飞机构造基础第1章飞机结构
- 格式:ppt
- 大小:5.32 MB
- 文档页数:1
飞机构造基础飞机是一种能够在空中飞行并稳定地运动的交通工具。
它的构造是在工程力学、强度学、流体学等自然科学基础上设计与制造而成的。
本文将详细介绍飞机的构造基础。
机翼机翼是飞机的最重要的结构部件之一,它产生升力、稳定飞行方向、控制飞行姿态等功能。
机翼通常有梁式和壳式两种结构,前者有腹杆、副翼、主翼和翼尖等组成,后者则采用铝合金或复合材料制成整体的针状壳体结构。
机翼的厚度、翼宽度和弯曲程度等均是根据飞行速度、飞行高度、操纵性等因素来设计的。
机身机身是飞机的主体结构部件,它承受着飞机气动载荷、重量载荷和发动机推力的作用。
机身一般包括机头、机身主体、机尾等组成。
机身的设计要考虑到载荷分布均匀、强度足够以及舱内空间充足等因素,同时还要考虑到材料的紧凑性、可塑性和降低风阻的考虑。
发动机系统飞机的动力来自于发动机系统,它的作用是产生向前的推力和产生电力、气压等其他辅助供能。
发动机通常有两种类型:喷气式和螺旋桨式。
前者是利用发动机的高速气流增压,通过喷嘴喷出高速气流来产生推力;后者则是利用由发动机传动螺旋桨产生的推力来提供动力。
无论是哪种类型的发动机,它们都需要有非常严谨的设计,以确保它们能承受高温、高速环境下的使用。
起落架起落架是飞机的一种支撑装置,它用于在起飞前和着陆后保持飞机在地面的稳定、提供飞机从地面到空中的过渡。
起落架一般由轮胎,支架和刹车等组成。
起落架设计的重点是重量轻、强度高、可靠性强和降低风阻。
所以,对于一个安全的飞行来说,合理的结构设计是非常重要的。
飞行器所承载的任务决定了设计需要满足的各种指标。
在实际的制造过程中,需要预先进行各种测试和检验,以确保在极端工况下也能保障安全,不出现失控、失事等现象。
飞机的基本构造飞机是一种能够在大气中飞行的航空器,它是人类工程师多年来对飞行原理的深入研究和技术发展的结晶,能够在空中快速、高效地进行航空运输和军事任务。
飞机的基本构造包括机身、机翼、发动机、弹射椅和座舱等组成部分。
1. 机身:机身是飞机的主要承载结构,由舱段和连接这些舱段的框架组成。
它通常由轻质且高强度的材料,如铝合金或复合材料制成。
机身的前部通常包含座舱和驾驶舱,以及飞机操纵系统的控制装置。
机身的中部通常是客舱或货舱,用于载人或载货。
机身的后部通常包含燃油箱、发动机和尾部组件。
2. 机翼:机翼是产生升力的关键部件。
它通常采用翼型外形,其上面凸起,下面平坦,其特殊弯曲形状使得气流在上表面的流速变快、压强变小,从而产生向上的升力。
机翼还具有翼尖、翼根和副翼等构件。
机翼通常由铝合金或者复合材料制成,可以通过支柱或滑轨与机身连接。
3. 发动机:发动机是飞机的动力装置,通常由一台或多台燃气涡轮发动机组成。
发动机通过燃烧燃料来产生高温高压的气体,并通过喷口将这些气体向后排出,推动飞机前进。
发动机通常位于机翼下方的机身后部,有专门的机翼瘤或吊舱容纳。
4. 弹射椅:弹射椅是飞机上必不可少的安全装备之一。
它通常安装在座舱内,用于紧急情况下飞行员或乘客迅速逃生。
当飞机遭遇危险状况时,弹射椅会通过瞬间推力将乘员弹射出机舱,以确保乘员的生命安全。
5. 座舱:座舱是乘客和机组人员的区域。
它通常位于机身的前部,提供舒适的座位和必要的设施,如气候控制、娱乐设施、厕所等。
座舱还包括乘员的舱门和逃生装置,以确保乘客的安全。
除了这些基本构造外,飞机还包括许多其他部件,如起落架、翼舱、机身结构支撑等。
飞机的设计和构造是多学科交叉融合的产物,涵盖了力学、材料科学、航空学、空气动力学等多个领域的知识。
飞机的构造和设计的不断发展和创新,使得现代飞机具有更好的性能、更高的安全性和更大的便利性。
第一章第二章飞机结构1.1.1.2.概述固定机翼飞机的机体由机身、机翼、安定面、飞行操纵面和起落架五个主要部件组成。
直升机的机体由机身、旋翼及其相关的减速器、尾桨(单旋翼直升机才有)和起落架组成。
机体各部件由多种材料组成,并通过铆钉、螺栓、螺钉、焊接或胶接而联接起来。
飞机各部件由不同构件构成。
飞机各构件用来传递载荷或承受应力。
单个构件可承受组合应力。
即:P=X飞机作不稳定的平飞时,推力与阻力是不相等的。
推力大于阻力,飞机就要加速;反之,则减速。
由于在飞机加速或减速的同时,飞行员减小或增大了飞机的迎角,使升力系数减小或增大,因而升力仍然与飞机重力相等。
平飞中,飞机的升力虽然总是与飞机重力相等,但是,飞行速度不同时,飞机上的局部气动载荷(局部空气动力)是不相同的。
飞机以小速度平飞时,迎角较大,机翼上表面受到吸力,下表面受到压力,这时的局部气动载荷并不很大;而当飞机以大速度平飞时,迎角较小,对双凸型翼型机翼来说,除了前缘要受到很大压力外,上下表面都要受到很大的吸力。
翼型越接近对称形,机翼上下表面的局部气动载荷就越大。
所以,如果机翼蒙皮刚度不足,在高速飞行时,就会被显着地吸起或压下,产生明显的鼓胀或下陷现象,影响飞机的空气动力性能。
1.4.3.阻力Y飞行速度和曲率半径也不可能一样,所以,飞机在垂直平面内做曲线飞行时,飞机的升力也是随时变化的。
1.4.5.1.4.6.飞机在水平平面内作曲线飞行时的受载情况水平转弯时,飞机具有一定的倾斜角(玻度)β,升力与垂线之间也构成β角。
这时,水平分力Ysinβ就是飞机转弯时的向心力,它与惯性离心力N平衡;升力的垂直分力Ycosβ与飞机重力G平衡,即Y=cos G水平转弯时,cos β总是小于1,故升力总是大于飞机的重量;倾斜角越大,cos β越小,因而升力越大。
1.4.7. 1.4.8. 腿飞机过载在曲线飞行中,作用于飞机上的升力经常不等于飞机的重量。
为了衡量飞机在某一飞行状态下受外载荷的严重程度,引出过载(或称载荷因数)这一概念。
第一章 飞机结构1.1 概 述 1.2 飞机载荷 1.3 载荷、变形和应力的概念 1.4 机翼结构 1.5 机身结构1.6 尾翼和副翼1.7 机体开口部位的构造和受力分析1.8 定位编码系统1.1.概述固定机翼飞机的机体由机身、机翼、安定面、飞行操纵面和起落架五个主要部件组成。
直升机的机体由机身、旋翼及其相关的减速器、尾桨(单旋翼直升机才有)和起落架组成。
机体各部件由多种材料组成,并通过铆钉、螺栓、螺钉、焊接或胶接而联接起来。
飞机各部件由不同构件构成。
飞机各构件用来传递载荷或承受应力。
单个构件可承受组合应力。
对某些结构,强度是主要的要求;而另一些结构,其要求则完全不同。
例如,整流罩只承受飞机飞行过程中的局部空气动力,而不作为主要结构受力件。
1.2.飞机载荷飞行中,作用于飞机上的载荷主要有飞机重力,升力,阻力和发动机推力(或拉力)。
飞行状态改变或受到不稳定气流的影响时,飞机的升力会发生很大变化。
飞机着陆接地时,飞机除了承受上述载荷外,还要承受地面撞击力,其中以地面撞击力最大。
飞机承受的各种载荷中,以升力和地面撞击力对飞机结构的影响最大。
1.2.1.平飞中的受载情况飞机在等速直线平飞时,它所受的力有:飞机重力G、升力Y、阻力X和发动机推力P。
为了简便起见,假定这四个力都通过飞机的重心,而且推力与阻力的方向相反。
则作用在飞机上的力的平衡条件为:升力等于飞机的重力,推力等于飞机的阻力。
即:Y = GP = X图1 - 1 平飞时飞机的受载飞机作不稳定的平飞时,推力与阻力是不相等的。
推力大于阻力,飞机就要加速;反之,则减速。
由于在飞机加速或减速的同时,飞行员减小或增大了飞机的迎角,使升力系数减小或增大,因而升力仍然与飞机重力相等。
平飞中,飞机的升力虽然总是与飞机重力相等,但是,飞行速度不同时,飞机上的局部气动载荷(局部空气动力)是不相同的。
飞机以小速度平飞时,迎角较大,机翼上表面受到吸力,下表面受到压力,这时的局部气动载荷并不很大;而当飞机以大速度平飞时,迎角较小,对双凸型翼型机翼来说,除了前缘要受到很大压力外,上下表面都要受到很大的吸力。
第一章飞机结构1.1 概述1.2 飞机载荷1.3 载荷、变形和应力的概念1.4 机翼结构1.5 机身结构1.6 尾翼和副翼1.7 机体开口部位的构造和受力分析1.8 定位编码系统1.1.概述固定机翼飞机的机体由机身、机翼、安定面、飞行操纵面和起落架五个主要部件组成。
直升机的机体由机身、旋翼及其相关的减速器、尾桨(单旋翼直升机才有)和起落架组成。
机体各部件由多种材料组成,并通过铆钉、螺栓、螺钉、焊接或胶接而联接起来。
飞机各部件由不同构件构成。
飞机各构件用来传递载荷或承受应力。
单个构件可承受组合应力。
对某些结构,强度是主要的要求;而另一些结构,其要求则完全不同。
例如,整流罩只承受飞机飞行过程中的局部空气动力,而不作为主要结构受力件。
1.2.飞机载荷飞行中,作用于飞机上的载荷主要有飞机重力,升力,阻力和发动机推力(或拉力)。
飞行状态改变或受到不稳定气流的影响时,飞机的升力会发生很大变化。
飞机着陆接地时,飞机除了承受上述载荷外,还要承受地面撞击力,其中以地面撞击力最大。
飞机承受的各种载荷中,以升力和地面撞击力对飞机结构的影响最大。
1.2.1.平飞中的受载情况飞机在等速直线平飞时,它所受的力有:飞机重力G、升力Y、阻力X和发动机推力P。
为了简便起见,假定这四个力都通过飞机的重心,而且推力与阻力的方向相反。
则作用在飞机上的力的平衡条件为:升力等于飞机的重力,推力等于飞机的阻力。
即:Y = GP = X图1 - 1 平飞时飞机的受载飞机作不稳定的平飞时,推力与阻力是不相等的。
推力大于阻力,飞机就要加速;反之,则减速。
由于在飞机加速或减速的同时,飞行员减小或增大了飞机的迎角,使升力系数减小或增大,因而升力仍然与飞机重力相等。
平飞中,飞机的升力虽然总是与飞机重力相等,但是,飞行速度不同时,飞机上的局部气动载荷(局部空气动力)是不相同的。
飞机以小速度平飞时,迎角较大,机翼上表面受到吸力,下表面受到压力,这时的局部气动载荷并不很大;而当飞机以大速度平飞时,迎角较小,对双凸型翼型机翼来说,除了前缘要受到很大压力外,上下表面都要受到很大的吸力。