有限元分析软件比较分析
- 格式:doc
- 大小:64.00 KB
- 文档页数:11
MSC.Patran与LR.ShipRight有限元建模技术的分析与比较作者:江南造船集团朱彦摘要:本文基于散货船CSR 探讨使用MSC.Patran 与LR.ShipRight 两款软件在进行有限元分析中的建模技术,并比较两款软件的特点以及相互联系。
关键字:Patran、ShipRight、散货船、CSR、有限元建模1. 前言在船舶详细设计阶段,对船体结构进行应力集中以及疲劳强度评估的一个有效的手段就是采用有限元分析。
有限元分析的一般方法为选择有限元分析软件、确定单元形式、建立几何模型、网格划分、确定边界条件、判断载荷工况等,具体又可归纳为四个步骤:1) 建立有限元模型;2) 确定载荷及边界条件;3) 进行详细应力应变评估(例如细化网格以评估高应力区域);4) 对关键部位的结构进行疲劳强度评估。
在以上步骤中能否建立合理有效的有限元模型是前提条件,模型质量的好坏,特别是网格的类型与划分方法,直接影响后续的分析结果。
目前常用的有限元分析软件主要有MSC.Patran\Nastran、LR.ShipRight、基于Patran 的CCS.TOOLS、DNV.Sesam 等,本文以散货船CSR 有限元建模为例,探讨Patran 与ShipRight 两种软件的建模技术和异同点。
2. Patran 与ShipRight 的简介MSC.Patran 作为一个优秀的前后置处理器,具有高度的集成能力和良好的适用性,模型处理智能化、自动有限元建模、分析的集成、用户自主开发新功能、分析结果的可视化处理等等是其典型的特征,它提供了功能全面、方便灵活的可满足各种精度要求的复杂有限元的建模功能,其综合全面先进的网格划分技术,为用户根据不同的几何模型提供了多种不同的生成和定义的有限元模型工具。
ShipRight 是LR 自主开发的一款基于CSR 的有限元分析应用软件,具有很强的针对性,其优势在于建立好模型后,进行加载计算分析较Patran 更为便利。
CAD软件中的结构分析与有限元分析在现代工程设计和建筑领域中,计算机辅助设计(CAD)软件是不可或缺的工具。
CAD软件通过虚拟建模和模拟分析等功能,帮助工程师和设计师快速准确地进行产品设计和分析。
其中,结构分析和有限元分析是CAD软件的重要功能之一,本文将重点探讨这两个主题。
一、结构分析结构分析是指对建筑物、机械装置或其他工程结构的受力情况进行研究和评估的过程。
在CAD软件中,结构分析可以通过在模型中添加材料属性、边界条件和载荷等信息来模拟实际情况。
软件根据这些参数计算出结构物的应力、变形和振动等特性,帮助工程师进行结构优化和性能改进。
CAD软件中的结构分析采用了多种数值方法,如有限元法、刚性体法和模型分析法等。
其中,有限元法是最广泛使用的方法之一,也是本文的重点内容。
二、有限元分析有限元分析是指将连续体划分为有限数量的离散单元(有限元),通过求解线性方程组得到结构的应力和位移等信息的数值方法。
在CAD软件中,有限元分析将结构划分为许多小的三角形或四边形元素,每个元素由节点和单元属性组成。
通过节点之间的连通关系,软件可以计算出结构物的应力和形变情况。
在进行有限元分析时,CAD软件需要考虑诸多因素,如材料特性、边界条件、载荷和约束等。
软件可以根据这些参数生成数学模型,并运用数值计算方法求解模型,得到结构的应力分布、变形情况以及对外部载荷的响应等。
三、CAD软件在结构分析与有限元分析中的应用CAD软件在结构分析与有限元分析中扮演着重要角色。
通过CAD软件,工程师可以快速创建模型、定义边界条件和载荷,并进行结构分析和有限元分析。
其应用不仅提高了设计效率和准确性,还可以减少实验和测试的成本和时间。
使用CAD软件进行结构分析与有限元分析具有以下优势:1. 精确性:CAD软件使用高精度数值计算方法,能够准确模拟复杂结构的受力情况,并给出准确的计算结果。
2. 可视化:CAD软件可以在虚拟环境中生成三维模型,并可视化展示结构的应力、变形和振动等信息,帮助工程师更好地理解和分析结构特性。
有限元的分析软件Ansys在电机领域中应用有限元分析是现代工程和科学领域中最强大的工具之一。
它是一种仿真技术,可用于预测复杂结构的加载和行为。
此技术已经在各种领域得到了广泛的应用,包括航空航天、汽车、建筑、医学设备等,也在电机领域中广泛应用。
Ansys是一家专业的机械仿真软件公司,推出了Ansys Maxwell、Ansys Q3D Extractor、Ansys Icepak等多款电磁仿真软件。
本文将重点介绍Ansys最著名的电机仿真软件Ansys Maxwell在电机设计中的应用。
Ansys Maxwell介绍Ansys Maxwell是Ansys专为电力电子、电机、传感器设计等行业推出的电磁仿真软件。
Ansys Maxwell提供了各种电机部件和材料的建模,通过有限元解算技术实现了对电机运行性能的全面分析。
Ansys Maxwell在电机领域的具体应用包括:电机的磁场仿真在电机部件上施加预定义的电源电压波形或电流波形,Ansys Maxwell可计算它们所产生的电磁力和涡流、磁通密度和磁力线等参数。
与他平面上的分析方法相比,有限元分析技术能够更好地解决非线性、非均匀和几何较复杂的问题。
电机的热老化仿真Ansys Maxwell不仅可以分析电机的电磁性能,还可以通过Ansys Icepak模块进行热仿真,分析磁场作用下电机的温度分布和热点位置等运行状况,从而设计出更加稳定的电机。
电机的噪声与振动仿真电机在工作时往往会产生噪声和振动。
在电机设计阶段,利用Ansys Maxwell 可进行噪声和振动仿真。
通过识别和测试电机的激励源和耦合过程,可以预测电机的声功率级和振动特性,从而优化电机设计。
Ansys在电机领域的应用实例应用Ansys Maxwell,企业可以快速准确地设计和验证新的电机概念和产品,预测其性能和优化设计,降低设计成本和提高设计效率。
以下列举了Ansys在电机领域的应用实例。
无刷直流电机的磁场和振动分析以无刷直流电机为例,Ansys Maxwell在电机的建模、噪音和振动分析方面做出了贡献。
ANSYS有限元分析报告1. 简介在工程设计领域,有限元分析是一种常用的数值分析方法,通过将复杂的结构划分为有限数量的单元,然后对每个单元进行力学和物理特性的计算,最终得出整个结构的响应。
ANSYS是一款流行的有限元分析软件,提供了丰富的工具和功能,可用于解决各种工程问题。
本文将介绍ANSYS有限元分析的基本步骤和流程,并以一个实际案例为例进行说明。
2. 步骤2.1 确定分析目标首先要确定分析的目标。
这可以是结构的强度分析、振动分析、热传导分析等。
根据目标的不同,还需确定所需的加载条件和边界条件。
2.2 几何建模在进行有限元分析之前,需要进行几何建模。
在ANSYS中,可以使用几何建模工具创建和编辑结构模型。
这包括定义几何形状、尺寸和位置等。
2.3 网格划分网格划分是有限元分析的关键步骤。
通过将结构划分为多个单元,可以将结构分解为有限数量的离散部分,从而进行数值计算。
在ANSYS中,可以使用网格划分工具进行自动或手动划分。
2.4 材料属性定义在进行有限元分析之前,需要定义材料的物理和力学属性。
这包括弹性模量、泊松比、密度等。
ANSYS提供了一个材料库,可以选择常见材料的预定义属性,也可以手动定义。
2.5 加载和边界条件定义在进行有限元分析之前,需要定义加载和边界条件。
加载条件可以是力、压力、温度等。
边界条件可以是支撑、固定或自由。
2.6 求解和结果分析完成前面的步骤后,可以开始求解分析模型。
ANSYS将应用数值方法来解决有限元方程组,并计算结构的响应。
一旦求解完成,可以进行结果分析,包括位移、应力、应变等。
2.7 结果验证和后处理在对结果进行分析之前,需要对结果进行验证。
可以使用已知的理论结果或实验数据进行比较,以确保分析结果的准确性。
完成验证后,可以进行后处理,生成报告或结果图表。
3. 案例分析在本案例中,将针对一个简单的悬臂梁进行有限元分析。
3.1 确定分析目标本次分析的目标是确定悬臂梁在给定加载条件下的应力分布和变形。
ANSYS与ABAQUS软件介绍及对比1.功能和应用领域:ANSYS是一款强大的通用有限元分析软件,包括结构、热力学、流体力学等多个领域,能够模拟各种复杂的物理现象。
它具有灵活的建模能力,可以进行静力学、热分析、模态分析、优化等多种分析,并且易于与其他软件集成。
ANSYS在航空航天、能源、汽车、电子等众多领域具有广泛的应用。
ABAQUS是由达索系统公司开发的有限元分析软件,主要用于结构和材料领域的分析。
它提供了丰富的分析类型,包括静力学、动力学、热分析、流体-结构耦合等。
ABAQUS具有强大的非线性分析能力,适用于复杂的材料行为和结构变形的仿真。
它在航空航天、汽车、能源等领域得到了广泛应用。
2.用户界面和建模:ANSYS提供了直观友好的用户界面,可以通过命令行或图形界面进行交互。
它具有丰富的建模和网格划分工具,能够快速创建几何模型并生成高质量的网格。
ANSYS还提供了强大的后处理工具,可以对计算结果进行可视化和分析。
ABAQUS的用户界面相对较为复杂,需要通过命令行或者Python脚本进行操作。
它的建模功能相对较少,对于复杂的几何模型需要使用其他软件进行前处理。
ABAQUS的后处理能力强大,可以进行详细的结果分析和可视化。
3.材料模型和求解算法:ANSYS提供了丰富的材料模型,包括线性弹性、非线性弹性、塑性、损伤等多种模型。
它使用有限元方法进行求解,可以选择不同的求解算法和求解器,如直接法、迭代法等。
ANSYS的求解速度较快,特别适用于大规模模型和复杂加载条件。
ABAQUS同样提供了多种材料模型,包括线性和非线性模型。
它使用显式和隐式求解算法,具有较好的稳定性和精度。
ABAQUS在非线性分析和大变形问题上有较好的表现,但对于大规模模型的求解速度相对较慢。
4.支持和学习资源:ANSYS和ABAQUS都拥有庞大的用户群体和丰富的学习资源。
两者均提供了官方文档、教程、培训等支持服务,用户可以从官方网站获取相关资料。
目前在全球范围内的CAE软件产品是非常多的,如Simulation、ANSYS、NASTRAN、PATRAN、ADINA、SAP、MARC、ASKA、RASNA、JIFEX(国产)等。
下面将美国加洲理工学院Paul M. McEcroy博士对一些CAE软件的测试结果公布于此,供一些企业参考。
值得一提的是Paul M. McElroy博士是完全站在公正的、中立的立场上进行这项工作的,并且这些结果已经得了其它有关专家的进一步证实,目前已经成为国际公认的结论。
测试这些结果的前提是:各种分析题目相对于每一种软件都具有相同数目的结点数、元素数和DOF,限于篇幅,这些相同的设置结果不累述于此,分析结果见表1表1:Simulation、NASTRAN、ANSYS测试结果比较SimulationNASTRANANSYS电话手柄静力最高精确度0.003180.003180.00320解题时间46秒244秒460秒占用磁盘空间11MB73MB240MB墙挂静力最高精确度0.001590.001590.0016570秒4920秒360秒占用磁盘空间17MB585MB70MB板手静力最高精确度0.0755270.0755260.075666解题时间50秒435秒200秒占用磁盘空间6MB112MB50MB磁盘驱动器振动模型12015.3HZ 2015.3 HZ 2032.3 HZ模型22098.7 HZ 2120.2 HZ模型33839.7 HZ 3839.6 HZ 3887.7 HZ模型44154.5 HZ 4154.5 HZ 4203.7 HZ模型54596.1 HZ 4596.2 HZ 4643.2 HZ解题时间41秒180秒710秒占用磁盘空间7.3MB55MB205MB鞍型托架振动模型12465.4 HZ 2465.4 HZ 2469.5 HZ模型24969.4 HZ 4969.4 HZ 4977.7 HZ模型37340.0 HZ 7339.9 HZ 7352.3 HZ模型47722.4 HZ 7722.4 HZ 7750.9 HZ模型59432.5 HZ 9432.5 HZ 9470.9 HZ解题时间160秒430秒1500秒占用磁盘空间10.3MB 93.3MB355MB火花塞振动模型14980.4 HZ 4981.0 HZ 4964.0 HZ模型25005.0 HZ5004.8 HZ4987.5 HZ模型313,142.0 HZ13,145.7 HZ13,110.6 HZ模型413,517.0 HZ13,517.4 HZ13,437.2 HZ模型514,647.0 HZ14,656.9 HZ14,684.0 HZ解题时间350秒1110秒2340秒占用磁盘空间17MB148MB544MB从目前三种流行的分析软件的测试表中可以看出,Simulation和NASTRAN的分析结果是很接近的,而ANSYS的误差要大一些,NASTRAN是通过牺牲速度来达到精度的,而ANSYS 是通过放弃精确度和加大解题占用的磁盘时间来提高速度的。
有限元分析软件及应用有限元分析(Finite Element Analysis,简称FEA)是一种工程力学的数值计算方法,用于模拟和分析材料或结构在力学、热学、流体力学等领域的行为。
有限元分析软件是用于进行有限元分析的工具,提供了对复杂问题进行建模、求解和分析的功能。
下面将介绍几种常用的有限元分析软件及其应用。
1. ANSYS:ANSYS是全球领先的有限元分析软件之一,适用于多个领域,如结构力学、流体力学、电磁场等。
在结构分析方面,ANSYS可以进行静力学、动力学、疲劳分析等,可应用于航空、汽车、能源、医疗等行业。
2. ABAQUS:ABAQUS是另一个广泛使用的有限元分析软件,适用于结构、热、流体、电磁等多个领域的分析。
ABAQUS提供了丰富的元件模型和边界条件,可以进行复杂结构的非线性、瞬态、热源等分析,广泛应用于航空航天、汽车、能源等领域。
3. MSC Nastran:MSC Nastran是一款专业的有限元分析软件,主要用于结构和动力学分析。
它提供了丰富的分析和模拟工具,可进行静力学、动力学、疲劳分析等。
MSC Nastran广泛应用于航空、汽车、船舶等领域,具有较高的准确性和可靠性。
4. LS-DYNA:LS-DYNA是一款用于求解非线性动力学问题的有限元分析软件。
它可以进行结构和流体的动态响应分析,主要应用于汽车碰撞、爆炸、冲击等领域。
LS-DYNA具有强大的求解能力和灵活性,可以模拟复杂的物理现象和材料性能。
除了上述几个常用的有限元分析软件外,还有许多其他软件也具有广泛的应用。
有限元分析在实际工程中有着广泛的应用,下面以汽车结构分析为例进行介绍。
汽车结构分析是有限元分析的一个重要应用领域。
有限元分析软件可以帮助工程师对汽车的结构进行模拟和分析,评估其在碰撞、强度、刚度等方面的性能。
首先,工程师可以使用有限元分析软件对汽车的结构进行建模。
软件提供了各种几何建模工具,可以根据汽车的三维CAD数据进行建模,或者使用简化的二维平面模型。
有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。
它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。
有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司。
常见软件有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司,其中ADINA、ABAQUS在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC进入中国比较早所以在国内知名度高应用广泛。
目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。
软件对比ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。
ABAQUS专注结构分析目前没有流体模块。
MSC是比较老的一款软件目前更新速度比较慢。
ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。
结构分析能力排名:1、ABAQUS、ADINA、MSC、ANSYS流体分析能力排名:1、ANSYS、ADINA、MSC、ABAQUS耦合分析能力排名:1、ADINA、ANSYS、MSC、ABAQUS性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSC ABAQUS软件与ANSYS软件的对比分析1.在世界范围内的知名度两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。
ANSYS 软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。
ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。
几乎所有的有限元分析的软件介绍——让你对CAE软件更了解有限元分析(Finite Element Analysis,FEA)是一种数值计算方法,用于求解结构、固体力学、热传导和流体力学等领域中的工程问题。
它通过离散化技术将复杂的连续体问题转化为一个有限数量的单元问题,再通过求解这些单元的代数方程组得到整个问题的近似解。
在工程领域,有限元分析常常被用来进行结构强度、振动、疲劳和优化分析等。
下面将介绍几个常见的有限元分析软件,包括ANSYS、ABAQUS、LS-DYNA和SolidWorks Simulation。
1.ANSYSANSYS是一款全面的有限元分析软件,包含了结构分析、流体动力学、电磁场分析和耦合多场分析等功能。
它具有强大的前后处理功能和丰富的材料模型库,可以模拟各种复杂的物理现象。
ANSYS还提供了多种优化算法,用于进行结构和材料参数的优化设计。
它广泛应用于航空航天、汽车、能源和电子等领域。
2.ABAQUSABAQUS是一款广泛应用于工程和科学领域的有限元分析软件,主要用于求解复杂的结构、流体和热力学问题。
它具有强大的建模和求解能力,支持线性和非线性分析。
ABAQUS还提供了各种完整的元件库和材料模型,同时支持多学科的耦合分析。
它适用于多种工程和科学领域,如航空航天、汽车、生物医学和材料科学等。
3.LS-DYNALS-DYNA是一款专注于动力学和非线性问题的有限元分析软件,用于模拟高速碰撞、爆炸和弹道问题等。
它具有优秀的显式求解器和平行计算能力,能够处理大型和复杂的模型。
LS-DYNA还提供了丰富的材料模型和接触算法,支持多物理场耦合。
它适用于汽车、航空航天、国防和地震等领域。
4. SolidWorks SimulationSolidWorks Simulation是一款基于SolidWorks CAD软件的有限元分析工具,用于进行结构和流体力学分析。
它提供了友好的用户界面和强大的建模和分析功能,能够快速进行设计验证和性能优化。
CAE常用软件介绍解析CAE(计算机辅助工程)是一种使用计算机来模拟和分析工程问题的方法,可以有效地预测和优化工程设计。
CAE软件是实现这种方法的工具,它们提供了一系列功能和工具,用于建立工程模型、进行仿真分析和优化设计。
下面是几个常用的CAE软件的介绍和解析。
1.ANSYS(美国分析系统公司)ANSYS是一款功能强大的有限元分析软件,在各个领域广泛应用。
它提供了完整的有限元模拟流程,包括前处理、求解和后处理功能。
用户可以使用ANSYS来进行结构分析、热分析、流体力学分析等多种仿真分析。
ANSYS还具有强大的优化功能,可以帮助工程师在设计过程中找到最佳解决方案。
2. Abaqus(达索系统公司)Abaqus是一种先进的有限元分析软件,广泛应用于结构、热、流体和多物理场的仿真分析。
它具有非线性分析、大变形分析、接触分析、疲劳分析等强大的功能。
Abaqus还拥有复杂材料建模和复杂装配体建模的能力,可以解决各种复杂工程问题。
3. SolidWorks Simulation(达索系统公司)SolidWorks Simulation是SolidWorks软件的一部分,用于进行结构和流体力学分析。
它提供了直观的用户界面和易于使用的工具,使工程师能够进行快速的仿真分析和设计验证。
SolidWorks Simulation可以进行线性和非线性分析、静态和动态分析、热分析、疲劳分析等。
它还与SolidWorks CAD软件紧密集成,实现了CAD和CAE的无缝连接。
4. Nastran(西尔斯公司)Nastran是一种通用的有限元分析软件,广泛应用于结构、热、流体和振动的仿真分析。
它具有强大的求解器,可以处理大型和复杂的工程模型。
Nastran还提供了广泛的材料模型和加载条件,可以满足各种复杂的仿真要求。
它还支持多物理场分析和优化设计。
5. COMSOL Multiphysics(COMSOL公司)COMSOL Multiphysics是一种高级的多物理场模拟软件,可以解决各种物理和工程问题。
几款地质仿真软件的简介本文将对ANSYS、ADINA、ABAQUS、MSC、FEPG、Femlab(Comsol)、Flac、PETREL进行简短的介绍。
有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。
有限元分析软件目前流行的有:ANSYS、ADINA、ABAQUS、Femlab(Comsol)、MSC、FEPG等。
ANSYS软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。
ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。
而ADINA软件除了求解非线性问题外,其在多物理场的流固耦合求解功能也是全球唯一的专利技术。
COMSOL公司是全球多物理场建模与仿真解决方案的提倡者和领导者,其旗舰产品COMSOL Multiphysics,使所有的物理现象可以在计算机上完美重现。
MSC是比较老的一款软件目前更新速度比较慢。
FEPG是一款国产有限元分析软件。
一、ANSYS、ADINA、ABAQUS、MSC四者的比较由于ANSYS产品进入中国市场早于ABAQUS,并且在五年前ANSYS 的界面是当时最好的界面之一,所以在中国,ANSYS软件在用户数量和市场推广度方面要高于ABAQUS。
ANSYS软件注重应用领域的拓展,目前已覆盖流体、电磁场和多物理场耦合等十分广泛的研究领域。
ABAQUS 则集中于结构力学和相关领域研究,致力于解决该领域的深层次实际问题。
而ADINA软件和ANSYS软件一样都包括结构、温度、流体及流固耦合的功能,因此其应用领域也是相当广泛。
对于常规的结构线性问题,三种软件都可以较好的解决,在模型规模限制、计算流程、计算时间等方面都较为接近。
ABAQUS软件和ADINA软件在求解非线性问题时具有非常明显的优势;而ANSYS软件和ADINA软件则在流体和多物理场耦合功能方面具有无可比拟的优势。
ANSYS有限元分析报告1. 引言有限元分析(Finite Element Analysis, FEA)是一种常用的工程分析方法,可以用于预测材料和结构在各种工况下的行为和性能。
本报告旨在通过使用ANSYS软件进行有限元分析,对某一具体的工程问题进行模拟和分析,并得出相应的结论和建议。
2. 问题描述本次有限元分析的问题是研究某结构在受载情况下的应力分布和变形情况。
具体而言,我们关注的结构是一个柱形零件,其材料为XXX,尺寸为XXX。
该结构在受到垂直向下的均布载荷时,会发生弯曲变形和应力集中现象。
我们的目标是通过有限元方法对该结构进行分析,预测其应力分布情况,并评估其承载能力。
3. 模型建立我们使用ANSYS软件来建立和分析该结构的有限元模型。
首先,我们将导入该零件的几何数据,然后通过ANSYS的建模工具创建相应的有限元模型。
在建立模型的过程中,我们需要注意几何尺寸、材料特性、约束条件和加载方式等参数的设定,以确保模型的准确性和可靠性。
4. 材料属性和加载条件在进行有限元分析之前,我们需要确定材料的特性和加载条件。
根据提供的信息,我们将采用XXX材料的力学特性进行模拟。
同时,我们假设该结构受到均布载荷的作用,其大小为XXX。
这些参数将在后续的分析中使用。
5. 模型网格划分在进行有限元分析之前,我们需要对模型进行网格划分。
网格的密度和质量将直接影响分析结果的准确性和计算效率。
在本次分析中,我们将采用适当的网格划分策略,以满足准确性和计算效率的要求。
6. 模型分析和结果通过ANSYS软件进行有限元分析后,我们得到了该结构在受载情况下的应力分布和变形情况。
根据分析结果,我们可以观察到应力集中区域和变形程度,并根据材料的特性进行评估。
同时,我们可以通过对加载条件的变化进行分析,预测该结构的承载能力和安全系数。
7. 结论和建议根据有限元分析的结果,我们得出以下结论和建议:•该结构在受均布载荷作用下发生应力集中现象,需要对其进行加强和优化设计。
ProE有限元分析简介ProE是一款流行的三维计算机辅助设计软件,在机械制造领域广泛应用。
它强大的功能和易于使用的界面使其成为工程师们首选的软件之一。
本文将重点介绍ProE中使用的有限元分析方法。
什么是有限元分析?有限元分析(Finite Element Analysis,简称FEA)是一种通过将复杂的实体分割成有限数量的小元素,然后对每个元素进行计算,最终得出整体结构的力学行为和性能的方法。
有限元分析可以帮助工程师了解产品在各种工况下的性能,并进行优化设计。
ProE中的有限元分析功能ProE提供了强大的有限元分析功能,可以帮助用户优化设计、提高产品质量并加快产品开发过程。
模型准备在进行有限元分析之前,需要准备好模型。
在ProE中可以通过多种方式创建模型,包括绘图、导入CAD文件等。
模型创建完成后,需要进行几何修正和网格划分,确保模型的准确性和可计算性。
材料和加载设置在ProE中,用户可以为模型指定材料属性和加载条件。
通过选择适当的材料和加载方式,可以更准确地模拟实际工况下的应力和变形。
网格划分有限元分析的基础是将模型划分成小的有限元,通过对这些元素进行计算,可以得出整个模型的力学行为。
ProE提供了丰富的网格划分工具,用户可以选择不同的划分方式,以满足不同的分析需求。
边界条件和约束在进行有限元分析时,需要为模型设置边界条件和约束。
边界条件包括固定边界、约束等。
设置合理的边界条件和约束可以准确模拟实际工况下的应力和变形。
分析求解在对模型进行网格划分和设置边界条件后,可以开始进行有限元分析求解。
ProE提供了多种求解器和求解算法,可以根据具体需求选择合适的方法。
结果分析和后处理有限元分析的最终目的是得到模型在不同工况下的应力、变形等结果。
ProE提供了丰富的结果分析和后处理工具,可以帮助用户对分析结果进行可视化、统计和比较。
ProE有限元分析的优势与其他有限元分析软件相比,ProE有以下优势:一体化设计环境ProE是一款综合性的CAD软件,与其他模块的集成度高,可以实现在一个设计环境下进行模型创建、有限元分析和后处理等工作。
几款常用有限元软件(CAE分析)的比较目前流行的CAE分析软件主要有NASTRAN、ADINA 、ANSYS、ABAQUS、MARC、MAGSOFT、COSMOS等。
以下为对这些常用的软件进行的比较和评价:LSTC公司的LS-DYNA系列软件。
LSDYNA长于冲击、接触等非线性动力分析。
LS-DYNA是一个通用显式非线性动力分析有限元程序,最初是1976年在美国劳伦斯利弗莫尔国家实验室由J.O.Hallquist主持开发完成的,主要目的是为核武器的弹头设计提供分析工具,后经多次扩充和改进,计算功能更为强大。
虽然该软件声称可以求解各种三维非线性结构的高速碰撞、爆炸和金属成型等接触非线性、冲击载荷非线性和材料非线性问题,但实际上它在爆炸冲击方面,功能相对较弱,其欧拉混合单元中目前最多只能容许三种物质,边界处理很粗糙,在拉格朗日——欧拉结合方面不如DYTRAN灵活。
MSC.software公司的DYTRAN软件在同类软件中,DYTRAN在高度非线性、流固耦合方面有独特之处。
MSC.DYTRAN程序是在LS-DYNA3D的框架下,在程序中增加荷兰PISCES;INTERNATIONAL公司开发的PICSES的高级流体动力学和流体结构相互作用功能,还在PISCES的欧拉模式算法基础上,开发了物质流动算法和流固耦合算法发展而来的。
但是,由于MSC.DYTRAN是一个混合物,在继承了LS-DYNA3D 与PISCES优点的同时,也继承了其不足。
首先,材料模型不丰富,对于岩土类处理尤其差,虽然提供了用户材料模型接口,但由于程序本身的缺陷,难于将反映材料特性的模型加上去;其次,没有二维计算功能,轴对称问题也只能按三维问题处理,使计算量大幅度增加;在处理冲击问题的接触算法上远不如当前版的LS-DYNA3D全面。
HKS公司的ABAQUS软件ABAQUS是一套先进的通用有限元系统,属于高端CAE软件。
它长于非线性有限元分析,可以分析复杂的固体力学和结构力学系统,特别是能够驾驭非常庞大的复杂问题和模拟高度非线性问题。
综合应用UG,HyperMesh和MSCMarc软件进行有限元分析有限元法<sup>[1]</sup>作为求解复杂工程问题的重要方法,应用非常广泛.近几十年来,随着计算机技术和数值分析技术的迅速发展,有限元法理论及其算法已趋于成熟.由于有限元法具有高度通用性和实用性,从而导致各类有限元通用软件的飞速发展.目前,将有限元理论、计算机图形学以及优化技术相结合而开发的各类专用有限元软件,能高速高效地解决各类有限元问题.在工程应用中,各类专用有限元软件在几何建模、网格划分、分析计算及结果处理方面各有特色.虽然很多情况下只需某一软件就能完成整个有限元分析过程,但过程往往比较复杂、效率不高且容易出错.因此,充分发挥各软件的长处,综合运用各软件就显得尤为必要.本文根据UG软件<sup>[2]</sup>、HyperMesh软件<sup>[3,4]</sup>和MSC Marc<sup>[5,6]</sup>软件的不同特点,在有限元几何建模、网格划分、分析计算以及结果处理过程中,扬长避短,综合运用这些软件解决工程实际问题,整个处理过程条理清楚.相对于单一软件处理,多软件综合应用能提高解决问题的效率和精度.1 UG,HyperMesh和MSC Marc软件及其特点简介1.1 UG软件UG软件是美国EDS公司的产品,采用基于约束的特征建模和传统几何建模为一体的复合建模技术,建模高速高效,在曲面造型方面特别强.最突出的优点就是其几何建模功能非常强大,缺点是格划分及有限元分析计算和后处理方面较为薄弱.1.2 HyperMesh软件HyperMesh软件是美国Atair公司的产品,其优点有:(1)有限元网格划分时操作简单方便,网格划分速度快;(2)有限元网格划分时质量易于控制,便于调整和修改,划分有限元单元质量非常好,能满足实际工程分析需要;(3)与其他多种CAD和CAE软件有良好的接口.与UG软件相比,HyperMesh软件的建模功能较为薄弱.与MSC Marc软件相比,在有限元分析时材料类型和单元类型数量较少,求解方法难以设置,在有限元分析计算与结果处理方面的性能也有一定差距.1.3 MSC Marc软件MSC Marc软件为美国MSC公司的产品,该软件的优点为:(1)具有功能齐全的多种高级非线性有限元求解器,可以处理各种线性与非线性结构分析;(2)单元库提供数百种单元类型,包括结构单元、连续单元和特殊单元,几乎每种单元都具有处理大变形、几何非线性、材料非线性(包括接触在内的边界条件非线性)以及组合的高度非线性的超强能力,能满足绝大部分工程的实际需要;(3)材料库内容十分丰富,具有多种线性与非线性及复杂材料模型;(4)分析时采用具有高数值稳定性、高精度与快速收敛的高度非线性问题求解技术,并采用加载步长自适应控制技术,可自动确定非线性分析和动力响应的加载步长,从而保证计算精度.MSC Marc的缺点是其几何建模和网格划分功能较差,且操作不方便,尤其是对于比较复杂的结构更为困难.2 UG,HyperMesh和MSC Marc在有限元分析中的综合运用有限元软件的综合运用,目的在于充分发挥各软件的长处,避免其不足,从而使软件几何建模、网格划分、分析计算及结果处理的整个过程高速高效、条理清楚、不易出错,且容易操作和修改.根据以上对UG,HyperMesh和MSC Marc软件各自特点的分析,可以看出:先使用UG软件进行几何建模,然后利用HyperMesh进行有限元网格划分,最后采用MSC Marc进行计算分析及结果处理,可以大大提高整个分析过程的效率,其求解也能符合实际需要.对UG,HyperMesh和MSC Marc软件综合应用的整个过程见图1.在此过程中的准备工作主要包括:确定有限元分析对象的几何尺寸、材料特性、边界条件以及所需要分析的内容.使用UG软件建立几何模型后,可直接保存为UG软件的默认文件类型,也可保存为“*.iges”或“*.igs”格式,以备HyperMesh使用.HyperMesh直接使用UG默认的文件类型时,需要在计算机操作系统中设置正确的环境变量.以Unigraphics NX和HyperMesh 6.0为例,其具体方法如下:首先进入“我的电脑(点击右键)→属性→高级→环境变量→系统变量”,编辑系统变量中的path项,在其中添加“%UGII-ROOT-DIR%”,注意该项与其他项之间要用“;”隔开.另外,还要检查“UGII-ROOT-DIR”项,看其路径设置是否正确.将UG软件建立的几何模型直接导入HyperMesh的过程为:在HyperMesh操作界面中进入“files→import→GEOM(选中)→UG-NX(选中)”,然后点击“import”,并根据文件路径及其文件名选择需要导入的UG文件.“*.iges”或“*.igs”等其他格式文件导入方法和过程与此类似.利用HyperMesh划分网格结束后,要保存为合适的格式,以便分析软件时使用.将HyperMesh 6.0划分的有限元网格导入到MSC Marc软件的过程如下:(1)在HyperMesh软件中进行网格划分后,进入“files→export“,选中“template”选项,在“template”栏后点击“load”,选择合适的模型临时文件,如果进行二维单元分析(有限元单元为面单元),则选“../hw6.0/templates/feoutput/marc/stress2d.tpl”文件;如果进行三维单元分析,则选“../hw6.0/templates/feoutput/marc/stress3d.tpl”文件.在“output”栏后直接输入保存的文件路径及其文件名或点击“write as”,然后选择文件路径并输入文件名.在这里还需要注意的是保存的文件名为数据文件类型,尾缀为“*.dat”.(2)在MSC Marc软件中,导入有限元网格数据文件,具体过程为:在静态菜单(界面下方)上选择“files”,点击面板“interfaces”下的“import”按钮,选择“marc input file”,或点击面板“marc input file”下的“read” 按钮,然后在预先设定的位置找到所需数据文件,然后点击“OK”即可.在整个有限元分析过程中,熟悉有限元基本理论是基础,掌握各软件的使用方法是关键.另外,保证各软件间的数据在导入和导出过程中的正确性也非常重要.3 UG,HyperMesh和MSC Marc综合运用实例某齿轮箱体底面固定,齿轮激励作用等效在轴承孔处,激励力的作用为Af(t)(A为加权系数),材料为普通钢.现综合使用UG,HyperMesh和MSC Marc软件求解箱体前端面中央处的加速度响应.具体求解过程如下:(1)首先利用Unigraphics NX 2.0建立几何模型(见图2),并保存为默认格式文件;(2)在HyperMesh 6.0中,将UG中建立的几何模型导入,进行有限元网格划分,检查并修改使网格质量达到合格要求(见图3),然后保存为MSC Marc环境所能导入的数据文件(文件格式为“*.dat”);(3)在MSC Marc 2003中,读取该数据文件(见图4),并在其环境下正确设置边界条件(见图5)、材料属性、几何特性、单元类型以及求解方法、求解时间、求解步长、求解结果类别等,最后进行计算求解.求解后MSC Marc中f(t)的时间历程见图6,计算点加速度响应的时域图见图7.在整个建模、有限元网格划分、数据计算及后处理过程中,各选项及参数设置方便,整个过程操作流畅、效率很高,且计算结果精度能满足工程实际需要.4 结论综合使用多种有限元软件进行有限元分析及其前后处理,有利于各软件扬长避短,从而使建模、网格划分、计算分析及结果处理等过程操作方便,计算准确,效率和精度大大提高.。
DEFORM有限元分析系统软件及其应用DEFORM有限元分析系统软件及其应用DEFORM有限元分析系统是一种常用的数值模拟软件,它可以模拟材料在加工过程中的变形行为,为工程师们提供了一个有效的工具来优化产品设计和生产工艺。
本文将介绍DEFORM软件的特点和应用领域。
DEFORM是一种基于有限元方法的软件,它通过将实体划分为离散的有限元网格,利用数值计算方法来求解零件在不同工艺条件下的变形、应力和温度分布等问题。
它可以模拟多种加工过程,包括铸造、锻造、轧制、模锻、挤压等。
DEFORM软件具有高精度、高效率和高可靠性的特点,可以对复杂的变形过程进行准确地模拟和分析。
DEFORM软件的应用领域非常广泛。
首先,它在制造业中用于优化工艺设计。
通过DEFORM软件,工程师可以预测产品在不同加工条件下的变形情况,从而调整工艺参数和操作方式,以减轻或消除变形问题。
其次,DEFORM软件在材料研究领域的应用也非常广泛。
它可以模拟材料的变形行为,研究材料在不同温度、压力和应变率下的力学特性,为材料设计和改进提供理论依据。
此外,DEFORM软件还被广泛应用于汽车、航空航天、电子、能源等领域。
在汽车制造业中,DEFORM软件可以用于模拟车身零件的成型过程和变形行为,帮助设计师优化车身结构,提高车辆的刚度和耐用性。
在航空航天领域,DEFORM软件可以模拟航空发动机零件的加工过程和变形行为,为航空发动机的设计和制造提供重要参考。
在电子和能源领域,DEFORM软件可以模拟电子器件的制造过程和变形行为,帮助工程师设计更可靠和高效的电子产品。
总的来说,DEFORM有限元分析系统软件是一种强大的工具,可以模拟和分析材料在不同加工条件下的变形行为。
它在制造业和材料研究领域具有广泛的应用。
通过DEFORM软件,工程师可以更好地理解材料的变形机制,优化产品的设计和生产工艺,提高产品的质量和性能。
随着科技的不断进步和软件的不断改进,DEFORM软件的应用前景将变得更加广阔综上所述,DEFORM有限元分析系统软件在制造业和材料研究领域具有广泛的应用。
有限元分析软件有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。
它是50 年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。
有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC 四个比较知名比较大的公司,其中ADINA、ABAQUS 在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC 进入中国比较早所以在国内知名度高应用广泛。
目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA 以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。
ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。
ABAQUS专注结构分析目前没有流体模块。
MSC是比较老的一款软件目前更新速度比较慢。
ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。
结构分析能力排名:ABAQUS、ADINA、MSC、ANSYS流体分析能力排名:ANSYS、ADINA、MSC、ABAQUS耦合分析能力排名:ADINA、ANSYS、MSC、ABAQUS性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSCABAQUS 软件与ANSYS 软件的对比分析:1.在世界范围内的知名度:两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。
ANSYS 软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。
ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。
由于ANSYS 产品进入中国市场早于ABAQUS,并且在五年前ANSYS 的界面是当时最好的界面之一,所以在中国,ANSYS 软件在用户数量和市场推广度方面要高于ABAQUS。
但随着ABAQUS北京办事处的成立,ABAQUS软件的用户数目和市场占有率正在大幅度和稳步提高,并可望在今后的几年内赶上和超过ANSYS。
2.应用领域:ANSYS 软件注重应用领域的拓展,目前已覆盖流体、电磁场和多物理场耦合等十分广泛的研究领域。
ABAQUS 则集中于结构力学和相关领域研究,致力于解决该领域的深层次实际问题。
3.性价比:ANSYS 软件由于价格政策灵活,具有多种销售方案,在解决常规的线性及耦合问题时,具有较好的性价比。
但在实际工程中,非线性是比线性远为普遍的自然现象,线性通常只是非线性的理想化假设。
随着研究水平的提高和研究问题的深入,非线性问题必然成为工程师和研究人员面临的课题,并成为制约深入研究和精确设计的瓶颈。
购买ABAQUS 软件可以很好地解决这些问题,缩短研制周期、减少试验投入,避免重新设计。
工欲善其事,必先利其器,使用不恰当或低档的分析工具进行工作的成本要远超过使用合适工具的成本。
因此,从综合效益和长远效益而言,ABAQUS 软件的经济性也是非常突出的。
4.求解器功能:对于常规的线性问题,两种软件都可以较好的解决,在模型规模限制、计算流程、计算时间等方面都较为接近。
ABAQUS 软件在求解非线性问题时具有非常明显的优势。
其非线性涵盖材料非线性、几何非线性和状态非线性等多个方面。
另外,由于ABAQUS/Standard(通用程序)和ABAQUS/Explicit(显式积分)同为A BAQUS 公司的产品,它们之间的数据传递非常方便,可以很容易地考虑预紧力等静力和动力相结合的计算情况。
ABAQUS 软件的求解器是智能化的求解器,可以解决其它软件不收敛的非线性问题,其它软件也收敛的非线性问题,ABAQUS 软件的计算收敛速度较快,并更加容易操作和使用。
5.人机交互界面:ABAQUS/CAE是ABAQUS 公司新近开发的软件运行平台,他汲取了同类软件和CAD 软件的优点,同时与ABAQUS求解器软件紧密结合。
与其他有限元软件的界面程序比,ABAQUS/CAE 具有以下的特点:(1)采用CAD 方式建模和可视化视窗系统,具有良好的人机交互特性。
(2)强大的模型管理和载荷管理手段,为多任务、多工况实际工程问题的建模和仿真提供了方便。
(3)鉴于接触问题在实际工程中的普遍性,单独设置了连接(interaction)模块,可以精确地模拟实际工程中存在的多种接触问题。
(4)采用了参数化建模方法,为实际工程结构的参数设计与优化,结构修改提供了有力工具。
6.综合性能对比:综合起来,ABAQUS 软件具有:(1)更多的单元种类,单元种类达433 种,提供了更多的选择余地,并更能深入反映细微的结构现象和现象间的差别。
除常规结构外,可以方便地模拟管道、接头以及纤维加强结构等实际结构的力学行为。
(2)更多的材料模型,包括材料的本构关系和失效准则等,仅橡胶材料模型就达16种。
除常规的金属材料外,还可以有效地模拟复合材料、土壤、塑性材料和高温蠕变材料等特殊材料ANSYS 软件与ABAQUS 软件、ADINA 软件的对比分析1.在世界范围内的知名度:三种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。
ANSYS 软件在致力于线性分析的用户中具有很好的声誉;ABAQUS软件则致力于复杂和深入的非线性工程问题;而ADINA软件除了求解非线性问外,其多物理场的流固耦合求解功能也是全球唯一的专利技术。
2.应用领域:三种软件同为大型通用分析软件,都具有各自广泛的应用领域。
ANSYS注重应用领域的拓展和合并,目前已覆盖结构、温度、流体、电磁场和多物理场耦合等十分广泛的研究领域;ABAQUS 则只具备结构分析功能,功能仅局限于结构力学领域;而ADINA 软件和ANSYS 软件一样都包括结构、温度、流体及流固耦合的功能,因此其应用领域也是相当广泛。
3.性价比:三种软件同为美国的有限元分析软件,在价格方面相差不是特别大,不过由于ABAQUS 软件仅具有结构分析的功能,因此从整体来看ABAQUS 软件是最为便宜的;不过如果需要进行流体计算或者多物理场耦合求解功能的话,则相信ANSYS 软件和ADINA 软件都会是更好的选择。
4.求解器功能:对于常规的结构线性问题,三种软件都可以较好的解决,在模型规模限制、计算流程、计算时间等方面都较为接近。
ABAQUS软件和ADINA 软件在求解非线性问题时具有非常明显的优势;而ANSYS 软件和ADINA 软件则在流体和多物理场耦合功能方面具有无可比拟的优势。
5.人机交互界面:ANSYS/Workbench、ABAQUS/CAE、ADINA/AUI 都是采用CAD方式建模和可视化视窗系统,都具有良好的人机交互特性。
三种软件都除了提供窗口操作外都还提供命令流输入,但是ABAQUS/CAE 并不对所有的命令流都支持CAE界面操作。
6.建模方式:ANSYS 软件和ADINA 软件都采用Para-solid为核心的实体建模技术,因此可以和其它Para-solid 为核心的CAD 软件实行真正无缝的双向数据交换,且该两种软件自身的建模功能很强大。
ABAQUS 软件的CAE模块和输入文件两种建模方式是由两家不同的公司研制的,CAE 模块功能还不是很完全,一些功能只能通过编辑INP 输入文件来实。
7.网格划分:三种软件都提供多种网格划分器,可以进行复杂模型的自由网格划分。
除常见网格划分外,ANSYS软件和ADINA软件还可以对复杂模型进行自动六面体网格划分,从而在节省技术人员工作时间的情况下又保证了网格的精度。
8.综合性能对比:ANSYS 软件的命令流操作非常方便,对于结构循环优化方面比较有优势,但目前还只是局限于线性方面,非线性方面功能很差而且基本没有;ABAQUS 软件则在显式非线性方面有些特色,但隐式非线性方面比不上ADINA,且不具备流体的功能;ADINA 软件则在结构非线性及多物理场耦合方面非常出色,是全球非线性功能最强大的有限元软件之一,而且具有全球最好的流固耦合分析功能。
有限元分析软件的比较及展望随着现代科学技术的发展,人们正在不断建造更为快速的交通工具,更大规模的建筑物,更大跨度的桥梁,更大功率的发电机组和更为精密的机械设备。
这一切都要求工程师在设计阶段就能精确地预测出产品和工程的技术性能,需要对结构的静,动力强度以及温度场,流场,电磁场和渗流等技术参数进行分析计算。
例如分析计算高层建筑和大跨度桥梁在地震时所受到的影响,看看是否会发生破坏性事故;分析计算核反应堆的温度场,确定传热和冷却系统是否合理;分析涡轮机叶片内的流体动力学参数,以提高其运转效率。
这些都可归结为求解物理问题的控制偏微分方程式,这些问题的解析计算往往是不现实的。
近年来在计算机技术和数值分析方法支持下发展起来的有限元分析( FEA Finite Element Analysis)方法则为解决这些复杂的工程分析计算问题提供了有效的途径。
在工程实践中,有限元分析软件与CAD 系统的集成应用使设计水平发生了质的飞跃,主要表现在以下几个方面:增加设计功能,减少设计成本;缩短设计和分析的循环周期;增加产品和工程的可靠性;采用优化设计,降低材料的消耗或成本;在产品制造或工程施工前预先发现潜在的问题;模拟各种试验方案,减少试验时间和经费;进行机械事故分析,查找事故原因。
在大力推广CAD 技术的今天,从自行车到航天飞机,所有的设计制造都离不开有限元分析计算,FEA 在工程设计和分析中将得到越来越广泛的重视。
国际上早20世纪在50 年代末,60 年代初就投入大量的人力和物力开发具有强大功能的有限元分析程序。
其中最为著名的是由美国国家宇航局(NASA)在1965年委托美国计算科学公司和贝尔航空系统公司开发的NASTRAN 有限元分析系统。
该系统发展至今已有几十个版本,是目前世界上规模最大,功能最强的有限元分析系统。
从那时到现在,世界各地的研究机构和大学也发展了一批规模较小但使用灵活,价格较低的专用或通用有限元分析软件,主要有德国的ASKA,英国的PAFEC,法国的SYSTUS,美国的ABQUS,ADINA,ANSYS,BERSAFE,BOSOR,COSMOS,ELAS,MARC和STARDYNE 等公司的产品。
以下对一些常用的软件进行一些比较分析:1. LSTC 公司的LS-DYNA 系列软件LS-DYNA 是一个通用显式非线性动力分析有限元程序,最初是1976年在美国劳伦斯利弗莫尔国家实验室(Lawrence Livermore National Lab.)由J.O.Hallquist主持开发完成的,主要目的是为核武器的弹头设计提供分析工具,后经多次扩充和改进,计算功能更为强大。