最新模电基础之波形发生电路
- 格式:ppt
- 大小:2.63 MB
- 文档页数:3
波形发生电路原理波形发生电路是一种电子电路,用于产生特定形状和频率的电压或电流波形。
它通常由活动元件(例如晶体管、集成电路)和被动元件(例如电阻、电容)组成。
波形发生电路的原理基于信号的周期性。
一般来说,波形发生电路需要一个参考信号(例如时钟信号、振荡器信号),根据参考信号的周期和幅值来产生期望的波形。
具体的原理取决于所采用的电路拓扑和元件类型。
常见的波形发生电路包括正弦波发生器、方波发生器、矩形波发生器和三角波发生器等。
下面以正弦波发生器为例,介绍其工作原理:1. 整体思路:正弦波发生器的核心思想是利用反馈机制,将一个信号通过放大和滤波处理后再输入到自身,形成一个稳定的正弦波输出。
2. 振荡器电路:正弦波发生器的关键是振荡器电路,它负责产生频率恒定的振荡信号。
常见的振荡器电路包括LC振荡器、晶体振荡器、RC振荡器等。
以LC振荡器为例,它由电感(L)和电容(C)构成,并配合放大元件组成正反馈网络。
3. 放大器电路:振荡器电路生成的振荡信号较弱,需要经过放大器电路放大后才能得到理想的输出。
这里可以采用放大器电路,如共射放大电路或运算放大器等。
4. 滤波器电路:放大器电路放大信号后,仍然会存在一些杂散信号或高频成分。
因此,需要使用滤波器电路,如低通滤波器或带通滤波器,将不需要的信号滤除,只保留所需的正弦波信号。
通过以上的电路组合,正弦波发生器可以实现将一个参考信号转换成期望频率和幅度的正弦波输出。
实际设计时,需要根据具体要求选择合适的元件和电路拓扑,以实现所需的波形。
需要注意的是,不同类型的波形发生器可能有不同的电路原理和参数设置,本文所述仅作为示例,具体应用需根据实际情况进行调整和优化。
实验: 波形发生电路一、 实验目的1.掌握RC 桥式正弦波振荡电路的原理与设计方法;2.加深理解矩形波和方波-三角波发生电路的工作原理与设计方法;3.了解运放转换速率对振荡波形跳变沿的影响。
二、实验仪器名称及型号KeySight E36313A 型直流稳压电源,KeySight DSOX3014T 型示波器/信号源一体机。
模块化实验装置。
本实验将使用三种集成运放:µA741、LM324和TL084,它们的引脚如图1所示,LM324和TL084的引脚排列完全相同。
87654321µA741+Vcc -VccOUT OA2NC 141312114321LM324(TL084)1098765V-4OUT 4IN-4IN+3OUT3IN-3IN+图1 741A 、LM324和TL084的引脚图三、实验内容1.RC 桥式正弦波振荡电路(SPOC 实验)(1)设计RC 桥式正弦波振荡电路,要求振荡频率为1.6kHz ,输出波形稳定并且无失真。
其中集成运放可采用µA741、LM324或TL084,简要写出设计过程,绘制或截取电路原理图。
电阻R1.R2与电容C1、C2构成串并联选频网络,电阻R3、R4、RP 构成负反馈网络,VD1和VD2用于限幅作用稳定波形,当R1=R2=R,C1=C2=C 时,串并联选频网络的相频特性和幅频特性分别为,相频特性为,,根据,题目要求f=1.6kHz,取参数R1=R2=10kΩ,C1=C2=0.01μF,R3=R4=5.1kΩ,R p=10kΩ。
(2)学习SPOC实验操作视频,将示波器的两个通道分别接在u o端和u f端,缓慢调节电位器R W,使电路产生正弦振荡,在确保两个通道的正弦波不失真的前提下将输出幅度调得尽量大些,记录输出u o的峰-峰值U opp和输入u f的峰-峰值U fpp。
U opp= 18.1V ;U opp= 6.1V ;(3)正反馈系数F u的测定。
模拟电路实验报告RC波形发生器电路一.实验设计1.首先需要一个可以产生方波、矩形波、锯齿波、三角波四种波形的电路,分析后可以得知mooc中给出的锯齿波电路(右图)便可以产生这四种波形。
2.根据公式T=2(R PN+R)R/R,可知欲改变信号的频率,可以得到三412种改变信号频率的方法。
{1>①在AB两点间串联一个滑动变阻器②在CD两点间串联一个滑动变阻器③在B点添加一个滑动变阻器改变分压2>①由公式η=(R PP+R)/(R PN+R)可知若在AB两点间添加滑动变阻44器,则会在改变信号的频率的同时改变信号的占空比,所以不可以在AB两点间串联一个滑动变阻器。
②由公式V OM=(R*V)/R可知若在CD两点间添加一个滑动变阻器,1Z2则会在改变信号的频率的同时改变信号的幅值。
所以也不可以在CD 两点间串联一个滑动变阻器。
③所以只有在B点添加一个滑动变阻器改变分压以此来改变信号的频率是可行的,由此改动电路如下。
3>为保证分压只与滑动变阻器有关,故在在R7后连接一个电压跟随器,并将R和R减小以提高信号的频率,最终电路图如下。
84O二.实验步骤1 2 3 >严格按照最终电路连接好。
>示波器 A 通道两端接在 A 点与地,B 通道两端接在 O 点与地。
>分别将 R 和 R 调整到 0%与 100%,记录下四组照片,这便是锯79齿波与矩形波的图像。
>将 R 和 R 调整到 50%,记录下这组照片,这便是三角波与方波 的图像。
三.理论分析 4 7 9 1 . 理论分析>锯齿波与矩形波(占空比最低):由公式η=(R PP +R 调整到 0%时(既 R PP =0Ω时),占空比最低。
当 R 调整到 0%时,分的电压最小,此时信号的周期最小, 频率最高。
当 R 调整到 100%时,分的电压最大,此时信号的周期最大, 频率最低。
>锯齿波与矩形波(占空比最高):由公式η=(R PP +R 调整到 100%时(既 R PN =0Ω时),占空比最高。
第9章 波形发生电路例题【例9-1】用相位条件判断图9-1所示各正弦波振荡电路能否起振,并说明原因。
R(a) (b)R (c) (d)图9-1 例9-1电路【解9-1】(a)图、(c)图电路不能产生振荡。
(b)图、(d)图电路可能产生振荡。
【解题思路】判断振荡电路是否满足相位平衡条件可以采用瞬时极性法:首先找到反馈端,振荡电路的输入是由反馈信号提供,反馈端即为放大电路的输入端,从输入端到输出端再到反馈端用瞬时极性判断电路是否为正反馈,若为正反馈则满足相位平衡条件,或分别求出A ϕ和F ϕ,看电路是否满足相位平衡条件π2F A n =+ϕϕ。
【解题过程】图9-1 (a)所示电路由两级直接耦合放大器和RC 串并联选频网络组成。
A 点为反馈端,与放大电路的输入端(即VT 1的基极)连接,瞬时极性标注如图9-1(a)所示。
可以看出,o A 180-=ϕ,o F 0=ϕ,该电路不满足产生振荡的相位平衡条件 2F A πϕϕn =+。
所以,该电路不能振荡。
图9-1 (b)所示电路由共射放大电路和三级RC 超前移相网络组成。
共射放大电路的φA =-180˚,三级移相网络在信号频率为0到无穷大时相移为+270˚~0˚,因此存在使相移为+180˚(φF =+180˚)的频率,即存在满足正弦波振荡相位条件的频率f 0 (此时φA +φF =0˚),故电路可能产生振荡。
图9-1 (c)所示电路由单端输入、单端输出差动放大电路和RC 串并联选频网络组成。
瞬时极性标注如图9-1 (c)所示。
可以看出,o A 180-=ϕ,o F 0=ϕ,该电路不满足产生振荡的相位平衡条件。
所以,该电路不能振荡。
图9-1 (d)所示电路由共射放大电路和三级滞后移相网络组成。
共射放大电路的φA =-180˚,三级移相网络,在信号频率为0到无穷大时相移为0˚~-270˚,因此存在使相移为-180˚ (φF =-180˚)的频率,即存在满足正弦波振荡相位条件的频率f 0(此时φA +φF =-360˚),故该电路可能产生振荡。