖在纸上快速滑动写出了一个又一个字,这说明了______________;钟表的时针和分针旋转时,均形成一个圆面,这说明了______________.15.正方体木块的六个面分别标有数字1,2,3,4,5,6,如图是从不同方向观察这个正方体木块看到的数字情况,数字1对面的数字是______.16.用一个平面分别去截长方体、三棱柱和圆柱,都能截出的一个截面形状是__________.17.如图,长方形ABCD的长AB=4,宽BC=3,以AB所在的直线为轴,将长方形旋转一周后所得几何体从正面看到的形状图的面积是________.18.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么该几何体从______(填“正”“左”或“上”)面看到的形状图的面积最大.三、解答题(19~21题每题10分,其余每题12分,共66分)19.如图所示是小明的玩具,它们类似于哪些几何体?小明想分类摆放,请你帮助小明设计摆放方案,并说明理由.20.如图①②都是几何体的表面展开图,先想一想,再折一折,然后说出图①②折叠后的几何体的名称、棱与顶点的数量.21.如图是一个几何体从三个不同方向看所得到的形状图,请写出这个几何体的名称,并计算这个几何体的体积(结果保留π).22.由若干个相同的小正方体堆成的几何体,从正面、上面看这个几何体时看到的图形如图所示,则堆成这个几何体最少需要几个小正方体?最多需要几个小正方体?23.某同学的茶杯是圆柱形,如图①是茶杯的几何体,左边下方有一只蚂蚁,从A处沿侧面爬行到对面的中点B处,如果蚂蚁爬行的路线最短,请画出这条最短路线.解:将圆柱的侧面展开成一个长方形,如图②所示,则A,B分别位于图②中所示的位置,连接AB,即得这条最短路线.问题:某正方体盒子,如图③,左边下方A处有一只蚂蚁,从A处爬行到侧棱GF上的中点M处,如果蚂蚁爬行路线最短,这样的路线有几条?请分别画出最短路线.24.如图①至③是将正方体截去一部分后得到的几何体.(1)根据要求填写表格:图面的个数(f) 顶点的个数(v) 棱的个数(e)①②③(2)猜想f,v,e三个数量间有何关系;(3)根据猜想计算,若一个几何体有2 019个顶点,4 035条棱,试求出它的面的个数.答案一、1.D 2.B 3.B 4.D 5.C 6.D 7.C 8.B 9.B 10.C二、11.①③⑤⑥;④⑦;② 12.8 cm 13.6;7 14.点动成线;线动成面 15.3 16.长方形 17.24 18.正三、19.解:①类似长方体,②类似圆锥,③类似圆柱,④类似球,⑤类似棱柱,⑥类似棱锥.分类(答案不唯一):(1)按是否有顶点分:①②⑤⑥一类有顶点;③④一类无顶点.(2)按是否有曲面分:①⑤⑥一类没有曲面;②③④一类有曲面.(3)按柱、锥、球分:①③⑤一类是柱体;②⑥一类是锥体;④一类是球体. 20.解:图①折叠后是长方体,有12条棱,8个顶点;图②折叠后是六棱柱,有18条棱,12个顶点. 21.解:这个几何体是圆柱,体积为π×⎝ ⎛⎭⎪⎫822×10=160π(cm 3). 22.解:综合这两个图形,可知该几何体由三层组成,最底层一定有7个小正方体,第二层最少有3个小正方体,最多有7个小正方体,第三层最少有2个小正方体,最多有4个小正方体,所以堆成这个几何体最少需要7+3+2=12(个)小正方体,最多需要7+7+4=18(个)小正方体. 23.解:通过展开图可得四条较短路线:(1)将面BCGF 展开与ABCD 共面,连接AM ,得到第一条较短路线(如图①). (2)将面EFGH 展开与ABFE 共面,连接AM ,得到第二条较短路线(如图②). (3)将面BCGF 展开与ABFE 共面,连接AM ,得到第三条较短路线(如图③). (4)将面EFGH 展开与AEHD 共面,连接AM ,得到第四条较短路线(如图④).以上四条路线经过测量或计算可知(1)(4)相等,(2)(3)相等.但是(1)(4)要长于(2)(3),故最短路线为(2)(3)两种.点拨:(1)运用展开图将起始点与目标点放在同一平面上,连接两点得到较短路线.(2)通过测量比较或计算比较得出最短路线.24.解:(1)7;9;14;6;8;12;7;10;15(2)f+v-e=2.(3)因为v=2 019,e=4 035,f+v-e=2,所以f+2 019-4 035=2,f=2 018,即它的面数是2 018.。
2021-2022学年鲁教五四新版六年级上册数学《第1章丰富的图形世界》单元测试卷一.选择题1.一个几何体的表面展开图如图所示,则这个几何体是()A.三棱柱B.三棱锥C.四棱柱D.四棱锥2.如图所示的平面图形绕轴旋转一周,可得到的立体图形是()A.B.C.D.3.下面图形中是正方体的表面展开图的是()A.B.C.D.4.下列几何体中,圆柱体是()A.B.C.D.5.下列几何体中,属于棱柱的是()A.B.C.D.6.如图所示图形中,不能折叠围成一个正方体的是()A.①B.②C.③D.④7.一个正方体的表面展开图如图所示,则原正方体中“学”所在面的对面所标的字是()A.享B.数C.之D.美8.如图,用一个平面去截正方体截面形状不可能为下图中的()A.B.C.D.9.如图,一块长方体砖块的长、宽、高的比为4:2:1,如果左视面向下放在地上,地面所受压强为a,则正视面向下放在地上时,地面所受压强为()A.2a B.C.4a D.10.一个长方形的长和宽分别为3cm和2cm,依次以这个长方形的长和宽所在的直线为旋转轴,把长方形旋转1周形成圆柱体甲和圆柱体乙,两个圆柱体的体积分别记作V甲、V乙,侧面积分别记作S甲、S乙,则下列说法正确的是()A.V甲<V乙,S甲=S乙B.V甲>V乙,S甲=S乙C.V甲=V乙,S甲=S乙D.V甲>V乙,S甲<S乙二.填空题11.如图为某几何体的展开图,该几何体的名称是.12.长方体纸盒的长、宽、高分别是10cm,8cm,5cm,若将它沿棱剪开,展成一个平面图形那么这个平面图形的周长的最小值是cm.13.若如图的平面展开图折叠成正方体后,“泽”相对面上的字为.14.一个棱柱有8个面,则这个棱柱有条侧棱.15.小甬把棱长为4的正方体分成了29个棱长为整数的小正方体,则其中棱长为1的小正方体有个.16.粉笔在黑板上划过写出一个又一个字母,画出一个个图案,这说明.17.一个圆柱的侧面积是60πdm2,底面半径是2dm.它的高是dm.18.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,那么应剪去.(填一个字母即可)19.(多选)下列几何体中,截面可能为圆的是.A.棱柱B.圆柱C.圆锥D.球20.一个漂亮的礼物盒是一个有11个面的棱柱,那么它有个顶点.三.解答题21.(1)三棱柱有条棱,四棱柱有条棱,五棱柱有条棱;(2)n棱柱有条棱;(3)三十棱柱有条棱.22.图1所示的三棱柱,高为7cm,底面是一个边长为5cm的等边三角形.(1)这个三棱柱有条棱,有个面;(2)图2方框中的图形是该三棱柱的表面展开图的一部分,请将它补全;(3)要将该三棱柱的表面沿某些棱剪开,展开成一个平面图形,需剪开条棱,需剪开棱的棱长的和的最大值为cm.23.将一盒足量的牛奶按如图1所示倒入一个水平放置的长方体容器中,当容器中的牛奶刚好接触到点P时停止倒入,图2是它的平面示意图,请根据图中的信息解答下列问题:(1)填空:AP=cm,PF=cm.(2)求出容器中牛奶的高度CF.24.如图,某酒店大堂的旋转门内部由四块宽为2米、高为3米的玻璃隔板组成,求该旋转门旋转一周形成的几何体的体积(边框及衔接处忽略不计,结果保留π).25.已知一个六棱柱,它的底面边长都是5厘米,侧棱长都是8厘米,请回答下列问题(1)这个六棱柱一共有多少个面?一共有多少条棱?这些棱的长度之和是多少?(2)沿一条侧棱将这个六棱柱侧面全部展开成一个平面图形,这个图形的面积是多少?26.先阅读,然后答题.阿基米德测皇冠的故事叙古拉国王艾希罗交给金匠一块黄金,让他做一顶王冠.王冠做成后,国王拿在手里觉得有点轻.他怀疑金匠掺了假,可是金匠以脑袋担保说没有,并当面拿秤来称,结果与原来的金块一样重.国王还是有些怀疑,可他又拿不出证据,于是把阿基米德叫来,要他来解决这个难题.回家后,阿基米德闭门谢客,冥思苦想,但百思不得其解.一天,他的夫人逼他洗澡.当他跳入池中时,水从池中溢了出来.阿基米德听到那哗哗哗的流水声,灵感一下子冒了出来.他从池中跳出来,连衣服都没穿,就冲到街上,高喊着:“优勒加!优勒加!(意为发现了)“.夫人这回可真着急了,嘴里嘟囔着“真疯了,真疯了“,便随后追了出去.街上的人不知发生了什么事,也都跟在后面追着看.原来,阿基米德由澡盆溢水找到了解决王冠问题的办法:相同质量的相同物质泡在水里,溢出的水的体积应该相同.如果把王冠放到水了,溢出的水的体积应该与相同质量的金块的体积相同,否则王冠里肯定掺有假.阿基为德跑到王宫后立即找来一盆水,又找来同样重量的一块黄金,一块白银,分两次泡进盆里,白银溢出的水比黄金溢出的几乎要多一倍,然后他又把王冠和金块分别泡进水盆里,王冠溢出的水比金块多,显然王冠的质量不等于金块的质量,王冠里肯定掺了假.在铁的事实面前,金匠不得不低头承认,王冠里确实掺了白银.烦人的王冠之谜终于解开了.小明受阿基米德测皇冠的故事的启发,想要做以下的一个探究:小明准备了一个长方体的无盖容器和A,B两种型号的钢球若干.先往容器里加入一定量的水,如图,水高度为30mm,水足以淹没所有的钢球.探究一:小明做了两次实验,先放入3个A型号钢球,水面的高度涨到36mm;把3个A 型号钢球捞出,再放入2个B型号钢球,水面的高度恰好也涨到36mm.由此可知A型号与B型号钢球的体积比为;探究二:小明把之前的钢球全部捞出,然后再放入A型号与B型号钢球共10个后,水面高度涨到57mm,问放入水中的A型号与B型号钢球各几个?27.棱长为a的正方体,摆成如图所示的形状.(1)如果这一物体摆放三层,试求该物体的表面积;(2)依图中摆放方法类推,如果该物体摆放了上下20层,求该物体的表面积.(3)依图中摆放方法类推,如果该物体摆放了上下n层,求该物体的表面积.参考答案与试题解析一.选择题1.解:如图所示:这个几何体是四棱锥.故选:D.2.解:直角三角形绕其一条直角边旋转一周所得图形是一个圆锥.故选:B.3.解:根据正方体展开图的特征,选项A、B、C不是正方体展开图;选项D是正方体展开图.故选:D.4.解:A、这个几何体是圆锥,故本选项不符合题意;B、这个几何体是圆台,故本选项不符合题意;C、这个几何体是圆柱,故本选项符合题意;D、这个几何体是棱台,故本选项不符合题意.故选:C.5.解:A、圆锥属于锥体,故此选项不合题意;B、圆柱属于柱体,故此选项不合题意;C、棱锥属于锥体,故此选项不合题意;D、长方体属于棱柱,故此选项符合题意;故选:D.6.解:②围成几何体时,有两个面重合,故不能围成正方体;①、③、④都能围成正方体.故选:B.7.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“数”与“之”是相对面,“受”与“美”是相对面,“学”与“享”是相对面.故选:A.8.解:无论如何去截,截面也不可能有弧度,因此截面不可能是圆.故选:A .9.解:设长方体砖块的长、宽、高分别为4k ,2k ,k , 则左视图的面积为4k •k =4k 2,主视图的面积为4k •2k =8k 2, 因此主视图的面积是左视图面积的2倍,所以主视图在下所受到的压强是左视图向下所受压强的,即a , 故选:B . 10.解:由题可得, V 甲=π•22×3=12π, V 乙=π•32×2=18π, ∵12π<18π, ∴V 甲<V 乙;∵S 甲=2π×2×3=12π, S 乙=2π×3×2=12π, ∴S 甲=S 乙, 故选:A .二.填空题11.解:∵圆柱的展开图为两个圆和一个长方形, ∴展开图可得此几何体为圆柱. 故答案为:圆柱. 12.解:如图所示:这个平面图形的周长的最小值是:5×8+8×4+10×2=92(cm).故答案为:9213.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“美”与“洪”是相对面,“我”与“丽”是相对面,“爱”与“泽”是相对面.故答案为:爱.14.解:一个棱柱是由8个面围成的,则有2个底面,6个侧面,因此此立体图形是六棱柱,六棱柱有6条侧棱,故答案为:6.15.解:棱长为4的正方体的体积为64,如果只有棱长为1的正方体就是64个不符合题意排除;如果有一个3×3×3的立方体(体积27),有1×1×1的立方体37个,37+1>29,不符合题意排除;所以应该是有2×2×2和1×1×1两种立方体.则设棱长为1的有x个,则棱长为2的有(29﹣x)个,解方程:x+8×(29﹣x)=64,解得:x=24.所以分割的立方体应为:棱长为1的24个,棱长为2的5个.故答案为:24.16.解:粉笔在黑板上划过写出一个又一个字母,画出一个个图案,这说明点动成线.故答案为:点动成线.17.解:设圆柱的高为xdm,根据侧面积公式可得:π×2×2×x=60π,解得x=15,故答案为:15.18.解:F的对面可能是A,G的对面可能是A,E的对面可能是C,G的对面可能是C,将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,应剪去E 或F或G.故答案为:E或F或G.19.解:用一个平面去截一个几何体,截面可能为圆的是圆柱、圆锥、球.故答案为:BCD.20.解:∵礼物盒是一个有11个面的棱柱,∴侧面有11﹣2=9个,∴顶点数为9+9=18,故答案为:18.三.解答题21.解(1)三棱柱有9条棱,四棱柱有12条棱,五棱柱有15条棱;故答案为:9,12,15.(2)根据(1)中的规律判断,n棱柱共有3n条棱;故答案为:3n.(3)三十棱柱有90条棱.故答案为:90.22.解:(1)这个三棱柱有条9棱,有个5面;故答案为:9,5;(2)如图;(3)由图形可知:没有剪开的棱的条数是4条,则至少需要剪开的棱的条数是:9﹣4=5(条).故至少需要剪开的棱的条数是5条.需剪开棱的棱长的和的最大值为:7×3+5×2=31(cm).故答案为:5,31.23.解:(1)在Rt△ABP中,∵∠APB=90°,∠ABP=30°,AB=10cm,∴AP=AB=5cm,∠BAP=60°;∴∠EAP=30°,∴EP=AP=cm,∴PF=10﹣=(cm);故答案为:5,;(2)∵EF∥AB,∴∠BPF=∠ABP=30°,又∵∠BFP=90°,∴tan30°=,∴BF=×=(cm).∴CF=BC﹣BF=(12﹣)(cm).即容器中牛奶的高度CF为(12﹣)cm.24.解:该旋转门旋转一周形成的几何体是圆柱,体积为:π×22×3=12π(m3).故形成的几何体的体积是12πm3.25.解:(1)这个六棱柱一共有2+6=8个面;一共有6×3=18条棱;这些棱的长度之和是8×6+5×6×2=108厘米;(2)侧面全部展开成一个平面图形,其面积为8×5×6=240厘米2.26.解:探究一:由题可得,3个A型号钢球与2个B型号钢球的体积相等,∴A型号与B型号钢球的体积比为2:3;故答案为:2:3;探究二:每个A型号钢球使得水面上升(36﹣30)=2 mm,每个B型号钢球使得水面上升(36﹣30)=3mm,设放入水中的A型号钢球为x个,则B型号钢球为(10﹣x)个,则由题意列方程:2x+3(10﹣x)=57﹣30,解得:x=3,所以10﹣x=7,答:放入水中的A型号钢球3个,B型号钢球7个.27.解:(1)6×(1+2+3)•a2=36a2.故该物体的表面积为36a2;(2)6×(1+2+3+…+20)•a2=1260a2.故该物体的表面积为1260a2;(3)6×(1+2+3+…+n)•a2=3n(1+n)a2.故该物体的表面积为3n(1+n)a2.。
六年级上册数学第一章丰富的图形世界单元检测试题附答案鲁教版五四制考试时间:120分钟满分:120分姓名:__________ 班级:__________考号:__________一、单选题(每小题3分,共12题;共36分)1.一个棱柱有12个面,30条棱,则它的顶点个数为()A. 10B. 12C. 15D. 202.如图是一个正方体纸盒的展开图,每个面内都标注了字母或数字,则面a在展开前所对的面的数字是()A. 2B. 3C. 4D. 53.直棱柱的侧面都是()A. 正方形B. 长方形C. 五边形D. 菱形4.下列四幅图均由五个全等的小正方体堆成,其中主视图与其他三个不同的是()A. B. C. D.5.由n个相同的小正方体堆成的几何体,其主视图、俯视图如下所示,则n的最大值是( )A. 16B. 18C. 19D. 206.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()A. B. C. D.7.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()A. 白B. 红C. 黄D. 黑8.(2013•百色)一个几何体的三视图如图所示,则该几何体的侧面展开图的面积为()A. 6cm2B. 4πcm2C. 6πcm2D. 9πcm29.用一个平面去截一个圆柱体,截面不可能的是()A. B. C.D.10.如图是某几何体的三视图,其侧面积()A. 6B. 4πC. 6πD. 12π11.如图是某工厂要设计生产的正六棱柱形密封罐的立体图形,它的主视图是()A. B. C.D.12.(2013•大连)如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的俯视图是()A. B. C.D.二、填空题(每空3分;共18分)13.如图,下面两个正方体的六个面都按相同规律涂有红、黄、蓝、白、黑、绿六种颜色,那么黄色的对面是________ .14.用一些棱长为a的正方形,摆成如图所示的形状,请你求出该物体的表面积.________.15.把一个体积是64立方厘米的立方体木块的表面涂上红漆,然后锯成体积为1立方厘米的小立方体,从中任取一块,则取出的这一块至少有一面涂红漆的概率是________.16.如图,某长方体的表面展开图的面积为430,其中BC=5,EF=10,则AB=________.17.一三棱锥的三视图如下,这个三棱锥最长棱的长度为________.18.(2011•扬州)如图,立方体的六个面上标着连续的整数,若相对的两个面上所标之数的和相等.则这六个数的和为________.三、解答题(共7题;共66分)19.(6分)我们知道,将一个长方形绕它的一边旋转一周得到的几何体是圆柱,现有一个长是5cm,宽是3cm的长方形,分别绕它的长和宽所在的直线旋转一周,得到不同的圆柱几何体,分别求出它们的体积.20.(6分)正方体是由六个平面图形围成的立体图形,设想沿着正方体的一些棱将它剪开,就可以把正方体剪成一个平面图形,但同一个正方体,按不同的方式展开所得的平面展开图是不一样的;如图所示,请至少再画出三种不同的平面展开图.21.(12分)如图①所示是一个长方体盒子,四边形ABCD是边长为a的正方形,DD′的长为b.(1)写出与棱AB平行的所有的棱。
鲁教版数学六年级上册第一章《丰富的图形世界》一、耐心填一填(每小题4分,共20分)1.用一个平面去截长方体,三棱柱,圆柱和圆锥,其中不能截出三角形的几何体是________,不能截出圆的几何体是_________________.2.图1所示的几何体的名称是__________.3.一个棱柱有18条棱,那么它的底面是__________边形.4.如果一个六棱柱的侧棱长为5cm,那么所有侧棱之和为__________.5.如图2,从长方形纸片上剪下阴影部分(中间四边形为正方形),恰好能围成一个圆柱,设圆半径为1,π取3.14,则圆柱的体积为___________.二、精心选一选(每小题4分,共20分)1.下列判断正确的有()①长方体是棱柱、正方体不是长方体;②正方体是棱柱,长方体也是棱柱;③正方体是柱体,圆柱也是柱体;④正方体不是柱体,圆柱是柱体.A.1个B.2个C.3个D.4个2.下列不属于立体图形的是()A.圆图1 图2B.三棱柱 C.长方体 D.圆锥3.如图3所示,关于图形中的几何体,下列叙述不正确的是( )A.四个几何体中面数最多的是图④B.图②有四个面是平的C.图①由一个面围成,这个面是曲的 D.图中只有一个顶点的几何体是图③4.下列立体图形中,有六个面的是( )A.五棱柱 B.六棱柱 C.三棱柱 D.四棱柱5.下列图形中,是正方体表面展开图的是( )三、用心想一想(每小题15分,共60分)1.如图4,在正方体的表面展开图中的面内填上适当的字,使之与相对的面内的字具有相反意义.A. B. C. D.② ③图32.如图5是一个正方体,若用一个平面去截它,请问能否使截面为等边三角形?应怎样截才能使截得的等边三角形的面积最大?在图上画一画.3.一个物体的三视图如图6所示,那么请问:该物体有几层高?最高部分位于哪里?请在俯视图中标出来.图5主视图左视图 俯视图 图64.图7是由几个小立方块搭成的几何体的俯视图,小正方形的数字表示该位置小立方块的个数,请画出这个几何体的主视图和左视图.参考答案一、1.圆柱;长方体,三棱柱;长方体,三棱柱,圆柱2.四棱柱3.64.30 5.19.7192 二、1~5BAADB三、1.如图123.3层,下略4.如图2所示:2 3 11 1图7 图1图2主视图左视图。
鲁教版数学六年级上册第一章《丰富的图形世界》一、耐心填一填(每小题4分,共20分)
1.用一个平面去截长方体,三棱柱,圆柱和圆锥,其中不能截出三角形的几何体是________,不能截出圆的几何体是________
_________.
2.图1所示的几何体的名称是__________.
3.一个棱柱有18条棱,那么它的底面是__________边形.
4.如果一个六棱柱的侧棱长为5cm,那么所有侧棱之和为__________.
5.如图2,从长方形纸片上剪下阴影部分(中间四边形为正方形),恰好能围成一个圆柱,设圆半径为1,π取3.14,则圆柱的体积为___________.
二、精心选一选(每小题4分,共20分)
1.下列判断正确的有()
①长方体是棱柱、正方体不是长方体;②正方体是棱柱,长方体也是棱柱;③正方体是柱体,圆柱也是柱体;④正方体不是柱体,圆柱是柱体.A.1个B.2个C.3个D.4个
2.下列不属于立体图形的是()A.圆图
1 图2
B.三棱柱 C.长方体 D.圆锥
3.如图3所示,关于图形中的几何体,下列叙述不正确的是( )
A.四个几何体中面数最多的是图④B.图②有四个面是平的C.图①由一个面围成,这个面是曲的 D.图中只有一个顶点的几何体是图③
4.下列立体图形中,有六个面的是( )A.五棱柱 B.六棱柱 C.三棱柱 D.四棱柱
5.下列图形中,是正方体表面展开图的是( )
三、用心想一想(每小题15分,共60分)
1.如图4,在正方体的表面展开图中的面内填上适当的字,使之与相对的面内的字具有相反意义.
A. B. C. D.
② ③
图3
2.如图5是一个正方体,若用一个平面去截它,请问能否使截面为等边三角形?应怎样截才能使截得的等边三角形的面积最大?在图上画一画.
3.一个物体的三视图如图6所示,那么请问:该物体有几层高?最高部分位于哪里?请在俯视图中标出来.
图5
主视图
左视图 俯视图 图6
4.图7是由几个小立方块搭成的几何体的俯视图,小正方形的数字表示该位置小立方块的个数,请画出这个几何体的主视图和左视图.
参考答案
一、1.圆柱;长方体,三棱柱;长方体,三棱柱,圆柱2.四棱柱3.6
4.30 5.19.7192 二、1~5BAADB
三、1.如图1
2
3.3层,下略4.如图2所示:
2 3 1
1 1
图7 图1
图2
主视图左视图。