热变形与动态回复、再结晶
- 格式:ppt
- 大小:6.81 MB
- 文档页数:1
7136铝合金的热变形与动态再结晶行为于科潼;何颖;吕丹;张志豪【摘要】明确7136铝合金的热变形和动态再结晶行为对于制定合理的加工工艺参数具有重要意义.试验亦分析了7136铝合金试样在变形温度为350℃~470℃、应变速率为0.01 s-1~10 s-1条件下的热变形与动态再结晶行为,建立了合金的流变应力模型,并通过挤压试验和数值模拟验证了流变应力本构方程的合理性.结果表明,7136铝合金在350℃条件下进行热加工发生动态再结晶,再结晶百分数随温度升高而增加,随应变速率增加而减少:应变速率为0.01 s-1、变形温度由375℃上升到450℃时,再结晶百分数由6.8%逐渐增加至8.2%;变形温度为400℃、应变速率由0.01 s-1提高至10 s-1时,再结晶百分数由7.6%逐渐减少至4.9%.所获得的本构方程用于挤压过程的数值模拟,稳态阶段模拟与实际载荷位移曲线误差不超过5%.7136铝合金热挤压过程应选择较低的挤压温度和较高的挤压速度,以降低其动态再结晶百分数.【期刊名称】《轻合金加工技术》【年(卷),期】2019(047)007【总页数】8页(P61-67,71)【关键词】7136铝合金;热变形行为;动态再结晶;本构方程【作者】于科潼;何颖;吕丹;张志豪【作者单位】北京科技大学新材料技术研究院材料先进制备技术教育部重点实验室,北京100083;北京科技大学新材料技术研究院材料先进制备技术教育部重点实验室,北京100083;东北轻合金有限责任公司,黑龙江哈尔滨150060;北京科技大学新材料技术研究院材料先进制备技术教育部重点实验室,北京100083【正文语种】中文【中图分类】TG146.217136铝合金是一种在7055铝合金的基础上研发的新型超高强耐蚀铝合金,其主要的成分特点是锌含量高,w(Zn)达9%左右。
Ludtka等的研究表明[1],当w(Zn)从5.59%增加到7.84%时,Al-Zn-Mg-Cu系铝合金的屈服强度增加约100N/mm2。
【材料科学基础】必考知识点第⼋章2020届材料科学基础期末必考知识点总结第⼋章回复与再结晶第⼀节冷变形⾦属在加热时的组织与性能变化⼀回复与再结晶回复:冷变形⾦属在低温加热时,其显微组织⽆可见变化,但其物理、⼒学性能却部分恢复到冷变形以前的过程。
再结晶:冷变形⾦属被加热到适当温度时,在变形组织内部新的⽆畸变的等轴晶粒逐渐取代变形晶粒,⽽使形变强化效应完全消除的过程。
⼆显微组织变化(⽰意图)回复阶段:显微组织仍为纤维状,⽆可见变化;再结晶阶段:变形晶粒通过形核长⼤,逐渐转变为新的⽆畸变的等轴晶粒。
晶粒长⼤阶段:晶界移动、晶粒粗化,达到相对稳定的形状和尺⼨。
三性能变化1 ⼒学性能(⽰意图)回复阶段:强度、硬度略有下降,塑性略有提⾼。
再结晶阶段:强度、硬度明显下降,塑性明显提⾼。
晶粒长⼤阶段:强度、硬度继续下降,塑性继续提⾼,粗化严重时下降。
2 物理性能密度:在回复阶段变化不⼤,在再结晶阶段急剧升⾼;电阻:电阻在回复阶段可明显下降。
四储存能变化(⽰意图)1 储存能:存在于冷变形⾦属内部的⼀⼩部分(~10%)变形功。
弹性应变能(3~12%)2 存在形式位错(80~90%)点缺陷是回复与再结晶的驱动⼒3储存能的释放:原⼦活动能⼒提⾼,迁移⾄平衡位置,储存能得以释放。
五内应⼒变化回复阶段:⼤部分或全部消除第⼀类内应⼒,部分消除第⼆、三类内应⼒;再结晶阶段:内应⼒可完全消除。
第⼆节回复⼀回复动⼒学(⽰意图)1 加⼯硬化残留率与退⽕温度和时间的关系ln(x0/x)=c0t exp(-Q/RT)x0 –原始加⼯硬化残留率;x-退⽕时加⼯硬化残留率;c0-⽐例常数;t-加热时间;T-加热温度。
2 动⼒学曲线特点(1)没有孕育期;(2)开始变化快,随后变慢;(3)长时间处理后,性能趋于⼀平衡值。
⼆回复机理移⾄晶界、位错处1 低温回复:点缺陷运动空位+间隙原⼦缺陷密度降低(0.1~0.2Tm)空位聚集(空位群、对)异号位错相遇⽽抵销2 中温回复:位错滑移位错缠结重新排列位错密度降低(0.2~0.3Tm)亚晶粒长⼤3 ⾼温回复:位错攀移(+滑移)位错垂直排列(亚晶界)多边化(亚(0.3~0.5Tm)晶粒)弹性畸变能降低。
北京科技大学材料科学与工程专业814 材料科学基础主讲人:薛春阳第五章材料的形变和再结晶本章主要内容1.弹性和黏弹性2.晶体的塑性变形3.回复和再结晶4.热变形和动态回复、动态再结晶5.陶瓷形变的特点本章要求1.了解弹性和黏弹性的基本概念2.熟悉单晶体的塑性变形过程3.熟悉多晶体的塑性变形过程4.掌握塑性变形对材料组织和性能的影响5.掌握回复和再结晶的概念和过程6.熟悉动态回复和动态再结晶的概念和过程7.了解陶瓷变形的特点和一些基本概念应变应力b σsσe σbk s e ob εk ε变形的五个阶段:1.弹性变形2.不均匀的屈服变形3.均匀的塑性变形4.不均匀的塑性变形5.断裂阶段抗拉强度屈服强度弹性极限知识点1 弹性的不完整性定义:我们在考虑弹性变形的时候,通常只是考虑应力和应变的关系,而没有考虑时间的影响,即把物体看作是理想弹性体来处理。
但是,多数工程上应用的材料为多晶体甚至为非晶体,或者是两者皆有的物质,其内部存在着各种类型的缺陷,在弹性变形是,可能出现加载线与卸载线不重合、应变跟不上应力的变化等有别于理想弹性变形的特点的现象,我们称之为弹性的不完整性。
弹性不完整的现象主要包括包申格效应、弹性后效、弹性滞后、循环韧性等1.包申格效应材料预先加载才生少量的塑性变形(4%),而后同向加载则 升高,反向加载则 下降。
此现象称之为包申格效应。
它是多晶体金属材料的普遍现象。
2.弹性后效一些实际晶体中,在加载后者卸载时,应变不是瞬时达到其平衡值,而是通过一种弛豫过程来完成其变化的。
这种在弹性极限 范围内,应变滞后于外加应力,并和时间有关的现象,称之为弹性后效或者滞弹性。
3.弹性滞后由于应变落后与应力,在应力应变曲线上,使加载与卸载线不重合而是形成一段闭合回路,我们称之为弹性滞后。
弹性滞后表明,加载时消耗于材料的变形功大于卸载时材料恢复所释放的变形功,多余的部分被材料内部所消耗,称之为内耗,其大小用弹性滞后环的面积度量。
动态再结晶及其机制动态再结晶及其机制引言工程上常将再结晶温度以上的加工成为“热加工”,而把再结晶温度以下而又不加热的加工称为“冷加工”。
至于“温加工”则介于二者之间,其变形温度低于再结晶温度,却高于室温。
高温进行的锻造,轧制等压力加工属热加工。
热加工过程中,在金属内部同时进行着加工硬化与回复再结晶软化两个相反的过程。
在金属冷形变后的加热过程中发生的,称为静态回复和静态再结晶。
若提高金属变形的温度,使金属在较高的温度下形变时,金属在热变形的同时也发生回复和再结晶,这种与金属热变形同时发生的回复和再结晶称为动态回复和动态再结晶。
一、动态再结晶定义在热加工过程中,塑性变形使金属产生形变强化的同时发生的再结晶的现象。
这是在通常的热加工时发生的过程。
在发生回复和再结晶时,由形变造成的加工硬化与由动态回复,动态再结晶造成的软化同时发生。
二、动态再结晶的应力应变曲线值得注意的是:温度为常数时,随应变速率增加,动态再结晶应力应变曲线向上向右移动,m ax 对应的应变增大:而应变速率一定时,温度升高,曲线会向下向左移动,最大应力对应的应变减小.三、动态再结晶的机制 3.1概述在低应变速率下,动态再结晶通过原晶界的弓出机制形核。
与其对应的稳定态阶段的曲线呈波浪 第一阶段—加工硬化阶段:应力随应变上升很快,金属出现加工硬化(0<ε<εc )。
第二阶段—动态再结晶开始阶段:应变达到临界值εc ,动态再结晶开始,其软化作用随应变增加而上升的幅度逐渐降低,当σ>σmax 时,动态再结晶的软化作用超过加工硬化,应力随应变增加而下降(εc ≤ε<εs )。
第三阶段—稳定流变阶段:随真应变的增加,加工硬化和动态再结晶引起的软化趋于平衡,流变应力趋于恒定。
但当ε以低速率进行时,曲线出现波动,其原因主要是位错密度变化慢引起。
(ε≥εs )形变化,这是由于位错增殖速度小,在发生动态再结晶软化后,继续进行再结晶的驱动力减小,再结晶软化作用减弱,以致不能与新的加工硬化平衡,从而重新发生硬化,曲线重新上升。
第15卷第1期2024年2月有色金属科学与工程Nonferrous Metals Science and EngineeringVol.15,No.1Feb. 2024TC11钛合金动态回复与动态再结晶高温本构模型研究朱宁远*, 陈秋明, 陈世豪, 左寿彬(江西理工大学机电工程学院,江西 赣州 341000)摘要:采用Gleeble-1500热模拟试验机在变形温度为900~1 050 ℃、应变速率为0.1~10 s -1的条件下,对TC11钛合金进行等温恒应变速率单轴压缩试验。
组织观测结果表明,在热变形过程中,TC11钛合金存在明显的动态再结晶现象,变形温度分别为900 ℃和950 ℃时,再结晶晶粒尺寸随应变速率增加而先增大后减小;变形温度分别达1 000 ℃和1 050 ℃时,α相含量大量减少,组织演变中动态再结晶机制占主导,晶粒细化明显。
为研究此现象对流变行为的影响,结合K-M 位错密度模型与动态再结晶分数模型,建立了基于动态回复与动态再结晶现象的流动应力高温本构模型。
将此本构模型预测结果与试验数据对比分析,相关性系数和平均相对误差分别为0.989和6.53%,表明所构建的考虑动态回复与动态再结晶的流动应力模型能够准确预测TC11钛合金热变形条件下的流动应力。
关键词:TC11钛合金;动态回复;动态再结晶;高温本构模型;K-M 位错密度模型中图分类号:TG301 文献标志码:AStudy on high-temperature constitutive model of TC11 titanium alloy dynamic recovery and dynamic recrystallizationZHU Ningyuan *, CHEN Qiuming , CHEN Shihao, ZUO Shoubin(School of Mechanical and Electrical Engineering ,Jiangxi University of Science and Technology , Ganzhou 341000, Jiangxi , China )Abstract: Gleeble-1500 thermal simulation testing machine was used to perform an isothermal constant strain rate uniaxial compression test for TC11 titanium alloy under a deformation temperature of 900~1 050 ℃ and strain rate of 0.1~10 s -1. The microstructure observation results show that a significant dynamic recrystallization phenomenon occurs in TC11 titanium alloy during the thermal deformation process. Under the deformation temperatures of 900 ℃ and 950 ℃, the recrystallization grain size first increases and then decreases with increasing strain rate. Furthermore, as the deformation temperature reaches 1 000 ℃ and 1 050 ℃, the content of the α phase significantly decreases, and the microstructure evolution is dominated by dynamic recrystallization, accompanied by obvious grain refinement. To study the effect of the dynamic recrystallization phenomenon on rheological behavior, a high-temperature constitutive model of flow stress based on dynamic recovery and dynamic recrystallization was constructed in combination with the K-M dislocation density model and dynamic recrystallization fraction model. By comparing the prediction results of the constitutive model with the test data, the correlation coefficient and average relative error are 0.989 and 6.53%, respectively, which suggests that the constructed flow stress model with收稿日期:2022-12-12;修回日期:2023-03-14基金项目:国家自然科学基金资助项目(51905241);江西省自然科学基金资助项目(20202BABL214033)通信作者:朱宁远(1986— ),博士,副教授,主要从事金属材料成形与控性一体化研究。
回复与再结晶的异同点在材料科学领域,回复和再结晶是两种常见的微观组织演变过程。
它们都是通过热力学和动力学控制的原子移动和晶界迁移来实现的。
虽然它们都与晶体的再生和再生有关,但它们之间有许多重要的异同点。
本文将分析回复和再结晶的异同点,并讨论它们的应用。
回复和再结晶的定义回复是指晶粒在几乎不改变其形状的情况下重新排列,以消除应力和增强材料的韧性。
回复的发生通常是在材料经历了一些变形后,例如冷加工或热加工。
回复的过程中,原来的晶界被消除,晶粒内部的位错被消除,晶粒的取向被重新排列。
回复可以分为静态回复和动态回复,静态回复是在低温下进行的,而动态回复是在高温下进行的。
再结晶是指在材料经历了一定程度的变形之后,晶粒重新长大并形成新的晶粒。
再结晶发生的过程中,原来的晶粒被分解成很小的晶粒,这些小的晶粒被称为再结晶晶粒。
再结晶晶粒的取向通常是随机的,这意味着再结晶后的材料具有更好的韧性和可塑性。
再结晶可以分为动态再结晶和静态再结晶,动态再结晶是在高应变速率下进行的,而静态再结晶是在低应变速率下进行的。
回复和再结晶的异同点虽然回复和再结晶都是晶体的再生和再生过程,但它们之间有许多重要的异同点。
下面是回复和再结晶的异同点:相似点:1. 晶体的再生和再生:回复和再结晶都是晶体的再生和再生过程,旨在消除应力和增强材料的韧性。
2. 热力学和动力学控制:回复和再结晶都是通过热力学和动力学控制的原子移动和晶界迁移来实现的。
3. 都需要一定的变形:回复和再结晶都需要材料经历一定程度的变形,以激发原子的移动和晶界的迁移。
4. 都可能发生在同一温度范围内:回复和再结晶都可能发生在相同的温度范围内,但需要不同的应变速率。
不同点:1. 晶界的变化:回复的过程中,原来的晶界被消除,而再结晶的过程中,原来的晶粒被分解成很小的晶粒,这些小的晶粒被称为再结晶晶粒。
2. 晶粒的取向:回复的过程中,晶粒的取向被重新排列,而再结晶的过程中,再结晶晶粒的取向通常是随机的。