人教版八年级数学下册 第17章 勾股定理中最短路径问题专题
- 格式:pdf
- 大小:595.08 KB
- 文档页数:7
《17.1勾股定理的应用——最短路径问题》教学设计教学目标:【知识与技能】1.掌握勾股定理的简单应用,探究最短路径问题;2.能够借助勾股定理解决有一定难度的实际问题.【过程与方法】经历运用勾股定理解决实际为题的过程,在数学活动中发展学生的探究意识和合作交流的习惯.【情感、态度与价值观】1.培养学生运用所学只是解决实际问题的意识,增强学生的数学应用能力.通过与同伴交流,培养协作与交流的意识;2.敢于面对数学学习中的困难,增加遇到困难时选择其它方法的经验,进一步体会数学的应用价值,发展运用数学的信心和能力,形成积极参与数学活动的意识. 教学重点:1.能熟练运用勾股定理解决实际问题,掌握最短路径问题;2.探索空间与平面图形之间的关系.教学难点:熟练运用勾股定理解决最短路径的实际问题,增强学生的数学应用能力。
课前准备:制作圆柱、正方体、长方体等教具教学方法:互动式教学、合作探究学习教学过程:一、抛砖引玉一块长方形草地,在靠近路口的一角被踏出了一条“斜路”,类似的现象在我们校门前也有发生.请问同学们:(1)人们为什么要走“斜路”呢?(2)经测量,这条“斜路”的一端距离直角顶点3米,另一端距离直角顶点4米,你能根据之前所学过的知识告诉我:斜“路”比正路近多少米?学生会想立一个牌子,提醒人们,请你帮助填空:少走___米,践踏何忍?如果我们每步可以跨0.5米,那么这样可以少走几步?这么几步近路,值得吗?[设计意图]:本题不仅是勾股定理的实际应用题,而且还对学生进行了社会公德教育,体现了数学教学的德育意义.二、初露锋芒有一只小昆虫——森迪,来到了高为12厘米,底面半径为3厘米的圆柱体的A5处,嗅到B 处的面包,可是它沿着圆柱体的表面怎样爬行才能很快地吃到面包?它爬行的最短路径长是多少呢? (π的值取3 )学生活动(一):(1)森迪可行的路线可能不止一条,你能找出几种出来?(2) 自己做一个圆柱,尝试从A 点到B 点沿圆柱表面画出几条路线,你觉得那 条路最短呢?(3) 将圆柱侧面展开成一个长方形,从A 点到B 点的最短路线长是什么?[设计意图]:“森迪觅捷径”问题,融知识性和趣味性于一体,有利于提高同学们的空间想象能力,培养同学们的探究意识和创新精神.三|、小试牛刀森迪爬呀爬,它来到了单位长度为1的正方体A 处,嗅到了放置在B 处的食物,这次它沿着怎样的路线爬行才能很快地吃到食物呢?爬行的最短路径长又是多少呢?同学们展开自己的空间想象能力,把正方体沿棱展开,把点A 及点B 所在的两个面放在同一个平面内,显然,从A 到B 的最短路线一定是从A 出发,经过正方体两个面到达B. 根据“两点之间,线段最短”,以便发现最短路线,因展法不同,路线有多种,但因为这是一个正方体,所以构造直角三角形,得到森迪爬行的最短路径都为[设计意图]:从不同情况的分析,学生可以感受到数学的学习需要全面的考虑问题,反过来,数学的学习又能帮助我们全面的考虑问题。
人教版八下数学第17章勾股定理微专题三立体图形中的最短线路问题1.如图,圆柱的底面半径为6cm,高为10cm,蚂蚁在圆柱表面爬行,从点A爬到点B的最短路程是多少厘米(结果保留小数点后一位)?2.如图,圆柱的底面周长是14cm,圆柱高为24cm,一只蚂蚁如果要沿着圆柱的表面从下底面点A爬到与之相对的上底面点B,那么它爬行的最短路程为( )A.14cm B.15cm C.24cm D.25cm3.如图,透明的圆柱形容器(容器厚度忽路不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且在离容器上部3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路程是( )A.13cm B.2√61cm C.√61cm D.2√34cm4.如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为( )A.13cm B.12cm C.10cm D.8cm5.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是尺.6.如图①,圆柱的底面半径为4cm,圆柱高AB为2cm,BC是底面直径,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线:路线1:高线AB+底面直径BC,如图①所示,设长度为l1.路线2:侧面展开图中的线段AC,如图②所示,设长度为l2.请按照小明的思路补充下面解题过程:(1) 解:l1=AB+BC=2+8=10,l2=√AB2+BC2=√22+(4π)2=√4+16π2;∵l12−l22=.(2) 小明对上述结论有些疑惑,于是他把条件改成:“圆柱底面半径为2cm,高AB为4cm”继续按前面的路线进行计算.(结果保留π)①此时,路线1:l1=;路线2:l2=.②选择哪条路线较短?试说明理由.答案1. 【答案】答图略,将圆柱展开,侧面为矩形,∴AB=√(6π)2+102≈21.3(cm).答:蚂蚁从点A爬到点B的最短路程约是21.3cm.2. 【答案】D3. 【答案】A4. 【答案】A5. 【答案】256. 【答案】(1) 96−16π2(2) ① 8;2√4+π2② ∵l12−l22=82−(16+4π2)=48−4π2=4(12−π2)>0.∴l12>l22,即l1>l2.所以选择路线2较短.【解析】(1) l1=AB+BC=2+8=10,l2=√AB2+BC2=√22+(4π)2=√4+16π2,∵l12−l22=102−(4+16π2)=96−16π2=16(6−π2)<0,∴l12<l22,即l1<l2,所以选择路线1较短.。
一、同步知识梳理1、勾股数:满足a 2+b 2=c 2的3个正整数a 、b 、c 称为勾股数.(1)由定义可知,一组数是勾股数必须满足两个条件:①满足a 2+b 2=c 2 ②都是正整数.两者缺一不可.(2)将一组勾股数同时扩大或缩小相同的倍数所得的数仍满足a 2+b 2=c 2 (但不一定是勾股数),例如:3、4、5是一组勾股数,但是以0.3 cm 、0.4 cm 、0.5 cm 为边长的三个数就不是勾股数。
二、同步题型分析1、等腰三角形的周长是20 cm ,底边上的高是6 cm ,求它的面积.2、(1)在△ABC 中,∠C =90°,AB =6,BC =8,DE 垂直平分AB ,求BE 的长.(2)在△ABC 中,∠C =90°,AB =6,BC =8,AE 平分∠CAE ,ED ⊥AB,求BE 的长.(3)如图,折叠长方形纸片ABCD ,是点D 落在 边BC 上的点F 处,折痕为AE ,AB=CD=6, AD=BC=10,试求EC 的长度.一、专题精讲知识总结:长方体:(1)长方体的长、宽、高分别为a 、b 、c ;(2)求如图所示的两个对顶点的最短距离d 。
E D A C B D EA CB例题1、如图,一只蚂蚁沿着图示的路线从圆柱高AA 1的端点A 到达A 1,若圆柱底面半径为 6,高为5,则蚂蚁爬行的最短距离为 .题型四、台阶问题例题:如图是一个三级台阶,它的每一级的长、宽、高分别为20cm 、3cm 、2cm .A 和B 是这个台阶上两个相对的端点,点A 处有一只蚂蚁,想到点B 处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B 的最短路程为 cm题型五、非对顶点问题例题1:如图,长方体的底面边长分别为2cm 和4cm ,高为5cm .若一只蚂蚁从P 点开始经过4个侧面爬行一圈到达Q 点,则蚂奴爬行的最短路径长为 cm .1、如图1,长方体的底面边长分别为1cm 和3cm ,高为6cm.如果用一根细线从点A 开始经过4个,米,一阵风吹来,红莲吹到一边,,求这里的水深是多少米?)学校旗杆顶端垂下一绳子,小明把它拉直到旗杆底端,发现绳子还多2米,6米,,一机器人在点B处看见一个小球从点A出发,沿直线匀速前进拦截小球,恰好在点住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC处有两只猴子,其中一只猴子爬下树走到离树20 mA处,如果两只猴子所经过的距离相等,试问这棵树有多PC,以BP为边作∠PBQ=60°之间的大小关系,并说明你的结论;的形状,请说明理由.C.110 D.1213、如图,P是正PA=6,PB=8,PC=10,若将,在四边形ABCD 中,BC ⊥CD ,∠ACD =∠ADC .AC>22BC CD ;△ABC 中,AB 上的高为CD ,BC)2与AB 2+4CD 2之间的大小关系,并证明你的结论.。
专题一利用勾股定理解决最短路线问题【类型1】平面图形中的最短线路问题1.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km 处,他想把他的马牵到小河边去饮水,然后回家,他要完成这件事情所走的最短路程是多少?2.高速公路的同一侧有A,B两城镇,如图所示,它们到高速公路所在直线MN的距离分别为AA′=2km,BB′=4km,且A′B′=8km,要在高速公路上A′,B′之间建一个出口P,使A,B两城镇到P的距离之和最短,求这个最短距离.3.如图,正方形ABCD,AB边上有一点E,AE=3,EB=1,在AC上有一点P,使EP+BP 为最短,求EP+BP的最短距离.4.小明听说“武黄城际列车”已经开通,便设计了如下问题:如图,以往从黄石A坐客车到武昌客运站B,现在可以在A坐城际列车到武汉青山站C,再从青山站C坐市内公共汽车到武昌客运站B.设AB=80km,BC=20km,∠ABC=120°.请你帮助小明解决以下问题:(1)求A、C之间的距离; 4.6)(2)若客车的平均速度是60km/h,市内的公共汽车的平均速度为40km/h,城际列车的平均速度为180km/h,为了最短时间到达武昌客运站,小明应该选择哪种乘车方案?请说明理由.(不计候车时间)5.如图所示,永定路一侧有A、B两个送奶站,C为永定路上一供奶站,CA和CB为供奶路线,现已测得AC=8km,BC=15km,AC⊥BC,∠1=30°.(1)连接AB,求两个送奶站之间的距离;(2)有一人从点C处出发沿永定路边向右行走,速度为2.5km/h,多长时间后这个人距B送奶站最近?并求出最近距离.6.如图:一个三级台阶,它的每一级的长,宽和高分别是50cm ,30cm ,10cm ,A 和B 是这个台阶的两个相对的端点,A 点上有一只壁虎,它想到B 点去吃可口的食物,请你想一想,这只壁虎从A 点出发,沿着台阶面爬到B 点,最短路线的长是多少( )A .13cmB .40cmC .130cmD .169cm7.如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm ,3cm 和1cm ,A 和B 是这个台阶的两个相对的端点,A 点上有一只蚂蚁,想到B 点去吃可口的食物.请你想一想,这只蚂蚁从A 点出发,沿着台阶面爬到B 点,最短线路是多少?8.如图,长方体的长为4cm ,宽为2cm ,高为5cm ,若用一根细线从点A 开始经过4个侧面缠绕一圈到达点B,则所用细线的长度最短为 cm .9.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要 cm ;如果从点A 开始经过4个侧面缠绕n 圈到达点B ,那么所用细线最短需要 cm .【类型2】台阶中的最短线路问题 【类型3】长方体(正方体)中的最短线路问题10.如图,长方体的长、宽、高分别为8,4,5,一只蚂蚁沿着长方体的表面从点A 爬到点B ,求蚂蚁爬行的最短路径的长的平方.11.如图,已知圆柱的高为80cm ,底面半径为20cm π,轴截面上有两点P 、Q ,40PA cm =,30BQ cm =,则圆柱的侧面上P 、Q 两点的最短距离是 .12.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为( )cm (杯壁厚度不计).A .14B .18C .20D .25【类型4】圆柱体中的最短线路问题13.如图,一透明圆柱形无盖容器高12cm,底面周长24cm,在杯口点B处有一滴蜂蜜,此时一只蚂蚁在杯外壁底部与蜂蜜相对的A处.(1)若蜂蜜固定不动,求蚂蚁吃到蜂蜜所爬行的最短路线长;(2)若该蚂蚁刚出发时发现B处的蜂蜜正以0.5cm/s的速度沿杯内壁下滑,它便沿最短路径在8秒钟时吃到了蜂蜜,求此蚂蚁爬行的平均速度.参考答案1.解:如图,作出A点关于MN的对称点A′,连接A′B交MN于点P,则从A延AP到P再延PB到B,此时AP+BP=A′B,在Rt△A′DB中,由勾股定理求得A B km',17答:他要完成这件事情所走的最短路程是17km.2.解:如图所示:作A点关于直线MN的对称点C,再连接CB,交直线MN于点P,则此时AP+PB最小,过点B作BD⊥CA延长线于点D,∵AA′=2km,BB′=4km,A′B′=8km,∴AC=4km,则CD=6km,在Rt△CDB中,=,CB km10()则AP+PB的最小值为:10km.3.解:连接DE,交直线AC于点P,∵四边形ABCD是正方形,∴B、D关于直线AC对称,∴DE的长即为EP+BP的最短距离,∵AE=3,EB=1,∴AD =AB =AE +BE =4,5DE ∴==.4.解:(1)过点C 作AB 的垂线,交AB 的延长线于E 点,120ABC ∠=︒,20BC =,10BE ∴=,CE =在ACE ∆中,28100300AC =+,∴20 4.692AC km ==⨯=;(2)乘客车需时间18011603t ==(小时); 乘列车需时间29220111804090t =+=(小时); ∴选择城际列车.5.解:(1)∵AC =8km ,BC =15km ,AC ⊥BC ,∴AC 2+BC 2=AB 2,17AB km ==,(2)过B 作BD ⊥永定路于D ,∵△ABC 是直角三角形,且∠ACB =90°,∵∠1=30°,∴∠BCD =180°﹣90°﹣30°=60°,在Rt △BCD 中,∵∠BCD =60°,∴∠CBD =30°,117.5()22CD BC km ∴===, 7.5 2.53()h ÷=,3∴小时后这人距离B 送奶站最近. 2153752=. 6.解:将台阶展开,如图,因为BC =30×3+10×3=120,AC =50,所以AB 2=AC 2+BC 2=16900,所以AB =130(cm ),所以壁虎爬行的最短线路为130cm .故选:C .7.解:将台阶展开,如下图,因为AC =3×3+1×3=12,BC =5,所以AB 2=AC 2+BC 2=169,所以AB =13(cm ), 所以蚂蚁爬行的最短线路为13cm .答:蚂蚁爬行的最短线路为13cm .8.解:将长方体的四个侧面展开如图,连接A、B,根据两点之间线段最短,=AB cm13故答案为:13.9.解:将长方体展开,连接A、B,根据两点之间线段最短,10()==;AB cm如果从点A开始经过4个侧面缠绕n圈到达点B,相当于直角三角形的两条直角边分别是8n和6,=.)cm故答案为:10;10.解:如图(1)AB2=(8+4)2+52=169;如图(2)AB 2=82+(5+4)2=145.(3)如图(3)AB 2=42+(5+8)2=185.∵145<169<185,∴蚂蚁爬行的最短路径的长的平方为145.11.解:将圆锥的侧面展开,如图所示: 连接PQ ,过点Q 作QH AP ⊥于点H , 底面半径为20cm π,2020AB cm ππ∴=⨯=,40PA cm =,30BQ cm =,10PH cm ∴=,在Rt PQH ∆中,PQ .故答案为:.12.解:如图:将杯子侧面展开,作A 关于EF 的对称点A ', 连接A F ',此时点A ’、 F 、B 在同一条直线上, 则AF BF +为蚂蚁从外壁A 处到内壁B 处的最短距离,即A B '的长度,20()A B A cm '==. ∴蚂蚁从外壁A 处到内壁B 处的最短距离为20cm , 故选:C .13.解:(1)如图所示,圆柱形玻璃容器,高12cm ,底面周长为24cm , 12AD cm ∴=,)AB cm ∴==.答:蚂蚁要吃到食物所走的最短路线长度是;(2)12AD cm =,∴蚂蚁所走的路程20=, ∴蚂蚁的平均速度208 2.5(/)cm s =÷=.。